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CLOSE-IN ORBITS IN THE RESTRICTED PROBLEM OF THREE BODIES*

By RICHARD B. BARRAR (University of Oregon)

Abstract. Utilizing a transformation due to Birklioff [3], we establish for the re-
stricted problem of three bodies the existence of conditionally periodic orbits that move
in a small neighborhood of one of the primaries. These orbits result from perturbation
of elliptic orbits and are valid for all mass ratios of the two primaries.

Introduction. In a recent paper, R. Arenstorf [1] has shown the existence of a new
class of periodic obrits in the restricted problem of three bodies. These orbits are valid
for all mass ratios of the two primaries; they move in a small neighborhood of one of the
primaries and result from the perturbation of elliptic orbits. In the present paper, we
prove the existence of a very similar class of orbits, but instead of being periodic orbits
our orbits are conditionally periodic, i.e., the two fundamental frequencies , X2 are not
commensurable. In an earlier paper Conley [4] asserted the existence of a class of similar
orbits, but did not publish a proof.

The method of proof of the present paper is very simple. We use a similarity trans-
formation due to Birkhoff [3] to transform the differential equation into a form so that
we may apply a general theorem on the existence of conditionally periodic orbits. We
state the general theorem in a form proved by Barrar [2], Other forms of the theorem are
due to Kolmogorov, Arnold, and Moser.

Statement of problem. If in the restricted planar problem of three bodies we choose
Pi and P2 to be the two bodies of finite masses, m, and m2 respectively, normalized so
that nil + m2 = 1 and choose uniformly rotating coordinates (x, y) centered at Pi (so
that P2 is always at the point (1, 0)), then the Hamiltonian determining the equation of
motion of the third particle P in this rotating coordinate system is (see Wintner [7,
pp. 7, 8]):

TT mx v2 . m2
H = W + 7, o j—2CT7I — m2r cos y, (1)r 2 (1 — 2r cos y + r )

where r = (x2 + y2)1/2, y is the angle between the x axis and the particle P, and v is
the velocity.

If we now solve the two-body problem resulting from the first two terms in the above
Hamiltonian in the standard way by using the canonical variables

\ 1/2L = (m,a) I -- n(t — fi)

G = (wia(l — e ))2\\1/2
CO

with a = semi-major axis, e = eccentricity, co = pericenter, mx = n2a3, /3 the time of
pericenter passage, the Hamiltonian becomes

TT (™l)2 , ^2

H = TV + (1 - 2r cos y+rT2 " ^ C°S 7' (2)
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Finally, since u> and t only occur in the combination o> — t in H, if we introduce the
variable g = w — t, t will no longer appear explicitly, and the system will still be canonical
with Hamiltonian (see Wintner [S, p. 8]):

H = + G + m2R*(L, G, I, g),2(3)

^ = (l-2fco1s7+r5r-rCOS7-

G. Birkhoff [3, §12] introduced a transformation x = ex', t = e3T that was very
useful for studying orbits with a large Jacobi constant. This transformation is also helpful
in the present problem. Using Delaunay variables this transformation is realized by

L' = L/t, G' = G/e, H' = e2//, T = t/(3,

I' = h 9' = 9,
where the primed quantities represent the new variables. It can be directly verified, and
also results from the formula

(1 /t)[Ldl + Gdg - Hdt] = L'dl' + G'gd' - II'dT,
that the new system is canonical.

We now note that

H' = t2H = (■m,)2/2(L')2 + *G' + m2t2R*. (5)

The aim of the present paper is to prove the existence of conditionally periodic solutions
of (5) for arbitrary but fixed mx , m2 , and for sufficiently small e. From the way the
transformation (4) arose, it follows that the resulting orbit will remain in a small neigh-
borhood of P i .

Solution of problem. Since a = L2/m, and r = a( 1 — e cos E), we have

r = «2(L')2 (1 — e cos E)/mx .

Furthermore, for |r| < 1, R* may be expanded iti a power series iti r, the constant
term of which, since it does not affect the differential equation, may be neglected. Next
the term r cos y will drop out. Since the remaining terms are 0(r2), it follows that after
neglecting constant terms m2t2R* = 0(e6).

Letting n = e3 in (5), we wish to apply the following theorem (see Barrar [2]):

Existence Theorem. Consider a Hamiltonian of the jorm:

H = II0(p,) + n\H1(jpl , p2) + Ii2(pi ,p2,qi, r-h , m)] with 0 < n < 1, (HI)

and corresponding differential equations

dpi/dt = dH/dqf , dqi/dt = —dH/dpi , i = 1, 2, (H2)

where all functions are assumed to be analytic, and Ii2 is periodic of period 2ir in g, , and q2.
Now for two fixed values p° , p\ , let

d(H0 + M#i)
' " Hp,

dH1
dp2
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satisfy, for some 8 > 0,
\ £

mi + m2 ~-\ > t—T5 for all integer mx and m2 with m2 0. (H3)
Ai | (m2)

Further, for all n in some neighborhood of n0 , with 0 < n0 < 1, let

d2(H0 + pHJdet = 2Nn 9^ 0. (H4)dpt dp,

Then for II2 sufficiently small, and for p in the above neighborhood, there is a conditionally
periodic solution of (HI) of the form:

<?. = X.(< - ft) + ^"'V*")
q2 = M ~ ft) +
p, = .4, + iMe"", e*>x")

iu/iere 4,- , & are constants.

Note. For 0 < ^/Aj) < ilf the exterior measure of all (A2/AO not satisfying (H3)
is less than (4tt2/3) M pi (see Siegel [6]). Hence (H3) is no essential restriction.

In the present problem, we set p. = in (HI), and find

Xl = -(m1)2/(L')3I X2 = 1.

As presently formulated the condition (H4) is not met, since the determinant vanishes
identically. However, if we employ the device of Poincar6 [5, §43] of squaring the Hamil-
tonian, and consider the equivalent Hamiltonian H" = (R')2/2C1 , where H' has the
constant value Cj / condition (H4) will be met, and the existence theorem is applicable.

In this fashion we have established the existence of conditionally periodic orbits in a
small neighborhood of the primary Pt , for arbitrary mass ratios of the two primaries
P. , I\ ■
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