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SOME CASES OF BIFURCATION IN ELASTIC-PLASTIC SOLIDS
IN PLANE STRAIN*

BY

S. T. ARIARATNAM and R. N. DUBEY

University of Waterloo

Summary. Conditions for initiation of necking, buckling and surface instabilities
in an elastic-plastic solid in plane strain are derived. The results constitute a generaliza-
tion of previous investigations for rigid-plastic and elastic solids.

1. Introduction. This paper deals with some problems of bifurcation in elastic-
plastic solids in sustained flow. The phenomena of necking, buckling and surface in-
stabilities occurring from a state of plane strain are investigated and expressions for
the critical stress at bifurcation are derived. A constitutive law proposed by Hill [3]
is taken to define the material property.

Previous studies of the necking form of instability in plane strain have been confined
either to rigid-plastic solids (Lee [4], Wang [6], Onat and Prager [5] and Cowper and
Onat [2]) or to elastic solids (Wesolowski [7]). Cowper and Onat also investigated the
buckling phenomenon in rigid-plastic solids. A form of instability localized at the sur-
face has been shown to occur in an isotropic elastic solid by Biot [1] and by Wesolowski
[7]. This form of instability does not occur in rigid-plastic specimens. Since it is likely
that some forms of instability may be excluded by restriction to rigid-plastic behaviour,
the present study was undertaken to investigate the possibility of further forms of
bifurcation. The results obtained here also constituted a generalization of previous
results obtained for elastic and rigid-plastic solids.

2. Formulation of the problem. Consider an incompressible rectangular elastic-
plastic solid subject to an externally applied axial load P. The body undergoes finite
homogeneous deformation due to P from some initial configuration B° to the current
configuration B. The shape of the body in the current configuration is supposed rec-
tangular and of dimension 2a X 2b X 2c. The behaviour of the specimen in the transi-
tion from B to a neighbouring configuration B', under an infinitesimal incremental
load dP, is isolated for study. The deformation of the body is constrained such that the
dimension 2c of the specimen remains constant.

A fixed coordinate frame x{ coinciding with the axes of the specimen is taken as
the reference frame. Wherever convenient the coordinates xx , x2 , x3 will be replaced
by x, y, z, respectively, and the velocity components v< , v2 , v3 by u, v, w, respectively.
With respect to this frame, the internal distribution of stress, assumed homogeneous,
is supposed given by
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c,i = S,j =

a 0 0

0 0 0

0 0 <7/2 J

(1)

where o^,- , s,, are, respectively, the components of the true stress and the nominal
stress tensors.

The stress distribution (1) satisfies the equations of equilibrium:

cn.i = 0

and the boundary conditions:

Tt = (<r, 0, 0) on the faces x = rta,

= (0, 0, 0) • • • y = ±b,
= (0, 0, or/2) • • • z = ±c.

The body is now tested for instability by subjecting it to an incremental deformation
and corresponding incremental stresses. Under continuing deformation from the current
configuration B, the rate of surface traction i\ is prescribed in terms of the material
derivative s,,- of the nominal stress tensor (Hill [3]), which is related to the material
derivative <r,, of the true stress tensor by:

Sij = O-,',' + (TiiVk.k ~ VikVi.k ■ (2)

Here a comma denotes the partial differentiation.
During the incremental deformation, the longitudinal ends x = ±a, moving with

constant velocity U, are assumed to be frictionless (hence the shear traction-rates on
these ends are zero) and the lateral faces y — ±6 are supposed free of nominal trac-
tion-rate. That is,

v1 = riiU, T2 = n,s,2 = 0 on the faces x = dta,

f,- = riiSij = 0 • • • y = zkb,

where n, is unit outward normal to the boundary surface.
Using (2) and the incompressibility condition vifi = 0, the boundary conditions (3)

reduce to:

vy = ±f/

<j12 = 0 at 1= ±a, and (4)

0-2,- — <rncV2,k = 0 at y = ±b.

In view of (2), the equations of continuing equilibrium s= 0 become

*<,.* = 0. (5)

Material Properties: The Jaumann derivative of the true stress tensor ,•/£>£, which
vanishes under rigid body rotation, is used to represent the material behaviour. This
is related to a,, by:

£><r,•,■/£>< = <j+ <rikuk, + cTjkWki , (6)
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where «<f = §(v,-.j —■ vi.i) is the antisymmetric part of the velocity gradient tensor.
The material response to a change in stress is taken in the following form which is
due to Hill [1]:

Do-,-,-/© t = Kiikl(ekl — tvkt) + pou (7)

with

e'i = h~lmij(mki{'E)(jki/'£)t)) when > 0 ,Q>
(p)

= 0 • • • <0.

Here Kukl are the elastic moduli in the current state having the property

iikl iikl i ilk k I i i

tij = = total strain rate,
= plastic part of the strain rate,

h = positive scalar measure of the current rate of work-hardening,
m,-,- = components of the unit outward normal to the local yield surface in six-

dimensional stress-space,

and

p = an unknown hydrostatic pressure rate.

For an isotropic elastic solid,

Ki,ki = X5, 5k, + n(8ilc Sn + bit oik) (9)

where X and n are the Lame constants.
For a body in a state of plane strain, the internal distribution of the velocity field may

be taken in the form

w = 0, u = u(x, y), v = v(x, y).

Hence

^33 = ^13 = *23 = 0

and the incompressibility condition simplifies to

en + = 0. (10)

Taking plastic incompressibility and the current distribution of stress (1) into account,
the components of «ifj for an isotropic solid are written as

m,i ~ V2

1 0 0

0-1 0

0 0 0_
(11)

By the use of (6), (8), (9), (10) and (11), equation (7), for the material loading every-
where, can be expressed in the form
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<ju(l + 3/2) — <^22(5/2) = 2 me„ + p

— <rn(5/2) + 6-22(l + 5/2) = 2/1622 + P

033 = p — 4" ^22) (12)

(Tj2 = 2/jCCi 2 0rWj2

<^13 = <^23 = 0)

where 5 = 2/u/A.

3. Homogeneous deformation. A solution of (5) which satisfies the boundary
condition (3) and the incompressibility condition (10) may be found to be

u = Ux/a, v = —Uy/a,

<jn = 4/u/i/(2/x + h)U/a, 0-33 = p = 2fih/(2n + h)U/a, (13)

<^22 — 0"l2 = &13 ~ <^23 = 0.

This solution preserves the rectangular shape of the specimen.
The value of the tangent modulus E, at the current instant is

E, = Vi/(2m + h), (14)
and the corresponding rate of loading on the faces x = ±a is

j\ = (E, - a)U/a. (15)

Now we seek a solution of (5), which represents a nonhomeogeneous deformation,
with the velocity boundary condition v, = 0 on the faces x = a and the traction-rate
boundary conditions (4ii) and (4iii). The nonhomogeneous deformation superposed on
the homogeneous deformation will still satisfy the equations of continuing equilibrium
(5) and the boundary condition (4).

4. Nonhomogeneous deformation without length change. For a body in a state of
plane strain, (5) is identically satisfied for j = 3. The other two equations are satis-
fied if

O'n = <Pvv 1 ^12 = ~<Pxv > <^22 = <Pxx (16)

where <p(x, y) is a scalar stress function and subscripts denote partial differentiation.
Eliminating u and v from (12i), (12ii) and (12iv) and using (16) leads to

(1 — Q)(Pyyyy "f" 2(l — 5) / (1 + 8)<P„yy + (1 ~f" 6) <px „x = 0 (17)

where 0 = (<r/2/i).
On the longitudinal ends x = ±a, &l2 = 0. Hence a solution for <p in (17) is sought

in the form <p = $(?/) cos vx, v = (nir/a), n being an integer. Substituting this in (17)
leads to

(1 - d)<i>yyyv - 2v2((l - 5)/(l + 5))$„ + /(l + 0)$ = 0. (17a)

Seeking a solution of (17a) in the form <1? = a exp (v/3y), we find the characteristic equa-
tion giving ff to be
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(1 - 0)/34 - 2 /32 + (1 + 6) = 0. (18)

The roots of this equation are

0i = ~~ 03 —   Qy~/2 (Ti ~t" r2) i 02 = — 04 — ^   gy/2 (ri — ri) i (18a)

where

n = (1 - «)/(l + 5), r2 = [d2 - 45/(1 + S)T/2

and 6 = <r/2n is positive or negative according as the applied load is tensile or com-
pressive.

Two distinct cases may arise: (i) unequal roots corresponding to r2 ^ 0, (ii) equal
roots corresponding to r2 = 0.

(i) Unequal roots: The general solution of (17) for <p may be written as

ip = cos i>x(ai cosh vfhy + a2 cosh v(32y + a3 sinh v$xy + a4 sinh vfi2y)

and the expressions for u and v follows as

u = v{ 1 + 5)/4yu sin vx[{l + 0i)(ai cosh vfi^j + a3 sinh vfi2y)

+ (1 + fil)(a2 cosh v(32y + a4 sinh vf}2y)],

v = —v(l + 5)/4n cos vx[(0i + 1/J81)(a1 sinh v^y + a3 cosh v^y)

+ (& + 1 /@2) (a? sinh v/32y + a4 cosh v\32y)]

(19)

from (12i), (12ii) and (10).
In passing, it may be noted that elastic solids are included in this case. For an

elastic solid the work-hardening parameter h tends to infinity and hence 5 = 0 in the
limit, and therefore

0, = -03 = 1, 02 = -04 = (1 + 0)/(l - 0))'/2.

(ii) Equal roots: This case follows for a rigid-plastic solid for which the elastic
modulus tends to infinity, and hence S tends to infinity. For such a solid, ft = /33 =
— /?2 = — Pi = -%/—-!• Hence the solution of (17) may now be taken in the form

<p = cos vx(a! cos vy + a2y sin vy + cc3 sin vy + aty cos vy)

and the corresponding expressions for u and v are obtained as

u = (1 /h) sin vx(ct2 cos vy + a4 sin vy), v = — (1 /h) cos vx(a2 sin vy + a4 cos vy).

Using (16) and (19), the stress-rate <r,,- corresponding to nonhomogeneous deforma-
tion can be obtained in terms of the constants a, (i = 1, • • ■ ,4). The values of these
constants are to be determined from the traction-rate boundary condition on y - ±6.
For vanishing traction-rate, this procedure generates an eigenvalue problem char-
acterising a bifurcation of equilibrium. The associated modes of deformation may be
(i) symmetric, (ii) antisymmetric, or (iii) localized at the surface. The three cases are
considered separately.
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5. Symmetric mode of deformation. The nature of the velocity field v{ in this
case is such that

u(x, y) = u(x, -y) v(x, y) = -v(x, -y).

Only even functions of y need therefore be considered in the expressions for <p and u.
Substituting for v and <ru and using (19), the boundary conditions (4i) yield:

<*i[(l + sinh v^b + «2[(1 + sinh vfi2b = 0 ^

ai cosh vfiib + a2 cosh vfi2b = 0.

A necessary and sufficient condition for existence of nontrivial solutions for a, is

02 tanh v^b _ (1 + AY /9n
/?! tanh i>p2b (1 + 0\)2 '

where v = nw/a, n being a positive integer.
It is easily seen that the equation (21), in general, contains both real and imaginary

quantities. In order to reduce (21) to a more convenient form so that only real part
is retained, the following artifice is employed. Let the roots be denoted by

Hence, from (18a)

and

( = ki ± \/—l k2 , kt , k2 being real.

k\ - k\ = (i - s)/(i + 5) -i/(i - e)

k\ + k\ = +[(1 + 6)/{\ - 0)]1/2.

The boundary condition now yields the following critical condition, which is equivalent
to (21), for bifurcation of equilibrium:

ki sin 2vk2b (k\ -f- &2) [2 — ^(1 ~l" 5)] -{- 0(1 8)
k2 sinh 2vk1b (k\ + kl)[2 - 0(1 + 5)] - 6(1 + 5)

Writing 0 for the left-hand side, this equation can be rewritten in the form

W) = MO) (22)
where

u = (1 - Q)/(l + £2) U = ((1 + e)/(l - 0))I/2[1 - 2/0(1 + 8)],

The function /1 regarded as a function of 6 generates a family of curves, each correspond-
ing to a different value of v. The point of intersection of the /2 curve with this family
gives the value of 6 = <r/2/x at bifurcation. The number of half-waves arising at the
instant of instability is given by the value of v corresponding to the curve /i on which
the critical stress point is located. As an illustration, curves showing the variation of
/i(0)> U{0) with 9 are given in Fig. 1 for 5 (= 2n/h) = 10 and for (a) n — 1 ,b/a = 0.25
and (b) n — 1, b/a = 1. It is seen that /i curve corresponding to n = 1, b/a = 0.25
has only one point of intersection A with the /2 curve. The corresponding mode of de-
formation is of necking type (under tensile load). The /i curve for n = 1, b/a = 1 has
two points of intersection with the /2 curve, the point B corresponds to necking mode
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(under tensile load) and the point C corresponds to the bulging mode (under com-
pressive load).

Two cases of particular interest are (a) when the ratio of width b to length a is very
small, and (b) when the ratio b/a is very large, v being assumed finite in each case.

(a) The ratio b/a tends to zero and consequently Q tends to unity. Hence, /1 = 0.
Referring to Fig. 2, it is seen that in this case there is no solution for values of S less
than unity. This means that a bifurcation of the necking type cannot occur in a specimen
for which the current rate of hardening is greater than the current value of 2/x.

It may be mentioned that the number of half-waves arising at the instant of instability
is indeterminate.

(b) For an infinitely large value of b/a, ft tends to zero and hence /x = 1. In this
case, it may be seen from Fig. 2 that bifurcation may be expected both under tensile
load (corresponding to a necking mode) or under compressive load (corresponding to a
bulging mode). Here too, as in case (a), the number of half-waves occurring at the
instant of instability remains indeterminate. It is worth stressing that this form of
instability can also occur for a specimen with a finite b/a ratio if the number of half-
waves arising at the instant of instability is large. This may be a reason why, in practice,
a large number of half-waves is sometimes observed in a specimen subjected to either
a sudden pull or severe bending.

A similar calculation for the case of equal roots, i.e. for a rigid-plastic solid, yields
the following value of the critical stress at bifurcation:

<r = h(2vb + sin 2vb)/sm 2vb, v = (nwb/a).

Fig. 1
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f,<0) 8*100

f2(0) / | 8 =2fL/b]

Fig. 2

This result, for n = 1, is the same as that obtained by Cowper and Onat [2].
The effect of shear stiffening on the critical stress for a specimen with small b/a

ratio is obtained by retaining the first two terms in the power series expansion of 0
in terms of b/a. The value of the critical stress is then found to be:

a = Et( 1 + T2b2/3a2), E, = 4 nh/(h + 2/x).

6. Antisymmetric mode of deformation. The deformation in this case is char-
acterized by

u(x, y) = —u(x, -y), v{x, y) = v(x, -y).

Hence is of the form

(p = cos vx(a3 sinh v^y + a4 sinli vfi2y).

Using the expression for u and v from (19), the boundary condition (4i) yields:

a3 cosh v/3ib(l + j3i)2//3i + a4 cosh vfi2b{ 1 + pl)2/p2 = 0

a3 sinh vj3ib + a4 sinh v/32b = 0.

Hence the critical condition for bifurcation of equilibrium is

& tanh yftfr (1 +
IJ2 tanh b (1 + fil)2 ' " a

Equation (23) can be solved for a in terms of the discrete parameter v and the current
value of 8 = 2n/h to be found from the known stress-strain curve. It is interesting to note
that for large values of b/a, (23) reduces to a form which is identical to the one already
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discussed in case (b) in Sec. 5. It is shown in the next section that this case essentially
corresponds to instability localized at the surface.

For a specimen with a small value of b/a and finite v, (23) furnishes an approximate
value of critical stress as

O- = -\Et{nwb/aY[\ + (nirb/a)2(7S - 17)/(1 + S)]

when E, = 4^/(1 + S), 5 = 2y./h. In the first approximation, this agrees with the
Shanley tangent modulus formula.

For a rigid-plastic solid, a similar procedure leads to the following value for <r:

, 2vb — sin 2vb mr
<7 = — ft  7——  V =  .

sm 2vb a

This again, for n = 1, is the same as the result obtained by Cowper and Onat [2].

7. Surface instabilities. The disturbance is assumed localized at the surface of
the body and to decay rapidly as the depth from the surface increases. For convenience
the y = 0 plane is now shifted to lie on the surface.

The basic differential equation entering in the instability investigation remains the
same and so do the roots of the characteristic equation (18).

The stress function ip is now taken in the form

<p = cos vx[ai exp (-Vj8i2/) + «2 exp (-v/32y)], ft , ft > 0. (24)

For the boundary y = 0 free from traction-rate, the boundary conditions (4i) reduce to

o" 2i — avx = 0

o-22 = 0 at y = 0.

Substituting from (24) and using (10), (12i) and (12ii), the boundary conditions yield

<2,(1 + tf)2/ft + a2(l + $)2/ft = 0

«i + a2 = 0.

A necessary and sufficient condition for nontrivial solutions for , «2 to exist is
/32(1 + /3i)2 — /3i(1 + iS2)2 = 0- Using the relation = ((1 + 0)/(l — 8))1/2, this can
be rewritten as

U = 1, U=U = ((1 + e)/a - 0))1/2[1 - 2/0(1 + «)]. (25)

This has already been discussed in case (b) in Sec. 5. It may be noted that the instability
localized at the surface may occur for a body with a large b/a ratio when subjected
either to a compressive or a tensile stress. The number of half-waves remains indeter-
minate in each case. It may be pointed out fui'ther that surface instability accompanied
by the formation of a large number of half-waves on the surface may also occur for a
specimen with a finite b/a ratio when subjected to a sudden severe pull. For a body sub-
jected to sudden severe bending, the formation of a large number of half-waves on the
inside surface, that is, on the compression side, has actually been observed.

For a semi-infinite elastic solid, for which S tends to zero, (25) yields d3 — 26 + 2 = 0.
This is the same as the equation obtained by Biot [1] and has only the single real root
a = —1.68 yu.
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8. Loading criterion. The analysis has been based on the assumption that the
material loads everywhere. The criterion for plastic loading is (Hill [3]):

> 0.
Using (1), (10), (11) and (12), this criterion reduces to eu = ux > 0, u being the velocity
along the length of the specimen, and is obtained by superimposing the nonhomogeneous
deformation on the homogeneous deformation. Substituting from (13i), (19i) and using
(18a) and (20), the loading criterion yields for the symmetric mode of deformation

Ufa — (f2/E^cti |(/3i — pi) cos vx cosh v/3iy\ > 0.

Hence from (15), the rate of loading required for the material to load everywhere is:

Ti > ((Et — c)/E,)ai{mrb/aY cosh vfiib

where o- is given by (21).
It may be seen that the rate of loading i\ required for no unloading to take place

becomes increasingly small as the stress a approaches the tangent modulus E, .
For the buckling mode, proceeding in a similar manner, we find that the material

loads everywhere if

(T1/a1) > ((E, — <T)/E,)(nirb/a,y sinh vfij).
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