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A GENERAL THEOREM CONCERNING THE STABILITY
OF A PARTICULAR NON-NEWTONIAN FLUID*

BY
SAMUEL M. GENENSKY
Mathematics Division, The RAND Corporation

Summary. It is the intention of the present paper to prove a theorem concerning
the stability of a particular non-Newtonian fluid suggested to the author by Professor
R. 8. Rivlin of Brown University. The method used in proving this theorem is similar
to that employed by H. Schlichting in his proof of a similar theorem for an inviscid
fluid which was originally established by Lord Rayleigh. The acceleration gradients
introduced by the non-Newtonian fluid model into the constitutive equations are found
to alter the stability criterion set forth by Rayleigh for an inviscid fluid.

1. Introduction. As early as 1880 Rayleigh [1] proved that for an inviscid fluid
the existence of a point of inflection in the velocity profile of a steady one-dimensional
basic flow is a necessary condition for the growth of a superimposed two-dimensional
disturbance. It is the intention of the present paper to prove a similar theorem for a
particular non-Newtonian fluid suggested to the author by Professor R. S. Rivlin.* The
method used in proving this theorem is similar to that employed by Schlichting [2] in
his proof of the Rayleigh theorem.

2. The constitutive equations and equations of motion. Let X,(j = 1, 2, 3) be
the coordinates referred to a rectangular Cartesian coordinate system z; , of a generic
particle of a continuous medium in the undeformed state at time ¢, . Let x; be the co-
ordinates of the same particle in the deformed state at time £. It then follows that the
components of velocity v; and the components of acceleration a; of the particle are
given by
azx,'
Fﬁ— )

ox;
v,-=—’ and a; =

Y 2.1

where z; are regarded as single-value continuous functions of X, (k = 1, 2, 3) and ¢,
having as many continuous derivatives as the analysis requires. As is well known, if
v; are considered to be functions of z, and ¢, then

i = a7 + Uk 5’: (2’2)
Now the equations of motion are
; at; .
o240, 22) 4 of, = S, (=129, (23)

where p is the mass of the medium per unit volume and f; are the components in the
coordinate directions of the body force per unit mass, also measured in the deformed
state. The components of stress ¢;; resulting from the deformation are defined as follows;
i1, iz and ¢;; are the components of the force per unit area in the positive direction of
the z, , 2, and x; axes respectively, measured in the deformed state, exerted across an

1Received October 28, 1958; revised manuscript received August 12, 1959,



246 SAMUEL M. GENENSKY [Vol. XVIII, No. 3

element of area at (z, , x, , x;) normal to the z; axis, by the material on the positive side
of the element upon the material on the negative side of the element.

Rivlin [3] showed that if ¢;; at the point z, and at time ¢ are assumed to be poly-
nomials in the velocity gradients dv,,/9z, (m, n = 1, 2, 3) and the acceleration gradients
da,,/0z, and if, in addition, the medium is assumed to be isotropic at time #, , then the
stress matrix T = || ¢;, || is expressible in the form

T = ¢l + 0A; + 0.A; -+ ¢3A§ + ¢4A§ + ¢’5(A1Az + A.A)
+ ¢6(A3A2 + AzA?) + ‘P7(A1A§ + AgAx) + ¢8(A§A§ AzA 1)
where I is the unit matrix, Al and A, are symmetric kinematic matrices defined by

6a, + 0a; av,,, W
ax, ox; ax,. ax;

andg, (g =0,1,2,-.-,8) are polynomjals inird,, trAz ,trA} trAj, irA? , irA} | irA\A,,
irAlA, , irA,A; and #rAZA; . In a later paper Rivlin [4] pointed out that for an incom-
pressible material, the stress corresponding to a specific state of flow is indeterminate
to the extent of an arbitrary hydrostatic pressure p. Since in the present paper we shall
confine our analysis to an incompressible fluid, we may replace ¢, in equation (2.4) by
— p. We shall also restrict our investigation to a fluid for which ¢, and ¢, are constants
and ¢, (¢ = 3,4, 5, --- , 8) are identically zero.
Equation (2.4) now takes the form

(2.4

A = and A, = (2.5)

T = —pI + ¢1A1 + ¢2A2 ) (2-6)
or alternatively
; W da; , 9 0, 0,
liy p8,1+¢,( +a—x’)+ (az +—5Z—'j+2a%alh). 2.7

Introducing Egs. (2.2) into Egs. (2.7), we obtain

- _ ; @) ( Ov; | Ovm O0;
t:l p 611 + ¢l(axl + axi + P2 at 0501 + axl axm (2 8)
3%, % | Ovm oW 3%, O av_,,.)
+ o ox; 0z, + dt dz; + ox; 0%, T n ox; 0%, +2 ox; 0x,/°
Since we have assumed that the fluid is incompressible, the continuity equation is
W, :
. = 0. 2.9

Introducing the constitutive equations (2.8) in the equations of motion (2.3), employ-
ing the incompressibility condition (2.9) and neglecting body forces, we obtain

; A 8%; ( 8%,
"(at T axk) = "o, T T e

axl ax, at dx,; dx,
4 o 0"Vm Wn 9
0x,, 0x; 9T, 0x; 0T; 0%, (2.10)
331); 6v‘m a vl
t Vs
dx; 0%; 0% dx,; 0x; 0.,
m  Vm W OVm )
T2 dx, dx; ox, +2 dx; dx, dx,/’
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3. Development of the stability equation. Consider next a two-dimensional steady
laminar flow with velocity components

Wl = Wl(xz) and W2 = W3 = 0. (3-1)

Examples of such flows are the flow between a pair of parallel plates sufficiently removed

from the intake section, and the flow in the boundary layer along a flat plate excluding

the region of its leading edge. The pressure P necessary to maintain such flows is in

general a function of both z;, and z, .
We shall superimpose upon the laminar flow a small two dimensional disturbance

with velocity components and associated pressure given by
U = (@ , 22, 0), Uy = Us(y , 2 , 1), us = 0 and p* = p*(x, , 22 ,18). (3.2
Thus the velocity components and pressure of the composite flow are
n=Wi,4+wu, v:=u, v;=0 and p =P + p*. 3.3)
Further, we shall require that the composite flow satisfy the same boundary con-
ditions as the steady laminar flow. Thus the disturbance satisfies the boundary conditions
U =u, =0 at 2, =0 and 2z, = (3.4)
in the case of flow between parallel plates separated by a distance L, and
U =u =0 at z,=0 and 2,— = 3.5)
in the case of boundary layer flow along a flat plate.
Next, introducing the velocity components and pressure given by (3.3) into Egs.
(2.9) and (2.10), and assuming that the velocity components u; are sufficiently small

so that terms of the second degree in u; and derivatives of 4; may be neglected in com-
parison with terms of the first degree, we obtain

o dus _
(')xl + axg - O’ (3'6)
o2 4 7, 20 W )= BB+ W)
1 U2 ) = or, o, ®1 1 1
2 % " au? _2_
T “”(v ot T2 o, T g e a7

+ WiV, + 30 8 a“‘ O~ a“‘

+ Wi + 2W! -"’—1‘—)

0x;
and
duy auz) _ _oP  ap* ( 2 0%
( + W dx,) 9z, Oz T eV + eV at
+ aw) 2L a ax2 + 3wy "“2 WV 3“2 3.8)
9% Uy

+ AW+ 4wy T8 a“‘ L2+ 2W(V’u,),

dx;
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where V? = (9°/9z7) + (3°/9x3), and primes denote ordinary differentiation with respect
tox, .

Further, introducing Eq. (3.6) into Egs. (3.7) and (3.8) and assuming the basic
laminar flow satisfies the equations of motion, we obtain

6
(3.9
2
+aw 2y gy 2 LWLV Wi o+ W )
3x1 6:02 =
and
* 8 2 2
("“2 + W, ) = - 4 oV, +¢z( et Wi
. 1 0%z (3.10)
+ 3wy 2 4 W,V S Wy T 4 W)
1 Lo

Differentiating Eq. (3.9) with respect to z, and Eq. (3.10) with respect to z, , elimi-
nating 8°p*/dz,0r, from the resulting equations and again employing Eq. (3.6), we
arrive at

[i] i) ou
(% + W 5 = vV =4V = AWV g )(3’;; -~ gx—) = GW" — W', (3.11)

where v = ¢,/p and ¥ = ¢,/p.
Further, we shall assume that the velocity components of the disturbance are of
the form

U@y , T2, 1) = uh(@) exp A, — CY)], (G =1,2) (3.12)

where | u*u* | is the amplitude and A the wave number of the disturbance, and C is a
complex number. The real part of C, C, , is the phase velocity of the disturbance and
the imaginary part, C; , is the amplification factor. If C; > 0, the disturbance tends to
grow; if C; < 0, the disturbance decays; and if C; = 0, the disturbance is neutral.
Introducing the velocity components (3.12) into Egs. (3.6) and (3.11), we obtain

tAut +u¥ =0 (3.13)
and

1AW, — O)(u¥ — iAu?)

— [ + iAy(W, — O)Ju""" — A’u¥’ — tAud’’ + iA%% (3.14)
= (YW — Wit .
Replacing u* in Eq. (3.14) by 7u¥’/A from Eq. (3.13), we obtain

AW, — O — A™w%) — [ + 1Ay(W, — O)J”""" — 24%3" + A*u¥)
=AW — yW{""uk .

Writing Eq. (3.15) in dimensionless form by letting 5, = z,/L, V, = W,/W, ,
w, = u¥/W,,a = AL and ¢ = C/W, where L and W, are a characteristic length and
a characteristic velocity respectively of the steady laminar flow, we arrive at

(3.15)
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1V, — )(wy — a’wy) — I:% + % vV, — 0)](w£"’ — 2a"wl’ + a'wy)
(3.16)

= iave = L virr o,
where R = W,L/v is the Reynolds’ number of the laminar flow, S = L’/v is a non-

dimensional parameter arising from the presence of non-Newtonian terms in the con-
stitutive equations of the fluid, and primes denote ordinary differentiation with respect

tO N2 » .
We see that if S — «, Eq. (3.16) becomes the familiar Orr-Sommerfeld stability
equation.
Finally, in terms of w, the boundary conditions (3.4) and (3.5) become
w, =w; =0 at =0 and 9, =1, (3.17)
and
w,=w;, =0 at .=0 and 5, — o , (3.18)
respectively.

4. The general theorem. Under the assumption that S is finite and R is infinite,
Eq. (3.16) takes the form

(V= )i’ — o) — 3 (V: = i’ — 20’ +a'v) = (VI = g V"o, . (4.1)

‘We shall now prove the following theorem.

The existence of a point in the flow field for which VY — (1/8)V{'"’ is equal to zero,
18 a necessary condition for the amplification of a disturbance.

Regarding w, as a complex variable, we define
. (V{' — _é V{"')

2
Mw,) = éw;'" - (1 + %)wz (a” + %)w +— e m 4.2)

: w (=3
M(wz) = -é;u’)élll — (1 + 2’%‘)‘&);’ + (az + %)wz + V! ‘i z u-)z ) (4.3)

where a bar denotes the complex conjugate of the corresponding unbarred quantity. It
is easily seen from Eq. (4.1) that both M (w,) and M (w,) are equal to zero.

To prove the theorem we assume that VY — (1/8)V{""" # 0 throughout the flow
field. Then, multiplying M (w,) by %, and M (w,) by w, and subtracting the resulting
expressions, we obtain

W M(w;) — w,M(w,) = %(@Thwé'” — wyy""’)
24 - Y '
=\l + =g )@aws” — wabs’) (4.9

n__l //n)( 1 _ 1 ) 2
"'(‘ sV \vr s~ v/ 1w I
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Integrating Eq. (4.4) with respect to 7, between the limits 7, = 0 and 7, = 1, we
have

1 _ 1 L
j; [ M(ws) — w.M(wy)] dy, = K [(Daws"" — wabl") — (Wws’ — wib;”)] Io

1 (4.5)
V{l —_ V{III)
S

1 l(
o+2zc;‘/; |V1—0|2

Because of the boundary conditions (3.17), the first two terms on the right hand side of
Eq. (4.5) vanish, and further, since both M (w,) and M (w,) are equal to zero, the left
hand side of the equation is equal to zero. It then follows that

1 ( {/ — _S]_‘_ V{//’)
C,‘f
)

|V1"'C|2

must vanish. But this is impossible, since ¢; > 0, for a disturbance which tends to grow,
and hence [1/| V, — ¢ |)] > 0. Further | w, |* is positive and by assumption V4 —
(1/8)V{'"" = 0 everywhere in the flow field. Thus we conclude that for a disturbance
which tends to grow, there exists an 7, , 0 < 7, < 1, for which V4 — (1/8)V{’’’ is equal
to zero.

In the case of laminar flow by a flat plate the proof of the theorem differ only in that
the limits of integration become 5, = 0 and 7, = «, and the boundary conditions
(3.18) are used in place of those given by (3.17).

| w, |* dn, .

207\, ’ =7
—-\1+ 'F [Wow; — waD;

I We l2 dﬂz
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