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TUBE TO ANNULUS-AN EXACT NONLINEAR MEMBRANE SOLUTION*

BY

CHIEN-HENG WU
University of Illinois at Chicago Circle

1. Introduction. The theory of membranes for highly elastic materials has been
advanced in the last two decades by Mooney [1], Rivlin [2], Green and Shield [3], Rivlin
and Thomas [4], Adkins and Rivlin [5] and other researchers. A comprehensive presenta-
tion of this theory can be found in Green and Zerna [6] and Green and Adkins [7].

By using this theory the class of axially symmetrical problems can usually be solved
by numerical integration. A different integration procedure has been used by Yang [8]
in studying the stress concentration in a rubber sheet. Foster [8] has developed an ap-
proximate theory for axially symmetrical membranes based on the assumption that the
meridional deformations are large. Very few exact solutions are available.

In this paper we study the problem of stretching a tube into an annulus (Fig. 1). The
procedure used is a semi-inverse method in the sense that we specify the inner radius
of the annulus in equilibrium and look for the stress required on the outer boundary.
The inner boundary of the annulus is assumed to be free of stresses. Exact solutions are
obtained for both Mooney material and neo-Hookean material.

2. Formulation. Consider a thin cylindrical tube of radius R0 and thickness h0

Fig. 1. Tube to annulus.

* Received August 28, 1968.
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The tube is subjected to a very large outward radial extension applied to one of its ends
so that the equilibrium configuration is a circular annulus of inner radius A > R0 . The
solution of this problem with A as a parameter is studied.

We choose a cylindrical polar coordinate system (p, d, x3), the x3-axis of which coin-
cides with the axis of symmetry of the tube. We suppose that any point PT(Ro > Q, x3)
in the middle surface ST of the tube is carried by the deformation to the point PA (R, 6, 0)
in the deformed middle surface SA of the annulus. From the symmetry of the problem it
follows that principal extension ratios in the radial and circumferential directions are,
respectively,

X! = dR/dx3 , ^

x2 = R/Ro •

If the tube is made of incompressible material, then the principal extension ratio in the
direction normal to SA is

x--'/(ls)' (2'2)
The corresponding invariants are

11 = X2 + X2 + 2
3 »

I2 = Xj 2 + X2 2 + X32, (2.3)

h = 1.
When the material is isotropic, and the strain energy function W assumes the linear

form1

W = C[(J, - 3) + k(I2 - 3)] (2.4)

suggested by Mooney [1], the nonzero physical stress resultants in the radial and cir-
cumferential directions are, respectively,

T, - 2M.W - + X! fj)
= 2/a3C(X? - XS)C1 + k\D,

(2.5)
. /aw . ,-i tiA

t2 2w.w - ^ + x:
= 2h0\3C(\l - Xl)(l + AX?).

For the problem under consideration, the equations of equilibrium reduce to the single
equation

d(RT1)/dR = T2 . (2.6)

The boundary conditions are

Tt = 0, R = A at x3 = 0. (2.7)

1 C and k are material constants. The constant C has the dimension of force per unit area and k
is dimensionless.
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It is now convenient to introduce the dimensionless variables z, r{z), ti(z), t2(z) and
the dimensionless parameter a, defined by

z = x3/R0 , r(z) = R(x3)/R0 ,

h(z) = Ti(x3)/2h0C, t2(z) = T2(x3)/2h0C, (2.8)

a = A/R0 (a > 1).

Upon introducing these quantities into Eqs. (2.1), (2.2), (2.5)-(2.7) we obtain

X,_f, X,-r, A.-1/rg, (2.9)

1 rfrV1 I dry
r dzj \r dz, 1 + k (2.11)

dr (r^ ~ ' (2-12)

^(0) = 0, r( 0) = a. (2.13)

Substituting (2.10), (2.11) into (2.12) we obtain a single second-order nonlinear ordinary
differential equation for r:

- H 
r 3(iL

r \dzj J

+ k 4

dz) J
dz , dr\

dz,
lj + = 0. (2.14)

Our aim is to solve (2.14) with the boundary conditions (2.13).
3. Solution. Eq. (2.14) is highly nonlinear. This equation, however, can be inte-

grated with a simple transformation. We introduce a new function p(r) defined by

p(r) = dr/dz, r > a > 1. (3.1)

It follows from (2.13) and (2.10) that

p(a) = oT1/2. (3.2)

Introducing (3.1) into (2.14) and noting that

d2r/dz2 = dp/dz = p dp/dr,

we obtain

dp _ p[(rV — 3) — fc(rV + p')] _
dr r[(pV2 + 3) + k(ripi + 3r2)]

Eqs. (3.3) and (3.2) constitute a problem for the determination of p{r) for r > a. Once
p(r) is found, Eq. (3.1) can be integrated.

Eq. (3.3) can be easily cast into the form

rV[p - r) + 3(r ^ + p) + k rY[r^ + p)+rY(sp-3^ + ± = 0.
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It follows that

Jr\P ~ 3(rp)~2 + k(rp)2 - 3kp'2] = 2(r - pj- (3.4)

Integrating (3.4) and applying (3.2), we obtain

p2 — 3(rp)~2 + k(rp)2 — 3kp'2 = (r2 — a2) — k(\ — pj ~ ^ — 2ka

and hence

p2(r) = 2_1(1 + fcr2)_1[(r2 - a2 - 2a"1) - fc(a~2 - r"2 + 2a)

± {[(r2 - a2 - 2a") - k(a'2 - r'2 + 2a)]2 + 12r"2(l + kr2)2}1/2]. (3.5)

Since p2 is real the minus sign in (3.5) has to be excluded. Moreover, for the problem
under consideration, p(r) is positive. Thus

p(r) = 2~1/2(1 + kr2)~J/2[(r2 — a2 — 2 a-1) — k(a'2 — r~J + 2a)

+ {[(r2 - a2 - 2a"1) - k(a'2 - r~2 + 2a)]2 + 12r"2(l + kr2)2}1/2]l/2. (3.6)

For neo-Hookean material (fc = 0), Eq. (3.5) reduces to the simpler form

p(r) = 2~W2{(r2 - a - 2a~l) + [(r2 - a2 - 2a"1)2 + 12r~2],/2},/2. (3.7)

Equation (3.1) together with (2.13) and (3.6 or 3.7) can now be integrated to yield

z = f p~'(x) dx. (3.8)
J a

Eq. (3.8) and (3.6 or 3.7) constitute the complete solution.
4. Asymptotic behavior of the solution. The solution obtained in Sec. 3 possesses

certain asymptotes as r approaches infinity. Moreover, it appears that the solution ap-
proaches the asymptotes very rapidly. We shall investigate these properties for the neo-
Hookean material and the Mooney material separately.

Neo-Hookean material (k = 0). It can be seen from (3.7) that

lim p(r) = jz r. (4.1)

(4.2)

It follows from (4.9) and (2.9-3.11) that

Xi —> X2 = r, X3 —> r-2,

t\ —* 1 , 1 •

We note that X:!/j„ is the thickness of the annulus. Eq. (4.1) implies that

r —> Ne* (4.3)

where N is a constant.
Mooney material (k 9^ 0). Eq. (3.6) implies that

lim p(r) = -j- —*lc~1/2. (4.4)
r —> CO
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It follows from (4.5) and (2.9)-(2.11) that

x> -* k~W2> kU2r~\ (4 5)

ti —» kw2r, t2 —> 2kl/2r.

Eqs. (4.4), (4.5) also imply that

r -» k~W2z + M,

h-*z + kW2M, (4.6)

^2 —► 2s -f- 2k f M

where M is a constant.
5. Results. Two sets of numerical solutions are presented in this section, one for

neo-Hookean material and one for Mooney material with k = 0.2. Both solutions are
obtained for three different values of a, namely a — 1,2 and 3.

For neo-Hookean material, the principal strains are plotted against z in Fig. 2.
It is seen that Xt —» X2 = r very rapidly for all values of a. The two principal strains
X, and X2 are practically equal for z > 2.

It is interesting to note that X2 = r is a monotonically increasing function of z for

X | = dr/dZ
X? =r

C*. a'N. v- '

 ±
0 10 z Z 0 JO AO

Fig. 2. Principal extension ratios for a neo-Hookean tube.
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all values of a and X, = dr/dz has a minimum for a less than certain value. This value
of a can be determined. Equation (3.3) implies that, for k = 0,

d\i/dz = \id\i/dr = 0 at r = a

a4p2(a) —3 = 0. (5.1)

Substituting (3.2) into (5.1) we find
a = 3I/3 = 1.44. (5.2)

Thus, for a > 1.44, = dr/dz is also a monotonically increasing function of z.
The radial and circumferential stress resultants are given in Fig. 3. Both approach

the asymptotes (4.2) very rapidly. While the radial stress resultant tx is a monotonically
increasing function of z, the circumferential stress resultant t2 has a maximum for a less
than certain value. To find this limiting value, we differentiate (2.11) with respect to r
to obtain

dU, dt2 rV — r5p°'(dp/dr) + 3(d/dr)(rp) ,r ^
dz~V dr ~ rY ' {b-6)

It follows from (5.3) and the condition I'Jfi) = 0 that

(a3 + 3) - J (a3 - 3)2 = 0 (5.4)

and hence a = 2.175. For a > 2.175, t2 is a monotonically decreasing function of z.

z

Fig. 3. Stress resultants for a neo-Hookean tube.
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Fig. 4. Principal extension ratios for a Mooney tube.

The principal strains for the case of Mooney material with k — 0.2 are plotted
against z in Fig. 4. The radial and circumferential stress resultants are plotted against
r in Fig. 5. The asymptotes (4.5) are also shown in these figures.

For this case, X2 = r is a monotonically increasing function of z and Xi = dr/dz has
a minimum for a less than certain value. This value is again determined from the con-
dition

d\i/dz = p dp/dr = 0 at r = a. (5.5)

Using (3.2), (3.3) and (5.5) we find

a (a3 - 3) - fc(a3 + 1) = 0. (5.6)

For h = 0.2, the root of (5.6) is a = 1.491. Thus for k = 0.2 and a > 1.491, the radial
extension ratio Xj is a monotonically increasing function of 2.

Fig. 5 shows that the radial stress resultant li is a monotonically increasing function
of r. The circumferential stress resultant t2 can have either one or two extreme values.
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Fig. 5. Stress resultants for a Mooney tube.
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