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TWO DIMENSIONAL SINGULAR SOLUTIONS IN INFINITE
REGIONS WITH COUPLE-STRESSES*

By YECHIEL WEITSMAN (Brown University)

Introduction. In this paper the singular solutions for a concentrated force and a con-
centrated couple are obtained for the two dimensional couple-stress theory. These
solutions are generated from the corresponding known singularities in three dimensional
couple-stress theory.

Since the usual statements of the uniqueness theorem in linear elasticity do not
apply to singular problems, it is possible to find many other pseudo-solutions which
yield the same resultant tractions as the properly constructed singularities. These pseudo-
solutions are shown to omit some of the characteristic behavior which is due to couple-
stress effects.

1. The concentrated-couple paradox in two dimensional couple-stress theory. In
the couple-stress theory (alternately called "Cosserat theory with constrained rotations")
the potential energy of an elastic material is assumed to depend on strains and rotation
gradients. Within such materials each surface element is subjected not only to normal
and tangential forces but also to moments per unit area, called "couple stresses".

It has been shown by Mindlin [l]1 that, in the case of plane-strain, it is possible to
express stresses and couple-stresses in terms of two Airy-type stress functions $ and
In cylindrical coordinates p, 0, and z these expressions read
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and
v4$ = 0, V2(l - Z2V2)<A = 0. (3)

Consider a two dimensional concentrated moment M acting at the origin p = 0.
The classical solution is given by the Airy stress function $ = (M/2t)6. Since this
function $ is harmonic, one may be led to assume from (2) that ^ = 0. Substitution in
(1) yields that on surfaces p = p0 the only stress is

_ Ml
Tpi 2 x po

so that over any such surface the resultant traction vanishes and the resultant moment is

Tpt-po-2-irpo = M.

On the other hand one may consider xfr ̂  0 but (1 — I2 V2)^ = Const, or, without
loss of generality, (1 — £2V2)^ = 0. There are infinitely many such functions \p, all of
which satisfy (2) with $ = (M/2ir) 6, that yield no resultant traction or couple on surfaces
p = p0 . For instance, let ^ = AK0(p/l). Then, corresponding to this function \p one
obtains at p = p0

A dKn(p/l)
T pO rvPo dp

_ dKn(p/l)
dp

Again, the resultant traction vanishes at p = p0 and the resultant moment is

2xpoTpS + 2-rpoMp = 0.

This ambiguity, which also exists in the case of the concentrated force, is eliminated
when the singular solution is constructed "properly". One such "proper" method is to
obtain the singular solution as a suitable limit of the solution to the corresponding non-
singular problem. However, rather than establish such solutions directly it has been found
advantageous, for the present cases, to construct the two dimensional singularities by
superposition of the known three dimensional singular solutions, which in themselves were
constructed "properly".

2. The singular solution due to a concentrated couple. Taking account of couple-
stresses, Mindlin and Tiersten [2] gave a Boussinesq-Papkovitch type formulation for
the displacement field u in terms of displacement functions B and B0 . The expression
for u reads

u = B - !2VV-B - a'V[r-(l - l2V2)B + £„] (4)
in which

G( 1 - l2V2)B = -Pf - iPV X c, GV2B0 = r-(pf + £PV X c). (5)
In (4) and (5) r is the radial distance from the origin, a' — 1/(4(1 — v)), f and c are
body force and body couple, respectively.

The solution for a concentrated couple of magnitude M acting at the origin and
oriented about the z axis is given by [2]

B = —(M/8irG)e, X W, B0 = 0 (6)
where, in (6)

v = 1/r - 1 = (1 - e~'")/r. (7)
Substituting (6) and (7) into (4) and expressing results in terms of the cylindrical

coordinates p, d, z one obtains
M dtp . .u = w«e'. u»=~^gTp (8)
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Since r2 = p2 + z2, it is clear from (7) that <p = <p(p, z). To obtain a state of plane strain
consider couples M = Me, strung uniformly along the entire z axis. In view of (8), such
distributed couples yield

M
Ue ~ 8irG

r i_ I" 1 - exp (-((p2 + (2 - tf)'/2)/l)~1
i- dp L (P2 + (z - £)2)"2 J
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Now, introducing the change of variables (2 — £)/p = sinh 6 one arrives at

exp (-((p2 + (z - £>2)1/2)/Q

(9)

(10)
f /r , f exp -«P' + (2 - ey-voLKp'z-&d*- L (P2 + (z -syy/2 d*

= J exp ^ cosh dj dO = 2K0(^y.

Furthermore, since K0(p/l) exists for all p > t > 0 and since it can be shown that

/ - dp f(p' z~8dt

converges uniformly for all t = 2 — £, it is permissible to interchange the order of dif-
ferentiation and integration of the exponential portion of (9), whereby the computation
of ve is greatly simplified. Altogether one obtains

M r 1 d
Ue = —^ - + 7 A0
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This displacement can be attributed to the functions

*=%K'{y- (i2>

3. The singular solution due to a concentrated force. The three dimensional displace-
ment field that corresponds to a concentrated force [2] P = Pex , acting in the origin,
is given by (4) with

B = iSr**" 5o = °- (13>
The function <p is again given by (7).

Substituting (13) into (4) and expressing in terms of cylindrical coordinates p, 6, z
one obtains

= P T j•> d2<p , d p ~i n
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Ve ~ 4ttG

P
V' ~ 4ttG

,2 d'<p , , d p
r a ~ 773 1 2T1/2 COS 6.

dz dp dz (p" + Z )

The determination of the two dimensional solution for a concentrated force cannot
proceed on the basis of the two dimensionalized displacement field which corresponds
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to (14). The difficulty is due to the presence of the term 1/r (that is the classical part
of the function <p) in the displacements u„ and ue , which leads to the divergent integral

/: (p2 + (2 -
2x1/2

However, the term 1 /r does not appear in the expressions for the strain and rotation
fields which correspond to (14), so that these quantities lead to convergent integrals.

When the strains and rotations are computed, and the effect of concentrated forces
Pex strung uniformly along the entire z axis is considered, one obtains a two dimensional
field which can be attributed to the Airy-type functions

1-2 v P , „ P „ . „$ = -T-. r - p log p cos 8 - — pd sin 6,2(1 - »j * (15)

# t 'Ml _ P sin
T p T \ 1/

The function K^p/l) sin 6 does not contribute to the resultant traction and moment
over any surface p = p0 . An analysis based solely on resultant considerations may lead
to the omission of this function.

Conclusions. It is well known that pseudo singular-solutions exist in classical elas-
ticity. Thus, it is not at all surprising to discover their presence in couple-stress theory.
However, since the field equations of couple-stress theory are higher in degree than
those of classical theory, these more complicated equations can accommodate a larger
variety of erroneous solutions.

It has been shown in this paper that the basic two-dimensional singularities of couple-
stress theory are distinctly different from their classical counterparts. The couple-stress
singularities contain transcendental functions, which are traceable to the operator
1 — Z2V2. This characteristic distinction cannot be omitted even though it does not
affect resultants.

Several other pseudo singular-solutions in couple-stress theory, for the half-plane
and for a flat crack were discussed in a recent paper by Sternberg and Muki [3]. A similar
situation, regarding singularities, undoubtedly exists in the so-called strain-gradient
theory.

Nomenclature

<J>, ip Stress functions
p, 6, z Cylindrical coordinate
r Radial distance in spherical coordinates

, o-j , i~fs , TtsP Stresses in cylindrical coordinates
nf , Couple-stresses in cylindrical coordinates
I Characteristic length of couple-stress theory
V2 Laplacian operator
K0 , Ki Modified Bessel functions of second kind
V Gradient operator
B, B0 Boussinesq-Papkovitch type displacement functions
v Poisson's ratio
G Shear modulus
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