Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



The distribution of quadratic functionals

Authors: John B. Thomas and Eugene Wong
Journal: Quart. Appl. Math. 19 (1961), 150-153
MSC: Primary 60.20; Secondary 60.40
DOI: https://doi.org/10.1090/qam/142134
MathSciNet review: 142134
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] A. J. F. Siegert, A systematic approach to a class of problems in the theory of noise and other random phenomena--Part III, IRE Transactions on Information Theory IT-, 4-14 (March 1958)
  • [2] The symmetry of (1) allows $ {h^{\left( m \right)}}\left( \tau \right)$ to be symmetric without loss of generality
  • [3] Whittaker and Watson, Modern analysis, Cambridge Univ. Press, 1927, Sec. 11.61
  • [4] Kari Karhunen, Über lineare Methoden in der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fennicae Ser. A. I. Math.-Phys. 1947 (1947), no. 37, 79 (German). MR 23013
  • [5] Michel Loève, Probability theory, 2nd ed. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-New York-London, 1960. MR 0123342
  • [6] E. Wong, Vector stochastic processes in problems of communication theory, Ph.D. dissertation, Princeton University, May 1959
  • [7] J. K. Wolf, On the detection and estimation problem for multiple nonstationary random processes, Ph.D. dissertation, Princeton University, October 1959

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 60.20, 60.40

Retrieve articles in all journals with MSC: 60.20, 60.40

Additional Information

DOI: https://doi.org/10.1090/qam/142134
Article copyright: © Copyright 1961 American Mathematical Society