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A GENERAL THEOREM CONCERNING THE STABILITY
OF A PARTICULAR NON-NEWTONIAN FLUID*

BY

SAMUEL M. GENENSKY
Mathematics Division, The RAND Corporation

Summary. It is the intention of the present paper to prove a theorem concerning
the stability of a particular non-Newtonian fluid suggested to the author by Professor
R. S. Rivlin of Brown University. The method used in proving this theorem is similar
to that employed by H. Schlichting in his proof of a similar theorem for an inviscid
fluid which was originally established by Lord Rayleigh. The acceleration gradients
introduced by the non-Newtonian fluid model into the constitutive equations are found
to alter the stability criterion set forth by Rayleigh for an inviscid fluid.

1. Introduction. As early as 1880 Rayleigh [1] proved that for an inviscid fluid
the existence of a point of inflection in the velocity profile of a steady one-dimensional
basic flow is a necessary condition for the growth of a superimposed two-dimensional
disturbance. It is the intention of the present paper to prove a similar theorem for a
particular non-Newtonian fluid suggested to the author by Professor R. S. Rivlin.* The
method used in proving this theorem is similar to that employed by Schlichting [2] in
his proof of the Rayleigh theorem.

2. The constitutive equations and equations of motion. Let X,(j = 1, 2, 3) be
the coordinates referred to a rectangular Cartesian coordinate system x,- , of a generic
particle of a continuous medium in the undeformed state at time t0 . Let xt be the co-
ordinates of the same particle in the deformed state at time t. It then follows that the
components of velocity v,- and the components of acceleration a,- of the particle are
given by

* = f and «'■ = w' (2-1}
where x,- are regarded as single-value continuous functions of Xk(k = 1, 2, 3) and t,
having as many continuous derivatives as the analysis requires. As is well known, if
Vj are considered to be functions of xk and t, then

dVj dv, . .
a, = — + vk — • (2.2)dt dx,k

Now the equations of motion are

+•"£) + >'< ('->-».»). <2«

where p is the mass of the medium per unit volume and /,• are the components in the
coordinate directions of the body force per unit mass, also measured in the deformed
state. The components of stress tn resulting from the deformation are defined as follows;
tn , ti2 and tj 3 are the components of the force per unit area in the positive direction of
the Xi , x2 and x3 axes respectively, measured in the deformed state, exerted across an
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element of area at , x2, x3) normal to the x,- axis, by the material on the positive side
of the element upon the material on the negative side of the element.

Rivlin [3] showed that if tn at the point xk and at time t are assumed to be poly-
nomials in the velocity gradients dvm/dxn (m, n = 1, 2, 3) and the acceleration gradients
dam/to„ and if, in addition, the medium is assumed to be isotropic at time t0 , then the
stress matrix T = || tn || is expressible in the form

T = v'ol + + <P2&-2 + <psAi + <p*A22 + ¥>5(AiA2 + A0A1) ^ 4)

+ <^o(AiA2 + A2Ai) + <p7(A1A2 + A:>Ai) + <f>s(A2A22 + A;Aj),
where I is the unit matrix, A! and A2 are symmetric kinematic matrices defined by

A, = dVj . dvx
dxt dXj

and A2 = da,- dai „ dvm dvm
dXi dXj to,- dxt (2.5)

and <pQ {q — 0, 1, 2, • • • , 8) are polynomials in trAx, trA2, trA\, trA\, trA\ , trA\ , tr Ai A2,
trA\A2 , trAtAl and trA\A22 . In a later paper Rivlin [4] pointed out that for an incom-
pressible material, the stress corresponding to a specific state of flow is indeterminate
to the extent of an arbitrary hydrostatic pressure p. Since in the present paper we shall
confine our analysis to an incompressible fluid, we may replace <p0 in equation (2.4) by
— p. We shall also restrict our investigation to a fluid for which tpx and <p2 are constants
and <pa (q = 3, 4, 5, • • • 8) are identically zero.

Equation (2.4) now takes the form

T = —pi + <piAj + (p2A2 , (2.6)
or alternatively

in — —p S,i +
/ dVj dvi\ /da,- dal dvm dvm\

+ d^J + ^+ 2 (2-7)
!qs. (2.7), we obi

. t . (dv,- . dvt\ I d2Vj
tn - ~P bn + <p\dXi + +

Introducing Eqs. (2.2) into Eqs. (2.7), we obtain

/ dVj dvt\ ( d2Vj dvm dVj
to; dxm

+ v d*Vi 4- d*Vl 4-^^+v d*Vl 4- 2
m dXi dxm dt to,- dXj dxm m to,- dxm

dvm dO
to,- dxJ'

(2.8)

Since we have assumed that the fluid is incompressible, the continuity equation is

-^ = 0. (2.9)
to„

Introducing the constitutive equations (2.8) in the equations of motion (2.3), employ-
ing the incompressibility condition (2.9) and neglecting body forces, we obtain

(dVj dvA dp , d2v, . ( d%iAm +Sij - -£ + « + f' 'dXi to; \dt to; to;
dVj_ d2ym 2 dVrn d2Vj
dxm to; to; to; to; dXm

■ d3V,- „ dvm d2Vt
Vm to; to; dxm to; to,- dXm

I 2 ^2 1 2 ^2 ^Vm ^
to; to,- to; to,- to; to;/'

(2.10)
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3. Development of the stability equation. Consider next a two-dimensional steady
laminar flow with velocity components

W1 = W,{x2) and W \ = W3 = 0. (3.1)

Examples of such flows are the flow between a pair of parallel plates sufficiently removed
from the intake section, and the flow in the boundary layer along a flat plate excluding
the region of its leading edge. The pressure P necessary to maintain such flows is in
general a function of both x, and x2 .

We shall superimpose upon the laminar flow a small two dimensional disturbance
with velocity components and associated pressure given by

Mi = Wife , x2 , t), u2 = u2(zi , x2 , t), u3 = 0 and p* — p*{xi ,x2,t). (3.2)

Thus the velocity components and pressure of the composite flow are

Vi = Wi + ux , v2 = u2 , v3 = 0 and p = P + p*. (3.3)

Further, we shall require that the composite flow satisfy the same boundary con-
ditions as the steady laminar flow. Thus the disturbance satisfies the boundary conditions

Ui = u2 = 0 at x2 = 0 and x2 = L (3.4)

in the case of flow between parallel plates separated by a distance L, and

Mi = u2 = 0 at x2 = 0 and x2 —> °° (3.5)

in the case of boundary layer flow along a flat plate.
Next, introducing the velocity components and pressure given by (3.3) into Eqs.

(2.9) and (2.10), and assuming that the velocity components ut are sufficiently small
so that terms of the second degree in u,- and derivatives of w, may be neglected in com-
parison with terms of the first degree, we obtain

£+£ = °' m
^ £+w**) - m

■0 _L OW" 5^ J_ AlJfZ'

dx
and

+ »[vvH + *wr1£ + w-dtidXa

+ W[\72u2 + 3wr J* + W, V2 ^
oXi oXi

+ W["u2 + 2W[

(3.7)

(du2 J_ w dUA dP dV* M \72,, _1_ (t72\~Vt + w> taj - ~W, - ta + y*v "* + dt

+^^+8^'£+^,£ (3-8)

+ 4W[W'1' + AW" + 2W[ ^ + 2W[V\\
OX2 0X2 /
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where V2 = (d2/dx\) + (d2/dx22), and primes denote ordinary differentiation with respect
to x2 .

Further, introducing Eq. (3.6) into Eqs. (3.7) and (3.8) and assuming the basic
laminar flow satisfies the equations of motion, we obtain

{ft + w-t,+ w'^)" "to + + *-(v"t
+ swi + wi' Jr + ppvv2 ̂ + w;'% + 3 if; ~|)

(3.9)

d£i dx2 dXi dXi
and

(du2 T , du2\ dp* 2 , (i-ji du2 w, d'
"Vlf + W' tej ' ~ te + *"V "■ + ftlV hi + 2,V' Si,

112

dx2

+ 3TFr ^ + W,V2 + 4Wi' ^ + 4TF;dXi dXi d£2 a^2

(3.10)

Differentiating Eq. (3.9) with respect to x2 and Eq. (3.10) with respect to x1 , elimi-
nating d2p*/dx1dx2 from the resulting equations and again employing Eq. (3.6), we
arrive at

(s+w' i, ~ -v'" h - ^ v' i, )(£ " S)" - w">» • (311)
where v = <pi/p and 7 = «j2/p-

Further, we shall assume that the velocity components of the disturbance are of
the form

u,(xt , x2 , t) = u*(x2) exp [iA{Xi - Ct)}, (j = 1, 2) (3.12)

where | u*u*- | is the amplitude and A the wave number of the disturbance, and C is a
complex number. The real part of C, Cr , is the phase velocity of the disturbance and
the imaginary part, Ci , is the amplification factor. If C,- > 0, the disturbance tends to
grow; if C{ < 0, the disturbance decays; and if C{ = 0, the disturbance is neutral.

Introducing the velocity components (3.12) into Eqs. (3.6) and (3.11), we obtain

iAu* + uV = 0 (3.13)
and

iA(W, - C)(u*' - iAu%)

- [v + iAyiW, - C)]{u*"' - A2u?' - iAu%" + iA3u%) (3.14)

= (<yW["' - W[')u% .

Replacing in Eq. (3.14) by iu$'/A from Eq. (3.13), we obtain

iA{W, - C)(u*" - A2u%) - [v + iAy{Wi - C)](w?"" - 2A2u2*" + iV2)

= iA{W[' - yW["')u% .
(3.15)

Writing Eq. (3.15) in dimensionless form by letting j?2 = x2/L, V} = Wi/W0 ,
w2 = u*2/W0 , a = AL and c = C/W0 where L and W0 are a characteristic length and
a characteristic velocity respectively of the steady laminar flow, we arrive at
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iaiV, - c)(w'2' - «V) - I i + ^ (V, - c)\(w!/" - 2o?w'2' + «V)Li? 5 J (3.16)

= ia(v[' - | V{"jw2 ,

where R = W0L/v is the Reynolds' number of the laminar flow, S = L2/y is a non-
dimensional parameter arising from the presence of non-Newtonian terms in the con-
stitutive equations of the fluid, and primes denote ordinary differentiation with respect
to 772 •

We see that if ^ «>, Eq. (3.16) becomes the familiar Orr-Sommerfeld stability
equation.

Finally, in terms of w2 the boundary conditions (3.4) and (3.5) become

w2 = w2 = 0 at j?2 = 0 and tj2 = 1, (3.17)
and

w2 = w'2 = 0 at 7?2 = 0 and rj2 —> 00 (3.18)

respectively.
4. The general theorem. Under the assumption that S is finite and R is infinite,

Eq. (3.16) takes the form

(Fi - c)(w2" - a2w2) - | (F, - c)W - 2a V)2 + A2) = (PT - | V["')w2 . (4.1)

We shall now prove the following theorem.

The existence of a point in the flow field for which V" — (1/S)V['" is equal to zero,
is a necessary condition for the amplification of a disturbance.

Regarding w2 as a complex variable, we define

1 / « n / 4\ (vi'-lvi"')
M{w2) = j w'2"' " (l + ^)<' + [" + ^Jw2 +   y^-c   w% (4.2)

and

1 / 9 ?\ / 4\ U" ~ iv
M(w2) = -g w2"' - \l + -jrjw" + (a2 + H Vl - s ' (4.3)

where a bar denotes the complex conjugate of the corresponding unbarred quantity. It
is easily seen from Eq. (4.1) that both M(w2) and M(w2) are equal to zero.

To prove the theorem we assume that V" — {\/S)V[^ 0 throughout the flow
field. Then, multiplying M(w2) by w2 and M(w2) by w2 and subtracting the resulting
expressions, we obtain

w2M(w2) — w2M(w2) = (w2w2" — w2w2")

- (i + - w2w'2') (4.4)

+ (f,» -1 v:-){y^rc - I», I'.
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Integrating Eq. (4.4) with respect to t]2 between the limits = 0 and t]2 = 1, we
have

f1 - - 1J [w2M(w2) — w2M(w2)] dr)2 = -g [(w2w2" — w2w2") — (w2w" — w2w2)]

/ 2 2\ 1 r1 (v[' - \ Vi"')
- ^1 + -^-j[w2w'2 - w2w'2\ ^ + 2iCi ^ y ^ |2

(4.5)

w2 | dt),

Because of the boundary conditions (3.17), the first two terms on the right hand side of
Eq. (4.5) vanish, and further, since both M(w2) and M(w2) are equal to zero, the left
hand side of the equation is equal to zero. It then follows that

r(r- -1F""). ...
Jo | V, - c I2 ' W2 1 dy]2

must vanish. But this is impossible, since cs- > 0, for a disturbance which tends to grow,
and hence [1/| Vx — c |2] > 0. Further | w2 |2 is positive and by assumption V" —
(l/S)Vl"f 7^ 0 everywhere in the flow field. Thus we conclude that for a disturbance
which tends to grow, there exists an rj2, 0 < »j2 < 1, for which V" — (1/<S) V["' is equal
to zero.

In the case of laminar flow by a flat plate the proof of the theorem differ only in that
the limits of integration become r\2 =■ 0 and t)2 = °o, and the boundary conditions
(3.18) are used in place of those given by (3.17).
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