
251

TRANSIENT MOTION OF A LINE LOAD ON THE SURFACE
OF AN ELASTIC HALF-SPACE*

BY

DANG DINH ANG
Guggenheim Aeronautical Laboratory, California Institute of Technology

Abstract. The present paper studies the wave patterns generated in an elastic
half-space by a line load moving on its surface with a velocity varying as a step function
of time. The solution given in closed form is obtained by means of Fourier integral
equations techniques following a Laplace transformation with respect to the time
variable. The inversion of the Laplace transforms is based on a trick due to Cagniard
and De Hoop.

Introduction. For the past few years, people have been interested in the effects
that moving blast waves on the surface of the earth exert on its interior and in particular
on underground structures. The problem has been considered by Sneddon [1] and
independently by Cole and Huth [2], who treated the steady motion of a line load on
the surface of an elastic half-space. Although it is clear that, far enough from the starting
position of the load, the motion can be considered as essentially steady, there is one
important feature that is not exhibited by a steady state solution, i.e., the "resonance"
effect present in a motion at a velocity approaching the Rayleigh wave velocity. The
present paper will take account of the latter effect by considering the transient motion
of a line load at a velocity varying as a step function of the time.

The initial and boundary value problem. Let a Cartesian system of coordinate.
x, y, z be defined such that the elastic half-space is represented by y > 0, that the axis of
the line load is in the z-direction and that its initial position coincides with the z-axis.
The strength of the load is assumed constant so that the problem is a two-dimensional
one in x, y. Furthermore, since the medium extends indefinitely in the z-direction, the
problem is one of plane strain. Then, if u and v denote the components of the displace-
ment in the x- and ^-directions respectively, it can be shown [3] that the equations of
elastic motion are satisfied if

3$ . dty <9$ d^
U dx dy ' V dy dx '

where $ and ^ are solutions of

V2$ = v\ , V2* = vl (2)

In (2), vl and v\ are defined as

vl = p/(X + 2/j), vl = p/fi, (3)
where p is the density of the material, and X, n its Lam6 constants.
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The initial and boundary conditions are:

J\r„ = -8(x - calt)y = 0, x > 0 ^

1 =0 y = 0, x < 0
txv = 0 y = 0, for all x, (5)

where t„„ and rxt are respectively the normal and shear stresses at the surfaces of con-
stant y, 5 is a Dirac delta-function, and Co1 is the velocity of the moving load assumed to
be a constant. We thus consider a normal load only, but it will be seen that the general
case could be handled just as easily, and that the characteristic features of the wave
patterns of direct interest here are not changed if we add to the load a tangential com-
ponent. To the conditions (4)-(5), we must, of course, add the condition that the waves
be outgoing waves. To complete the formulation of the problem, we require the wave
functions $ and to be continuously differentiable at least twice everywhere except
at the the wave fronts, and the displacement to be a continuous function of the space
coordinates everywhere inside the solid.

The method of solution consists in applying a Laplace transformation to the wave
equations (2), and then expressing the solutions of the resulting equations as super-
positions of "plane waves" with the amplitude spectra as the unknowns. Thus, under a
Laplace transformation defined in the usual manner, the Eqs. (2) become:

V2$* = v\p2$*, V2^* = vtp2^*, (6)

where p is the parameter of the transformation and the superscript* indicates a Laplace
transform. Let the solutions of (6) be of the forms:

$* = J P(s) exp {—p(s2 + v\)1/2y + ipsx} ds, (7)

St'* = f Q(s) exp { — p(s2 + vl)1/2y + ipsx} ds, (8)
J — CO

where P(s) and Q(s) are unknown functions and the paths of integration are along the
real axis. The functions (s2 + v\a)1/2 are given non-negative real parts along the path
of integration; this can be achieved by defining their branch cuts as follows: Re s = 0,
rll2 < | Im s | < oo respectively. Finally, the parameter p in (7)—(8) is taken to be a
real and positive quantity of magnitude sufficiently large to insure the convergence of
the integrals.

The problem of course is to determine the functions P(s) and Q(s) from the boundary
conditions. Now, the conditions of (4) and (5) can be expressed in terms of $ and SF
using (1) and the well-known strain-displacement and stress-strain relations. Assuming
that (7) and (8) can be differentiated under the integral signs, we accordingly obtain
for the Laplace transforms of (4)-(5)

f {(s2 + vl/2)P(s) — is(s + v\)1/2Q(s)} exp (ipsx) ds
(9)

= icav\/2(fp) exp (—pcox) for x > 0|

= 0 x < of



(12)
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f {2is(s* + v2)1/2P(s) + (2s2 + v22)Q(s) } exp (ipsx) ds = 0 (10)
J — 00

the latter equation holding for all x. Equation (10) is evidently satisfied if the integrand
is identically zero, i.e., if

P(s) = (s2 + vl/2)R(s), Q(s) = -is(s2 + v\)1/2R(s), (11)

where R(s) is still largely arbitrary. Substituting for P(s) and Q(s) into (9) gives:

/ F(s)R(s) exp (ipsx) ds = (A0/p2) exp (—pc0x), x > 0
J — 00 Sj

= 0 x < 0.

where

A0 = cavl/2p, F(s) = (s2 + vl/2)2 — s2(s2 + vl)1/2(s2 + vl)1/2. (13)

The solution of (12) is immediate

R(s) = (Aa/2irip2) {(s — ic0)F(s)}-1. (14)

From (11) and (14), the expressions for P(s) and Q(s) can be deduced and the problem
is formally solved. It is not difficult to show that this solution converges and is the
actual solution of the boundary value problem.

The stress wave patterns. It remains to find the inverse transform of the solutions.
The Laplace transforms of the stresses are given in terms of integrals of the form

I* = f K(s) exp {—p(s2 + v2)1/2y + ipsx} ds, (15)
J —CO

where v = v1-2 and K(s) is some algebraic function of s only. The present inversion of
(15) back to the i-plane is based on a trick originally due to Cagniard [4] and modified
by De Hoop [5]. The trick consists in so deforming the path of integration that I* is
reduced to the form

I* = f J(t;x,y)e~p'dt, (16)
Jo

where t is real and J(Z; x, y) is some suitable function. The inverse of I* can thus be
obtained by inspection. In the course of the deformation of the path of integration, it is
essential to know all the singularities of K(s). These can be recognized by inspection,
with the exception of the poles s = ± is R , sB > v2 , ± is R being the zeros* of F(s)
defined in (13). Once the singularities of K(s) are known, it only remains to follow steps
quite similar to those taken in [6] where the inverse transforms of integrals of the form
(15) have been found. We refer the reader to [6] for these details and are content to
state here the final expressions for the stresses corresponding to a velocity of the load
smaller** than both velocities of sound in the solid

"Thus Sfi-1 is the well-known Rayleigh wave velocity.
**The case of a load velocity greater than either or both velocities of sound could be handled just

as easily but is omitted for simplicity.
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co rr J t sing MM
T"> ~ ~irr m ~ Vir)\(f - vlr'T2 R (c„ + isO(sR + is,)

81)/

(17)
T ilf^si)cos0__. . .
m (C0 + tsO(ss + tV ' ' '

t sin 6 „ M2(s2) t M2(s2) cos 6
v*>\(e - v22r2)1/2 Ke (Co + is2)(sB + is2) lm (c„ + is2)(s« + is2)

Co ,/ ,\ . t sin 0 , At M2{(j1.)— — Kt)g(8)S ±7T1 3072 + cos 0f-lm 7 :—:—T7 :—:—r ,irr I (v2r - t ) J (c0 + iu,)(Si + tco.)

_ Co s/ <sin0 #1(81)
T„ - ?rr H(< _ vyy/2 Ke (Cfl + + -Si)

_ T iV^s,) cos e ^ _
(Co + «,)(«. + «i)J '

Com. J t sin 0 n _ N2(s1)
T" ~ ur H(< Uir)\«2 - ^2)1/2 Re (Co + isi)(s« + is,)

jVafa) COS 8- Im
(c0 + ISiXSfi + is,)

, Co J <sin0 „ iV2(s2) ,ins
+ ,rH(t ~ V2T}\(<2 - vlr'T2 Re (co + «*)(«* + ts2) (L9)

T N2(s2) cos e— lm 
(c0 + is2)(sB + is2)

Co ,/a /„J , t sin 0 , „\ T N2(w~) fit) aim ±7-2-2—172 + cos e> lm ——-———:—rTT'f /av I (v2r — t) J (Co + tco-)(s* + tea,)

where

r = (x2 + y2)U2, 0 = tan 1 (y/x), 0 < 0 < t, (20)

Si.2 = {fir2 — V],22)1/2 sin 0 + i(t/r) cos 0, (21)

M,{s) = (s2 + vl/2)\sR + is)/F(s), (22)

F (s) being defined in (13)

M2(s) = s2(s2 + t^'V + vI)U2(Sr + is)/F(s), (23)

(s2i,2 + fii2)1/2 = {2 sin 0 + i{t2 — v\,2r2)l/2 cos 0}/r, (24)

(Al.2+B2,2y/2 + A,2l'/2 . J(Al.2 + Bl2y/2 - A,W.2+^.,)l/2 = 1v 12 1 2 ±t|WM-2 ' "*2" ^ , (25)

■4j,2 = (<2/r2)(sin2 d — cos2 0) + v%A — j;?,2sin2 6,

fli.2 = (<2/r2 — Vi,2)1/2(t/r) sin 20,

the ± signs in (25) corresponding to cos 9 > 0 and cos d < 0 respectively.
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f(t) = 1 ts < t < v2r

ts = v2r | cos 6 | + (v\ — t>i)I/2r sin 6 (26)

= 0 otherwise

g(d) = 1 0 < 0 < 0,5 or ir — 0 s < 0 < x

0S = cos"1 (vi/v2) (27)

- 0 otherwise

03*. = t{T(^ — t2/r2)1/2 sin 0 + (i/r) cos 0}, (28)

co* corresponding to 0 < 0 < 6S and x — 0S < 0 < x respectively.

(ul + v\)1/2 = ±t'(| |2 - v\Y/2, (29)

(o,I + vT2 = (v\ - | co, |2)1/2, (30)

Ar,(s) = (s2 + v\ - vl/2)(s2 + vl/2)(sB + is)/F(s), (31)

N,(s) = is(s2 + v\)1/2(s2 + v\/2)(sb + is)/F(s). (32)

In the above relations the square roots of real quantities are taken as positive.
From (17)—(19), it is clear that the wave patterns consist of two cylindrical waves

radiating from the origin r = 0 with velocities and iv1 respectively, two head waves
whose fronts are tangential to the shear cylindrical wave—the head waves are represented
e.g. in At in (18)—the two surface waves propagating in the positive and negative
x-directions respectively. The complete picture is shown in the figure below.

y
Stress wave patterns. I. Shear wave, II. Dilatation wave, III. Head waves, R. Rayleigh wave.

It can be verified that the stresses are of the order (vr2 — t2)~l/2, for vr —> t, v = vu2 .
This singularity is, of course, integrable and does not affect the continuity of the dis-
placements. The resonance effect anticipated in the Introduction results from the
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presence of the factors (c0 + is)-1 (sR + is)'1, s = sli2 , in the expressions (17)—(19)
since — isR is not a zero of the functions M (s), N(s) defined above.
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