This result and (14) then imply

$$\sigma^2 = \frac{1}{4} \int_0^\infty [M(\omega)M(-\omega) + M(\omega)\{M(\omega)\}_c$$

$$+ \{M(-\omega)\}_cM(-\omega) + \{M(-\omega)M(\omega)\}_c]w_s(f)\, df,$$

(15)

which immediately reduces to (4).

If in place of equation (7) we start with

$$\psi_s(t; \tau) = \varepsilon(z(t)z(t + \tau)$$

and employ the Wiener-Khintchine relations\(^1\) to write

$$w_z(t; f) = 2 \int_{-\infty}^\infty \psi_z(t; \tau)e^{-i\omega \tau} \, d\tau$$

as the time dependent spectral density, then using the above techniques we can show that

$$w_z(t; f) = \frac{1}{4} H(|\omega|)\left\{ \sum_{m=1}^\infty a_m[\{M(\omega - \omega_m)\}_c + M(-\omega + \omega_m)]e^{i(\omega_m + \phi_m)}w_s(f - f_m)$$

$$+ \sum_{m=1}^\infty a_m[\{M(\omega + \omega_m)\}_c + M(-\omega - \omega_m)]e^{-i(\omega_m + \phi_m)}w_s(f + f_m) \right\}. \quad (16)$$

It is easily seen, then, that

$$\sigma^2 = \frac{1}{2} \int_{-\infty}^\infty w_z(t; f) \, df$$

where σ^2 is given by (4).

Correction to the paper

DUALITY IN NONLINEAR PROGRAMMING

Quarterly of Applied Mathematics, XX, 300–302 (1962)

By O. L. MANGASARIAN (Shell Development Company)

There is an incorrect statement of a previous result. In particular the last sentence of the Converse Duality Theorem should read:

"If $\varphi(x)$ is quadratic and if $g(x)$ is linear, then a weaker converse theorem is also true if $\varphi(x)$ is merely convex and twice continuously differentiable."