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A GENERAL FORMULATION OF THE BOUNDARY CONDITIONS ON THE
VECTOR POTENTIAL IN THREE-DIMENSIONAL HYDRODYNAMICS*

BY

G. J. IIIRASAKI AND J. D. HELLUMS

Rice University

1. Introduction. In recent years the mathematical formulation and solution of
problems involving three-dimensional fluid motion has become of increasing interest.
One of the most promising ways of expressing the equations of incompressible fluid
motion in a form suitable for solution by digital computation involves the use of a vector
potential. The purpose of this paper is to discuss the use of the vector potential and to
give the most general form of the boundary conditions for an incompressible flow in which
the velocity is specified on the boundaries of the region. Both finite regions and infinite
regions with the velocity regular at infinity are considered.

The use of the vector potential to calculate the velocity from a given vorticity field
has been discussed by numerous workers starting with Lamb [1]. A survey of articles
on the vector potential is given in the book by Jacob [2], The problem of current interest
is solution of the equations of motion so the vorticity field as well as the velocity is to
be determined rather than being specified. Surprisingly enough, the hydrodynamics
literature on this important problem is extremely sparse in contrast to that on related
problems in electromagnetic field theory. Apparently only two recent papers refer to
the boundary conditions on the vector potential. Timman [3] suggested that the vector
potential could be required to vanish on solid surfaces. Moreau [4] pointed out that
Timman's conditions were incorrect and that when the velocity is tangential to the
boundaries the vector potential is normal to the boundaries. Aziz and Heliums [5] used
the vector potential in numerical solutions of the three-dimensional equations of motion
in transient, laminar natural convection.

In §2 we discuss the formulation of the equations of motion in terms of the vorticity
and a vector potential. In such problems the velocity is regarded as specified on the
boundaries. Hence, we consider the problem of finding boundary conditions on the
vector potential which imply the specified velocity distribution.

In §3 the hypotheses on the region and the velocity field are stated and certain proper-
ties of the vector potential are discussed. In §4 a vector B normal to the boundaries is
introduced. We show that B satisfies a certain second order differential equation and
that finding B is equivalent to finding the desired boundary conditions. In §5 the pro-
cedure for finding the boundary condition on the normal component of the vector po-
tential is discussed. The boundary conditions on the vorticity at a free surface or at an
interface between two viscous fluids are given in §6. Finally, in §7 the equations are
given for several important special cases.

2. Hydrodynamic equations and problem formulation. The hydrodynamic equa-
tions in a form convenient for solution by numerical methods are given below.
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dW/dt + V-VW - w-VV = V X F/p + fV2W, (2.1)

V2A = — W, (-2.2)

•where A is the vector potential, W is the vorticity, V is the velocity, F is a nonconserva-
tive body force, p is the density, and v is the kinematic viscosity. Equation (2.1) is the
vorticity transfer equation for an incompressible Newtonian fluid and (2.2) will be dis-
cussed below. The vector potential and vorticity are defined by (2.3) and (2.4) respec-
tively.

V = V X A, (2.3)

W = V X V. (2.4)

Since the curl of the gradient of a scalar is identically zero, A is arbitrary to a gradient of
a scalar. The continuity equation for an incompressible fluid is identically satisfied by
(2.3).

Substituting (2.3) into (2.4) we have

W = V X (V X A) = V(V-A) - V2A. (2.5)

Equation (2.5) reduces to (2.2) if A is solenoidal, and a solenoidal A can always be found
by the Gauge transformation.

Equations (2.1), (2.2), and (2.3) together with the specification of V on the boundaries
constitute a complete problem which presumably determines the velocity distribution.
For purposes of solving the equations it is necessary to express the boundary conditions
in terms of the vector potential and vorticity. In numerical work an iterative procedure
is used in which the two equations are treated within a given iteration as if uncoupled
with the coupling introduced between subsequent iterations. Hence, the conditions on A
are desired which imply the desired conditions on V. Finding these conditions for arbi-
trary V is the subject of this paper.

3, Hypothesis and preliminary results. Let the region of space for which we wish
to determine the flow field be denoted by V and let it be a regular or an infinite regular
region of space as defined by Kellogg [6]. Let S be the surface(s) that is (are) the bound-
aries) of V. To consider the possibility of multiple disconnected surfaces denote S by
-S = U- , s< where each S( is regular, closed, and simply connected. Also denote the
surface integral over S to mean /.? = XXi -f s.- • The net flux across each of the surfaces
Si must be equal to zero, i.e.,

n-V da = 0, i = 1, • • • , Ar.

For the purpose of this paper we will have to require more smoothness on S than that
required by Kellogg. Let y3 = f(y\ y2) be a standard representation for a regular surface
element of S. Define a "face" to be a region of S such that the third derivative of /(j/1, y2)
satisfies a uniform Holder condition [6]. S must consist of a finite number of faces as
defined here and each face must be bounded by a finite number of regular arcs.

Let the velocity, V, have continuous derivatives of the second order in the interior
of V, continuous one-sided derivatives normal to S on S and continuous first derivatives
with respect to the surface coordinates on S. The velocity field is solenoidal, V • V = 0,
since the flow is incompressible. If the region is infinite, V must be regular at infinity [7].
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Theorem 3.1. Given a vector V with the above conditions in the region V, there exists
a vector potential A such that V = V X A and V • A = 0 [8].

Lemma 3.1. Let E be continuously differentiable on each jace of <S, , have a continuous
tangential component across an edge, and satisjy the equation

n- V X E = 0

on each face. Then the tangential projection of E on each jace of Sx is

E t — V»ip
where

cp
E dX.m = /J p*

The line integral is taken on Si where I'„ is an arbitrary point on >S, .

Theorem 3.2. Let A, be a vector tangent to S with continuous tangential values across
an edge, continuously differentiable on each face of S and satisfying

n-V, X A. = n-V. (3.1)

Then there exists a vector potential. A', having the same divergence and curl as A and having
A, as its tangential projection on S.

Proof. The original vector potential, A, also satisfies (3.1) on S since

n-V, X A = n-V X A = n-V.
Thus

n-V, X (A - A,) = 0.

We may now express the tangential projection of A — A, as

(A - A.), = Ar - A, = V.*.
where

un = I" (A - A.)-dx.
J p o

AT is the tangential projection of A on S and the liine integral is evaluated on <S', with
P0 as an arbitrary point on <Sf . V,^, is unique but \is arbitrary by a constant which
depends on the location of P0 .

Let 4> be a function harmonic in V and having its value equal to ipi on Si . The exist-
ence of <t> is established by the Dirichlet problem. If S is a single connected surface then
0 is arbitrary by a constant but V<£ is unique. However, if S is a sum of multiple dis-
connected surfaces, then neither 4> nor V</> is unique. Let

A' = A - V</>.
Then on S

A'r — Ar — V„<£

= At — V,\pi
= A, .
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The divergence and curl of A' are equal to that of A since

V ■ V<£ — = 0,

V X V<£ = 0.
We have proven that A' has the same divergence and curl as A so it may replace A

in the differential equation (2.2). A' is a vector with A, as its tangential projection on S.

4. Formulation as a differential equation in a normal vector B.

Lemma 4.1. Let B be a vector normal to S and satisfying the differential equation

n-V. X (V, X B) = n-V (4.1)

on each face. Let

A, = V, X B. (4.2)

Then A, satisfies (3.1) on each face and is tangential to each face.
The surface curl of a spatial vector may be expressed in the tensor notation such as

that used by Aris [9].

(V. X B), = tiika%B\a . (4.3)

Equation (4.1) may be written in terms of the components of B by two applications
of the surface curl operator and the scalar product with the normal vector. After some
simplification the results are

n-V, X (V. XB)= nyfa^t%,ygkmB\ - nkayaB*ay

= n,V'. (4.4)
Since Bk is normal to <S, let

B" = (Brnr)nk,

t,k d(B'nr)n , tB.a =   1- (B nr)n,„ ,
dll

gt:JmPnk = 0,

(1 kmt , a ' " j

^! Trf• T 1

= (2K - 4H2)(B'nr)

where K is the Gaussian curvature and II is the mean curvature of the surface.

Therefore

(2/v - 4H')(Brnr) - nkaayB\y = (4.5)

If one of the coordinate surfaces is made to coincide with the face of S and the other
two coordinates are orthogonal with the first, B will have only one nonzero component
on that face. Equation (4.5) will then result in a partial differential equation of the
second order for the normal component of B.
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The partial differential equation is valid only on the faces of S and boundary condi-
tions must be specified for the normal component of B on the edges or, if there are no
edges, on any closed curve on S,-. The boundary conditions must satisfy two conditions:

(а) the component of V, X B tangential to the edge must be continuous across the
edge, and

(б) on each face V, X B must satisfy

f n-V da = f n-V, X (V, X B)
Js'

(V. XB)-dX (4.6)

where S' is a face of S and C' is the boundary of S'.
The conditions (a) and (b) are boundary conditions on the derivative of B normal

to an edge or a linear combination of B and the derivative of B normal to an edge, i.e.
boundary condition of the second or third kind. Condition (b) is a necessary condition
for the existence of a solution to (4.5).

In a plane surface with straight edges, condition (a) requires that the derivative of B,
normal to the edge, be continuous across the edge and condition (6) requires that

/ n • V da = — <p ds
J S ' J C'

d(n-B)
dn

where d/dn is the derivative in the direction of the outward normal to the edge. This
second condition is a necessary condition for the existence of the Neumann problem
for n -B.

Lemma 4.2. Boundary conditions (a) and (b) can both be satisfied on all oj S if and
ordy ij V satisfies

I n-V da = 0, i = 1, • • • , A". (4.7)

Prooj. Stokes' theorem may be applied to A, over all of S by taking the circuit inte-
grals along both sides of the edges. Because of condition (a) the net sum of the circuit
integrals is equal to zero. Since n- V, X A, = n- V, the net sum of the surface integrals
is the left side of (4.7). Thus, conditions (a) and (6) can be satisfied on all of S only if
(4.7) is satisfied.

If (4.7) is satisfied and the boundary conditions (a) and (b) are evaluated in a se-
quence of faces such that the faces for which the boundary conditions have not yet been
specified are connected then conditions (a) and (6) can be satisfied on all of the faces.

Equation (4.7) has been adopted as a hypothesis in this paper.

Lemma 4.3. Equation (4.5) with only one nonzero component of B is an elliptic
partial differential equation.

Prooj. The second order terms of the equation are

nkaay d2Bk/du° duy

where Bk is nonzero for only one k. A necessary and sufficient condition for the equation
to be elliptic is that the matrix (a"7) be positive definite [10].
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A regular surface element has a standard representation

y3 = 1(y\ y2)

where in this case let u = y1 and u = y2. Then

det (a"y) = 1 + (df/dy1)2 + (df/dy2)2 > 0.

Lemma 4.4. The second order derivatives of every solution to (4.5) satisfy a Holder
condition.

Proof. Equation (4.5) is elliptic by Lemma 4.3. Let y3 = f{y\ if) be the standard
representation of a face of S as before. Derivatives of the third order of f satisfy a Holder
condition by hypothesis and are the highest order that appear in the coefficient in the
left side of (4.5). The right side, n-V, is continuously differentiable by hypothesis. If
the coefficients and the right side of the elliptic equation (4.5) satisfy Holder conditions,
then the second order derivative of every solution also satisfies a Holder condition [10].

Theorem 4.1. Let B be a solution of (4.5) with boundary conditions (a) and (b) and
let A, be calculated from B by (4.2), then A, satisfies the hypothesis of Theorem 3.2.

Proof. That A, is tangent to S and satisfies (3.1) on each face has been proven in
Lemma 4.1. Condition (a) of the boundary conditions requires that the component of
A, tangental to an edge must be continuous across the edge. By Lemma 4.4 A, is con-
tinuous differentiable on each face.

Theorem 4.2. If S is a single connected surface the vector potential A' with the tan-
gental projection A, is unique in V.

Proof. Let A" be another vector potential satisfying V X A" = V, V-A" = 0, in V,
and A',' = A, on S. Then

A' - A" = Vt

where y is a harmonic function. On S

(A' - A")r = A, - A,
= 0

= V/y.
Since V„7 = 0 on S, y is a constant on S. By the maximum principle a harmonic func-
tion that is constant on the boundary of a region is constant in the region. Thus, V7 = 0
and A" = A'.

Theorem 4.3. If S is a sum of multiple disconnected surfaces, and A' is a vector
potential such that the net flux of A' on £,• is zero, i.e.

A' n da = 0, i = 1, • •■ , N

and has the tangental projection A, on S, then A' is unique in V.

Proof. The proof is the same as for Theorem 4.2 to the point where it states that 7
is constant on S. Here we have that 7 is a constant, c,- on Sf , i — 1, • • • , N, but it may
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be a different constant, on each St . The condition that the net flux is zero implies

f (A' — A") n da = [ Vyiida
S, J S .•

dy— da
s, dn

-i
J &

= 0, i = 1, • • • , N.

The Green's identify for y gives

- ±i C*
»=1 J Si

N r

»=1 J Si

„ dadn

dy— dadn

= 0.

Thus, V7 = 0 and A" = A'.

5. Boundary condition on the normal component. The boundary condition on the
normal component of the vector potential may be expressed as a boundary condition
of the third kind by using tensor notation. This boundary condition is found by applying
the condition V- A' = 0 on S.

Definition. The Riemann-Christoffel tensor of the surface differentiation of a
spatial vector is R'iap where

Hi.aP — R'iafr .
By performing the covariant differentiating and simplifying R'iafi may be expressed as

Rial> = t tilX ~ (v* {ii})ta + ~ tJkfl)- (5-1)

Definition. Rriap = griRiap •

Lemma 5.1. jRTiap = —RiraP.

Proof. By using the equations

Qri.a = 0,

= ^k, r^ = dQ"/dxk + d9rk/dx' - dgik/dxr

and after some manipulation, we obtain the formula

- &) - fefeW -*>
from which the antisymmetry is obvious.
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Lemma 5.2. Let B be a vector normal to S and have continuous derivatives of the second
order and define an orthogonal coordinate system such that xl = u, x — u, and S is the
coordinate surface x3 = 0. Then B3,afl = B3iPa .

Proof.

B>.a$ Bi.Pa — R'iapBi ~ 9 'Rri a$B / •

Since the coordinates are orthogonal
gu = 0, iV j.

The only nonzero component of B is B3 .

B3 ,aB B3ga — g RsZapBi ~ 0

since R33a# = 0 because of antisymmetry.

Lemma 5.3. Let B be a vector normal to S. Then V, X B is tangential to S or i-s zero.

Proof. Since B is normal to S

iiikn B 0, ^ 2^

(eiikn'Bk).a = eiik{n\aB" + n'Bk.a) = 0.

V. X B is tangental to S or zero if and only if n- V, X B = 0.
Writing n-V. X B in tensor notation and substituting in (5.2) we have after some

manipulation:

n-V, X B = t"xbocpnkB'c

bap is a symmetric tensor associated with the second fundamental form of the surface
so epa&aP = 0. Therefore n-V. X B = 0.

Theorem 5.1. Let B be a vector normal to S with continuous second order derivatives.
Then V,-V. X B = 0.

Proof. By Lemma 5.3, V, X B is tangental to S.

(V. X B), = 4(V, X B),.
= nkeypaaPgmhBm.a ,

V.-V, X B = a"(V, X B)Ti,

= e^ay'aaYt(nt,fBm.a +ntBm.ttp).

Let Bm = (B,n')n„

n d(Brn) , ,n rN
Bm,a =  7~nm + (Brn )n»,, ,

du

gmlnk,pnm = 0,

g nk pnm_ a — Cpa ,

e^ay'aallCpa = ep"C po. = 0,

since Cpa is symmetric. Thus,
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V.-V. X B = ey,a^aaYknkBm,ap

- i""nmBm,ap .

Let the coordinate system be such as that in Lemma 5.2. Then

= n3B3.ai, .

By Lemma 5.2 the above expression is symmetric in a and p. Thus,

V.-V, X B = 0.
Lemma 5.4. Let Abe a spatial vector defined on S and let the coordinate system be the

one defined in Lemma 5.2. Then on S

V-A = g33A3.3 + V,-A. (5.3)

Prooj.

t\ = 8\ , g"' = o"'
V-A = guAi,i + g22A2,2 + g33A3,3

= aaet'aAi^ + g33A3k3

= V.-A + g33 A313

Theorem 5.2. Let the coordinate system be the one defined in Lemma 5.2 and let the
tangential projection of the vector potential be given by (4.2). Then the boundary condition
for the normal component oj the vector potential may be expressed as

.33 3M(3) ( 3 . or-A/t/OI „33 Jotg33 ̂ + 2HJA(S) = <,^KA(«) (5.4)

Prooj.

V-A = V.-A + g33A313 ,

V.-A = -2HAW + V.-A, , [9]
A, = V. X B.

Thus,

V.-yl, = V.-V. XB = 0,

dA3 /
dx3 \:

3
.331 "3 133 -

Ai — hiA(i),
A («) = 4(3),

V-A = -2HA(3) + ~ {|3}m(3) - = 0.

6. Boundary conditions at a fluid interface. A stationary interface between two
viscous fluids or between a viscous fluid and an inviscid fluid will be considered. The
boundary condition on the vector potential may be found as previously discussed but
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the vorticity boundary condition can not be calculated from (2.4) since the tangential
components of the velocity are not specified on the interface.

A momentum balance on the interface will provide a relation to specify the boundary
conditions on the tangential components of the vorticity. Assume that the surface
tension is constant and that it is possible to neglect the surface density and the coeffi-
cients of dilational and shear surface viscosity. The momentum equation with these
assumptions is:

- V = -(2Ha)n\ [9] (61)

V = r'n,
where <r is the surface tension, C is the stress vector, and T" is the stress tensor. If / is
a function defined on both sides of the interface, denote / as the value on one side of
the interface and J as the value on the other side. Denote the jump in / as:

/ - J = [/]•
If the bulk fluid is Newtonian and incompressible, the stress tensor may be expressed as:

T" = -pg" + 2

where D" is the deformation tensor

£>" = W"V\ + g^V\).
The vorticity tensor 9." is defined as:

0" = WqV\q - guV\).
The deformation tensor may be expressed in term of the vorticity tensor as

D" = 0" + giqV\a .
The scalar product of the vorticity tensor with the normal vector gives:

fi-'n,. = |(W X n)\

Thus, the stress vector may be expressed as:

V = -pn' + m(W X n)' + 2y.g'QV\,1n, .

Since the equation for the stress vector is linear its difference across the interface may
be expressed as the sum of the difference of its individual parts:

in = -[pW + (LuW] x n)* + 2giQnj[nV'„\. (6.2)

The jump in the stress vector may be eliminated by substituting (0.1) into (6.2) and
the equation may be rearranged to give

«mW] X n)' = ([p] - 2IIa)n' - 2gun^V\a]

The cross product of this equation with the normal vector results in

[mW]„ - nm(n-[/xW]) = -2emn,nnig"'[nVi„].

Define an orthogonal coordinate system such that the coordinate lines of xl and x
lie in the interface and the coordinate line of x is normal to the interface. Then
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g" = 0, i ^ j,
n, = (0,0, g\'2).

On the interface n • V = 0 so

dV3/dx" =0, a = 1, 2

= em3i(<7335- M g-] + rjfjun)- (6.3)

Written in terms of its components (6.3) is

[nWJ

[»W2]

0

2 gU2g22\l2)[»r]

o
If the interface is between two viscous fluids the normal component of the vorticity

is continuous across the interface [11]. If the interface is between a viscous fluid and
an inviscid fluid the boundary condition on the normal component of the vorticity
may be found from the solenoidal property of the vorticity.

In the special case of a plane interface

W, = W2 = dW3/dx3 = 0.

7. Discussion of applications. In the preceding sections it has been shown that
in general a second order partial differential equation must be solved to establish the
boundary conditions on the vector potential of three-dimensional hydrodynamics.
The most general form of this partial differential equation is given by (4.5). Equation
(4.2) specifies the tangential components of the vector potential and the boundary
condition on the normal component is given by (5.4).

Equations (4.5) and (5.4) reduce to a relatively simple form for the important cases
of surfaces which coincide with a coordinate surface. Three of these are given below:

(a) The surface is a plane with x3 = constant in Cartesian coordinates.

d2B{Z)/{dx)2 + d2B(3)/(dx2)2 = -7(3),

dA( 3)/dx3 = 0.

(b) The surface is spherical in spherical coordinates

3 sin d dB(p)\
1 v dd_l l a_2B(p) _ _ vf ,

p2 sin 6 dd (p sin 6)2 dtf {p)'

dA(p)/dp + (2/p)A(p) = 0.
(c) The surface is cylindrical in cylindrical coordinates.
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(1 /P2)(d2B(P)/dd2) + (d2B{p)/dz2) = — F(p),

(dA(p)/dp) + (l/p)A(p) = 0.
In the particular cases of n • V = 0 on all of S as in the cases studied by Moreau [4] and
Heliums and Aziz [5], A, is the zero vector, i.e., A' is normal to S.

It is interesting to note that only the normal component of velocity is used to de-
termine the boundary conditions on the vector potential. All components of velocity
are used through (2.4) to calculate the boundary values of the vorticity.
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