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AN EXTENSION OF ‘SEPARATION-OF-VARIABLES’ FOR
TIME-DEPENDENT EXCITATIONS*

By I. U. OJALVO (Republic Aviation Corp., Farmingdale, L. I., N. Y.

1. Introduction. A general form of a procedure for extending the Separation-of-
Variables technique to problems with time-dependent forcing-functions and boundary-
conditions is presented. While the procedure originated and developed through the
efforts of researchers in elastic vibrations [1, 2, 3, 4], the method is applicable to many
linear partial differential equations which are operative in finite domains. Chow [5]
has developed the.method independently for second order differential equations in-
volving only one independent space variable, and the approach has recently been ex-
tended to help solve the heat-conduction equation [6]. The method has received little
attention. outside the vibration field, although its generality has been recognized by
others, as is evidenced by the following statement by Mindlin and Goodman [2]: “The
method is here developed for and applied to the problem of the flexural vibrations of
beams. It is equally applicable to time-dependent boundary-value problems --- in a
wide variety of systems governed by linear partial-differential equations.” Furthermore,
the present author is not aware of a treatment of this method in a form as general as is
presented here.

2. The method. Consider the equation

Mu(P,t) = TNu(P, ) + F in D (1)
* with linear boundary condition
au—+pu + vy’ + --- =G on B, t>0 @)
and initial conditions
w=H(P), 0u/ot = Hy(P) forP in Dwitht = 0. 3)

D is a continuum domain with boundaries on B. P and t denote the independent
variables (space and time). M and N represent linear partial-differential space operators
and T is the time operator

T = 0 8% )/of + b 3( )/ot.

The boundary condition (2) may involve linear combinations of the space derivative of
any order less than the highest ordered derivative appearing in M, and the order of M is
greater than that of N.

Assume that a complete set of characteristic-value solutions ¢, associated with D
and B are obtainable from the eigenvalue problem defined by

) Mo, = ),,N:p,. in D, (4.2)
ap, + Bol + v + -+ =0 on B. (4.b)

*Received December 7, 1961; revised manuscript received May 29, 1962.
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Assume further that F and G of (1) and (2) are of the form

F=F@ 0= 3 1Pk, | ®
G = 6@, = ¥ 0(Pad- | ©

Assume a solution fo (1) throgh (3) to be of the form
u = Zﬂ: 2P)¥n(t) + Z v:(P)ki(?) + Z,: w;(P)g;(?). Q)
Substitution of (5) and (7) into (1) yields |
2 Moy + 30 kiMv: = £) + 20 q:Mw;

= X T¥.Ne. + 2 ThNo; + 2 Tg;Nw; . (8)

To simplify (8), let the v; and w; satiéfy the corresponding statical equations

Mv.(P) = f.P), 9)
Muw,(P) = 0. (10)

Equation (8) then reduces to ‘
T Mo, = T ToNeu + 3 Thio + 3 Tq,Nw, . 1D

To complete the separation of variables in (11), use the functions ¢, as a basis for
the expansion of the v; and w; , i.e. let

v,(P) = Zn: Cintn(P), (12.a)
wl(P) = ; ein‘Pn(P)' (12b)

Substituting (12.a) and (12.b) into (11), equating termwise in # and dividing through
by ¥,.(t)Ne.(P), we obtain the typical equation

M{D"/N(D,. = (T'pn + Z C,‘,.Tk,‘ + Z eiani)/'l/n = —all)i (13)

in which —aw} has been chosen as the separation constant. Comparing (4.a) with (13)
we find

—un = M/a. (14)

Equations for determining the ¢, follow from (13):
62¢”/8t2 + b/a a‘pn/at + wi\bn = _(l/a)T(Z ct’nkt' + E einQi)’ . (16)

In a similar way the assumed solution form (7) is substituted into the boundary
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condition (2) and the initial conditions (3) to give
2 Vulagn + Bob a0l + ) + kilows + i+ --0)
+ 27_‘, ¢;(lw; + pw; + ---) — ¢g;) =0 on B, (17}
2 o+ Lkos+ gy = Hy for 1=, (18)
; (8¢,/00) 00 + E (0k./atw; + ; (8¢;/00)w; = H, for ¢t = 0. (19)

Since the k; and ¢; are independent functions of ¢, their coefficients must vanish in
(17). Thus, together with (4.b) take

av; + i +w’+ --- =0 on B, (20)
ow; + pw; + --- = g; on B. (21)

To satisfy the transformed initial conditions (18) and (19), first expand H,(P) and
H,(P) into eigenvector series; i.e. let '

H(P) = % hugu(P), (22)

HyP) = 3 huupu(P). | (23)

Substitute (12.a), (12.b), (22) and (23) into (18) and (19) and rearrange to get
Vl0) = hin = (X cai0) + 2 €:00,(0), (24)

3(0)/31 = han = (X €10 k0)/01 + 2 e aqj(0>/ét). (25)

To recapitulate, it has been shown how the original problem, as stated by (1), (2)
and (3), may be transformed into a series of standard type subproblems defined by (4.a)
and (4.b), (16), (24), and (25), (9) and (20), (10) and (21).

3. Orthogonality. To obtain the coefficients ¢;, , €; , hi. , and ks, , orthogonality
properties are established. Consider (4.a) multiplied by a new space variable £, and
integrated over D, i.e.

[ edto.av, = [ £.Ne.av, . (26)

Define £,, as the solution to the adjoint equation corresponding to (4.a):
M*¢, = NiIN*¢, (27)

in which M*, N* and boundary conditions on £, are such that

[ eNe.av, = [ N av,, (28)

f £ Mo, AV, = f o M*, dV, . (29)
D D
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Multiplying (27) by ¢, and integrating over D, we find
[ et av, = [ oVt av, . (30
D D

we now subtract (30) from (26) to get
[ eo.av, = [ ort.av, = n [ &N aV, =22 [ oN*enav,. @D
Applying (28) and (29) to (31), one obtains
O =22 [ oN*%.dV, = 0. (32)

It can be shown * that if A\* is an eigenvalue of M*, N*, it is also an eigenvalue of
M, N. Thus, (32) supplies the orthogonality condition

f oN*,.dV, = 0 for n = m. (33)
D

If
M= M* and N = N*

the operators are said to be “formally self-adjoint” [7]. If it turns out that the boundary
conditions as well as the operators are the same, then
n = Om

and M and N are called self-adjoint operators.
Applying (33) to (12.2), (12.b), (22) and (23) we see that

f v N*, AV,
cin = D—' i) (34)
f oN*, dV,
D
f w,N*,dV,
=2 " (35)
f ‘PnN*En de
D
[ HN,av,
b = 22— | (36)
[ e, av,
D
[ mNw, av,
hay = 22—
[ oz, av,
D

*Theorem 4.1, page 199, of Reference [7].
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4, Discussion. Since the eigenvalue problems for the case of steady excitation
problems, ¥ = F(P) and @ = G(P), are the same as those for time-dependent excitations
F = F(P, t) and G = G(P, t), existing results can be easily transformed to the more
general case of time-dependent inputs. The main difference between these cases is in.
the solution of the time equations, (16), (24) and (25). Examples for which the present.
method can be applied are:

Poisson equation: Vau + f(P, t) = 0,
Wave equation: Vi = (1/¢%) 8°u/df,
Heat equation: Viu = (1/a) du/ét,
Telegraph equation: Vu = Tu,

Plate or beam equations: Viu = — /s 8°u/df,

2
Elastic ring equation: 8‘9—0 0% )/06® + 1)*u = T(3*( )/36* — kyu.

It is interesting to note that the result
u= 2 o+ 2 vk + 2 wig;
n i i

consists of two series of quasi-static solutions superimposed upon a homogeneous-type
solution. This is analogous to ‘“‘complete’” solutions of ordinary differential equations
in which homogeneous (or complementary) and particular (or “steady-state’’) solutions
represent components of the total solution.
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