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STEINER'S PROBLEM FOR SET-TERMINALS*

BY

E. J. COCKAYNE (University of Victoria)

AND

Z. A. MELZAK1 (University of British Columbia)

1. Let Li , ■ ■ • , Ln be n separate lakes which are to be interconnected by a network
of canals of minimum possible length. Or, let il/, , • • ■ , Mn be n metropolitan areas
which are to be joined by the shortest possible network of roads. Again, let Py , • •• , P„
be n metal plates in the plane which are to be soldered together by the least possible
amount of wire of fixed diameter. Assuming spatial homogeneity, we formulate an
abstract problem which underlies the given examples. By a net N we shall understand
a finite set of plane rectifiable arcs; the sum L(N) of their lengths is the length of N.
Let n > 3 and let A = \Al , • • ■ , An\ be a plane set with exactly n components A{ ;
it will be assumed throughout that each A { is compact. Any such A will be called an
w-tcrminal set and its n components will be called terminals. Our problem is:

(ST„) given an ?i-terminal set A, to find the shortest net N, such that A U N is a con-
nected set.

This is a direct generalization of Steiner's problem (S„) in which A consists of n
points. In previous papers [1] and [2] we have given a solution of (S„); here we generalize
our methods to solve (ST„).

2. The existence of a minimal net N follows by a standard continuity and com-
pactness argument, since each arc of N is clearly a straight closed segment and (as
will be shown) there are at most 2n — 3 such arcs, and since each terminal is a compact
set. Further, there are k points vx, • ■ ■ , vt (called vertices) and N consists of n + k — 1
straight segments (called branches) each of which connects two terminals, or two vertices,
or a vertex and a terminal. By the valency at a vertex v{ we understand the number
w(Vi) of branches emanating from it. The following properties of the minimal net N
are simply deducible by the same methods as their counterparts for (S„) in [1] and [2];

PI. Two branches can have at most one point in common, it is then their common
endpoint and is either a vertex or a point in the boundary of a terminal.

P2. If two branches share an endpoint they subtend there an angle > 120°.

P3. For each (i = 1, • • • , k), w(v{) = 3.
P4. Any two of the three branches meeting at a vertex subtend there the angle 120°.

P5. If a vertex v{ is joined by a branch to a terminal A ,■ , then it is joined to the
point of Aj nearest to it (or to one of such points if there are several); the same holds
for two terminals joined by a branch.

P6. 0 < k < n - 2.
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Suppose that the integer k and the vertices , ■ ■ ■ , vk are known. Our problem
is then converted to the following one: given n + k disjoint compact connected sets
Ui, • • • , Un+k (= A !,•••, An ,«!,■■■ , vk), to connect them together by some n + k — 1
branches so that each branch joins two nearest points of a U{ and a U,- , and the sum
of the lengths of all branches is minimum. The properties P1-P6 are then automatically
satisfied.

This is a discrete problem for which an efficient algorithm has been given by Prim [3]:
(1) Join Ih to its nearest neighbor, say U2 ,
(2) replace L\ and U2 by the union of L\ , U2 and the shortest straight segment

joining them,
(3) repeat the same procedure for the new in + k — l)-tcrminal set, and keep

on repeating until only one set remains. Actually, Prim's algroithm was originally
intended for the case of point-terminals; however, it works equally well for any compact
connected terminals. Moreover, if the nearest neighbor of some {/< can be connected
to it by several segments of the same minimal length, or if Ui has several nearest neigh-
bors, we perform the connection in all possible ways and get then the set of all connecting
networks of the same minimal length.

Therefore our problem (ST„) will be solved if we can show how to find for each
k (0 < k <n — 2) all admissible vertex sets V = {t^ , • • • , vk\ satisfying P1-P5. For
once this is done, we can perform Prim's algorithm for each admissible vertex set,
augmented by the fixed n-terminal set, and we find the vertex set(s) leading to the
shortest connecting net.

This shows the principle of the proof; actual work will be arranged somewhat dif-
ferently so as to cut down on the number of geometrical constructions by taking ad-
vantage of certain structural properties.

3. The solution of Steiner's problem (S„), given in [1] and [2] depends on the fol-
lowing elementary geometrical lemma which will be referred to as the equilateral con-
si ruction. Let A = {, a2, a3 j be the vertices of a triangle T no angle of which is > 120°.
Let al2 , a,3 , al3 be the three third vertices of the equilateral triangles built outward
on the sides of T (with the obvious notation), then the straight segments a12a3, a23a1, al3a2
intersect in a point v inside T. Moreover, the straight segments a,w, a2v, a3v subtend
painvise the angle 120° at v, so that the minimal net N for the 3-terminal set A consists
just of those three segments. Finally, we have

L(N) = |a12ffl3| = \®z3ai\ = \a13a2\. (1)

The equilaternal construction is of fundamental importance; it enables us to solve
(S„) and a suitable generalization of it will lead to the corresponding solution of (ST„).
The crux of the matter is that the points a,2 , a23 , a13 can be constructed by reference
to the given 3-terminal set A alone.

Suppose now that A is a given n-terminal set of (S„); let the minimal connecting
net AT have the vertices • , vk and suppose that of the n terminal points exactly
n{ have valency i (i = 1, 2, 3, no terminal can have valency > 4 by P2). Counting
the total number B of branches by vertex- and terminal-multiplicities, we get

B = (3k + «i + 2n2 + n3)/2, n = n, + n2 + n3 ,
so that

B = (3k + n + n 2 + 2n3)/2.
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On the other hand, a tree with n + k vertices has exactly n + k — 1 branches and
so B = n + k — 1, which gives us

k = n — 2 — n2 — 2n3 .

This proves P6; further, it shows that if k has its largest possible value n — 2 then
each terminal has valency 1.

We outline now the solution of (S„) beginning with the construction at all admissible
vertex sets for the case when the n-terminal set is complete; here k = n — 2. An example
illustrating the construction for n = 6 is given in Fig. 1.

Here (ab) denotes the third vertex of the equilateral triangle based on ab, it is sup-
posed that as we move along ab from a to b, (ab) is on the right. The equilateral con-
struction enables us to find successively (a6a5), (a4a3) and (a2fli), then ((a2ai)(cf6«s)),
and finally the straight segment [((a2ai)(a«as)), («4«3)] which we call an axis for the
net N in question. Observe that the net N of Fig. 1 has also other axes, for instance,
[feaO, ((fleets)(a4<x3))]. Repeated use of (1) shows that both these axes have length L(N).
In the general case we start with the given n-terminal set A — {a^ , ■ ■ ■ , an\ and no
axis is a priori known; however, the number of possible orderings and bracketings
of <&! , a2, • • • , an, which are admissible as axes, is clearly finite. Thus, when A is given,
we construct all possible axes and after finding the shortest one(s) we reconstruct there-
from the minimal net(s).

If k < n — 2 in the minimal net, we can split A into certain subsets called com-
ponents, and we find the minimal subnets over each component separately; these are
joined then as in Prim's algorithm. Figure 2 shows an example of a 9-terminal set which
is not complete. Here there are two components: a 3-terminal component {a2 , a3 , a4)
and a 4-component ja6, a^, a„, a9!. Each component is complete, in the sense of having
the largest possible number of vertices (= number of its terminals —2). In addition,

a,)

((aaeO(asaf)) A* v*\
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a 7

Fig. 2

there are two residual terminals, al and ab. The minimal subnet (or the set of all minimal
subnets) is constructed over each component separately, in the same way as before.

We do not know how to decompose A into components a priori. However, we observe
that there is a finite number of such possible decompositions. Specifically, let A —
{a, , • • • , anj, and let

A = Al yj A2 U ■■■ U Av \J R; (2)

(2) is called a decomposition if: (a) the set A{ has n(i) > 3 points, (b) for i j, At and
Aj have at most one point in common, (c) each ak belongs to at most three sets A ,■ ,
(d) R is disjoint from u Ai . If, in addition, each set At in (2) considered as an non-
terminal set is complete, i.e., if a minimal net with n(i) — 2 vertices exists for it, we
call the decomposition (2) admissible. If, further, there are exactly k vertices in an
admissible decomposition, we call it an admissible /c-decomposition.

The procedure is now clear. For a given n-terminal set A and a given integer k we
construct firdt all admissible ^-decompositions; their number is certainly finite. For
each such admissible ^-decomposition we construct the minimal subsets over each
component separately; finally, these minimal subnets over components and the residual
set R are joined together by Prim's algorithm. When this is done for/c = 0, 1, ••• ,n — 2,
we have a finite number of connecting networks which must contain the minimal net
of A (or all the minimal nets of A, if there are several). We observe a stability property
of components: if a terminal of a component is perturbed by a sufficiently small amount
then, in general, only the minimal subnet over that component changes. There are,
however, some exceptional cases when two components share a terminal of valency 2,
and the two branches meeting there subtend an angle 120°, or when similar circum-
stance occurs with respect to the residual set.

4. In this section we prove a lemma which generalizes the equilateral construction
to the case of a 3-terminal set, with sets as terminals. When a and b are points, let
the point (ab) be as defined before; suppose now that A and B are compact connected
disjoint sets and put

{AB) = {(at) :a E A,b e B}.
Then (AB) is likewise a compact connected set, it may be called the equilateral sum
of A and B. However, the sets (AB) and (BA) do not coincide. We list some elementary
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properties of the equilateral sum: if A is a point then (AB) and B are congruent under
a rotation of 60° about A; if c is an extreme point of (AB) then c — (ab) where a and b
are extreme points of A and B respectively; the distributive laws hold: if A = C KJ I)
then (AB) = (CB) \J (DB), the same for B = C U D. The following properties hold
for (AB) whenever A and B have them; convexity, arcwise-connectedness, being the
smooth boundary of a region, being a simple polygon. Let d(X, Y) denote the distance
between two compact disjoint sets X and F.

Lemma 1. Let A, , A2 , A3 be three compact connected pairwise disjoint sets. Suppose
that a minimal connecting net N for the 3-terminal set A = {At , A2 , A3] consists of three
straight segments axv, a2v, a3v (a,- £ At) meeting at a vertex v, and let the rotation ax —>
«2 -* a3 —> aj be counter-clockwise about v. Then (A^), (A2A3), (A3AX) contain points
(axa2), (a2a3), (a3ai) closest respectively to A3, Ax, A2 ; the three segments as(aia2), al(a2a3),
a2(a3ai) intersect at v; and finally

L(N) = d(A, , (A2A3)) = d(A2 , (4.A0) = d(A3, (A,A2)) (3)

To prove it we note that the function f(x) = d(x> -^«) attains its minimum for
x = V) we have then d(v, A>) = \vat\, with a< G At . Applying the equilateral construction
to the triangle aia2a3 leads at once to the proof of Lemma 1.

5. Given an n-terminal set A = {A t , • • • , An| ,we solve the problem (ST„) by the
same sequence of steps as in (Sn). The higher equilateral sums, e.g., ((A2Ax)(A^Ab)),
are unambiguously defined, and by an axis, e.g., [((A2Al)(A6A5)), (A 4A3)] we under-
stand the straight segment joining the points in X = ((A2A1)(A(iA^)) and in F = (AtA3)
for which the minimum d(X, Y) is attained. We note the following

Theorem 1. Let A = {Ax , • • ■ , An\ be an n-terminal set and suppose that each A
is a simple polygon. Then the minimal connecting net N can be jound by a finite sequence
of Euclidean constructions (employing ruler and compass in the traditional sense).

To prove this it suffices to observe that:
(a) the equilateral sum of two polygons is a polygon and hence constructible by

Euclidean means, and
(b) the (closest) distance between two polygons can be found by Euclidean means

(for it is the distance between a pair of vertices).
Theorem 1 leads immediately to

Theorem 2. Let A = {Ax , • • • , An] be an n-terminal set and suppose that each
A,- is arbitrarily well approximable by simple polygons. Then the minimal connecting
set N can be found by a finite sequence of Euclidean constructions to within arbitrary accuracy.

For if Ai and A2 are approximated by the polygons and P2 , then (A^A2) is ap-
proximated by (PxP2).

6. The effective algorithm for our problem, described in the previous sections, is
in its present form not very practicable for the cases when n exceeds 10-15. Of course,
one can take advantage of various minimizing conditions to exclude many of the pos-
sibilities for admissible vertex sets and admissible decompositions. The reader interested
in such matters is refei'red to the forthcoming paper "Steiner Minimal Trees" by F. N.
Gilbert and H. 0. Pollak, to appear shortly in the S.I. A.M. Journal.
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