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I. Introduction. Two of the best-known methods in two-dimensional potential

theory are based respectively on the Schwarz-Christoffel conformal transformation

when the domain boundary is a polygon and on the separation of variables in polar

coordinates when the boundary is a wedge or a sector of a circle. These complex variable

and real variable methods are of sufficient practical importance that they are both

discussed in numerous standard science or engineering texts, e.g. [1]—[3], without, how-

ever, an indication of a relation between the two methods. Actually, the separation-of-

variables method must be applicable to polygonal domains because, as shown in Fig. 1

by the dotted arcs around the points m and n, any point on the boundary of a polygon

can be regarded as the vertex of a sector of a circle, almost every boundary point corre-

sponding to the vertex of a semicircle. The first motivation for writing this article is to

exhibit the relation between the two methods by deriving the real separation-of-vari-

ables expansion from the complex Schwarz-Christoffel transformation. This derivation

is also of practical value for it yields the coefficients of the separation-of-variables solu-

tion in terms of the more easily evaluated Schwarz-Christoffel parameters, the series

representation of the potential in terms of trigonometric functions often being more

useful than the implicit Schwarz-Christoffel representation.

The second motivation arises from the fact that published applications of the Schwarz-

Christoffel transformation are customarily based on those relatively few cases where

the basic differential form of that transformation is integrable in terms of standard

functions. This implied restriction to integrable forms is reinforced by textbook sum-

maries which state that the Schwarz-Christoffel transformation is useful provided that

the differential form is integrable in terms of elementary functions [4] or that analytic

methods fail when an integration in terms of standard functions is not possible [5].

It is therefore worthwhile by way of examples to show a class of analytic solutions that

can be generated when such an integration is impossible and also to show that obtaining

the integral is not always a desirable approach even when possible.

II. The method. In Fig. 1 the field at the corner may cause electrical breakdown if

too large a potential is applied to the linear anode. (Alternatively Fig. 1 represents current

crowding [12] or heat flow in a planar integrated circuit.) The Schwarz-Christoffel con-

formal transformation which maps the upper half of the w plane onto the interior of

the polygon can be taken without loss of generality as [l]-[3], [5], [6]

c dz(w)/dw = wa{w — 1)_1, 0 < a < 1. (1)
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Fig. 1. A sharp-edged cathode

The z- and w-plane origins are taken as the corner and its image respectively, ira is the

angle turned through at the corner when traversing the polygon boundary in a clock-

wise direction, and c is a constant.

When a is a rational number, m/n, the indefinite integral of Eq. (1) is

n
cz = — w

m
"/n + In (w1/n - 1) + (1 - s)(-l)m In (wUn + 1)

+ 2.
x = l , •••,<-! L.

cos (2irvm/n) In (w2/" — 2w1/n cos {2irv/n] + 1) (2)

w1/n — cos (27rv/n)^
— 2 sin (2irvm/n) arctg , . ,

\ sm (27Tv/n)

where n = 2/ + s, s = 0 or 1. This expression is not particularly convenient to manipu-

late. Also, the physical dependence on the angle a is obscured by the fact that n and m

are separately scattered throughout the sum; e.g., the number of terms is proportional

to n. As n and m are adjusted so that their ratio comes ever closer to some arbitrary

irrational value of a, the number of terms in Eq. (2) increases without limit. Finally,

there is the usual difficulty that to rather than z is the independent variable.

Rejecting the indefinite integral approach, we start again with Eq. (1). The con-

stant c equals it as is easily found by integrating around a semicircle of vanishingly

small radius centered at w = 1. If (1 — w)~l is expanded in a power series at w — 0,

Eq. (1) becomes

.ir dz(w) \ i a+n /n\
"e (3)
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and, after integrating term by term,

^ £ "^b »-■ «>a + 1 n^o a + n + 1

The function w(w),

I -I \ 1 / (1 + a) "

X) 11 , = » + E dn(ac)wn, (5)
„,0 a "+" n 1 / n = 2

is an analytic function of w with du/dw t6 0 at, w = 0. Thus by a well-known theorem of

complex variables w is an analytic function of u at w = 0 and can therefore be expanded

in a power series at that point:

wiz) = E Dn(a)un = E Dn(a)[ir(a + 1 )eire]n/(1 + al (6)

n ■= 1 n-1

where the D's are real rational functions of a, e.g.

Di(a) = 1, D2(a) = — (2 + a)"', D3 = etc. (7)

The inversion of z(w) is straightforwardly generalized to polygons of any number of

sides and the first four D's are given in Table I for polygons of not more than four sides.

The present example is the case a, = — 1 and a2 = 0, while expansion from the point

m in Fig. 1 can be obtained using the substitutions a — 0, a, = — 1, and a2 —■* a in

Table I.
The region of convergence of Eq. (6) or of the analogous expansion of w(u(z)) for

any other polygon can be determined by inspection of the polygon, as the following

argument shows. w(u) is an analytic function of u at u = z = 0. Thus the region of

convergence of the power series in u is bounded by a circle passing through that singu-

larity of w(u) which is nearest to u = 0. But u = (const.)2co1""'. Thus (a) the series in z

also converges inside a circle (sector of a circle inside the polygon) and (b) except for

the point u = z = 0 the singularities of w(z) are mapped onto the singularities of w(u)

without changing their relative distances from the point u — z = 0. Now the singularities

of u>(z) are simply the corners of the polygons and, by the principle of symmetry [7],

the reflections and repeated reflections of those corners across polygon faces and across

reflections of the polygon faces. It thus follows that the radius of convergence of the

series expansion of w(z) is the distance to the nearer of the following two points.

A. The nearest corner accessible by a straight line which does not go outside

the polygon. An example is the dotted arc through the corner when the center

of expansion is point m in Fig. 1. This condition always takes precedence when

the center of expansion is a noncorner point on the polygon boundary.

B. The reflection of the center of expansion across the nearest (perpendicular

distance) of certain polygon faces. The certain faces are any for which the perpen-

dicular distance line has nonzero length, does not go outside of the polygon, and

intersects the polygon face (rather than the extension of the face.) This condition

is applicable only when the corner angle at the center of expansion is nonzero

(a 0 in Table I). The corner is an example in Fig. 1 when 0 < a < 1. Thus

Eq. (6) converges in the polygon interior where |z| < 2.
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For convenience we will speak of the convergence-determining singularity as the "near-

est" singularity although irrelevant singularities on other sheets may actually be nearer

in the sense that their \z\ coordinate is less.

Let the real part of V (w) be the physical potential V which is taken as unity on the

linear anode and zero on the cornered cathode. Physically, all sources of the field are on

the anode or cathode and thus we require that dv/dw —> 0 as |w>| —> ro. Then from

S72V(w) = 0, Im w > 0, and Eq. (6)

CO

13 (z) = iw'1 In [1 — w(z)] = —iir"1 ^ ri~lwn{z)

(8)

= -ITT"1 + 1 )eirz]n/(1+a\ \s\ < 2
n = 1

where Px = 1, P2 = etc. In this example the region of convergence of 13 (z) = V(w(z))

is determined by the nearest singularity of w(z) and hence is the same as that of Eq. (6).

In general the nearest singularity of 13(w) will be determining if nearer. If the nearest

singularities of w(z) and 13 (w) are at the same w point, they may cancel and yield a

region of expansion of 13 (z) extending past a polygon corner.

The complex field S is the complex conjugate of the derivative of 13(2), and thus

from Eq. (8) the (normal) field on the anode face is

I S(r, a) | = £ (±ir'Q»[(l + a)irr](n-a-l)/(1 + £", 0 < a < 1, 0 < r < 2 (9)
n= 1

where

„ „ a a{2 a + 5a — 1) „

Q* ~ ' Q2 2 + a ' ~ 2(2 + a)\3 + a) ' ( }

Here z = re'" and r is measured along the outer (upper sign) or inner (lower sign) cathode

face. |S(r, 0)| = 1 everywhere inside the parallel-plate capacitor as given by convergence

condition A.

It can be shown that when [s| > 2 the leading term of Eq. (9) is already within

about 10% of the exact result, and thus one term may be sufficient near the corner if it is

sharp. The first term of the real part of Eq. (8) is, with 2 = re'v,

Re V(z) = V(r, <p) = ^[(l + a)irr]un+a) sin ((#> + tt)/(1 + a)). (11)

For V = const., Eq. (11) becomes an expression for r(<p), an equipotential contour

which we take as a new effective cathode with a rounded corner following one of the

standard methods for treating rounded corners [2], [6]. Some manipulation reveals that

the magnitude of the maximum field on a corner of this type is

{a* Ry/a + a) (12)

where R is the minimum radius of curvature of the rounded effective corner. This com-

pletes the first example.

Even when the indefinite integral of the differential Schwarz-Christoffel transforma-

t' xi cannot be expressed in terms of standard functions, it is still sometimes possible to

relate c and the v;,'s to the polygon dimensions using standard functions. (For a 0

these relations depend only on definite integrals between singularities.) For a second

example consider Fig. 2 which reduces to Fig. 1 when = 0. Let w — 0 be the corner
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of angle a. Then if we set wt = 1 and w3 = ± «>, the Schwarz-Christoffel transformation

becomes [1]—[3], [5], [6]

c dz(w)/dw — w"(w — — 1^2)—1 • (13)

Although the indefinite integral of Eq. (13) is not apparently expressible in terms of

standard functions, the definite integral from w = 0 to w = 1, corresponding to z = 0 to

z = exp (—iv(l — on)), yields [10]

c = ri;rt 91? F(1 -« + 1;« + + 2; 1M) (14)
W21 (a + a1 + 2)

where T and F are the gamma and hypergeometric functions respectively. In analogy

to the first example, integration around a semicircle at iv = w2 results in

T = (tt/c)wZ(w2 - I)"' (15)

 wV\w2 - l)"'r(a + a, + 2) 

r(a + l)r(ax + 1)F(1, a + l;a + «i + 2; 1 /w2)
(16)
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where Eq. (14) was substituted into Eq. (15) to yield Eq. (16). For a given T, a, and

«! , Eq. (16) can be used to find w2 . Then c can be obtained from Eq. (15) or (14). Ex-

cept for the implicit form of Eqs. (15) and (16), the method proceeds as in the first

example using, for example, Table I. With the usual physical assumption that the poly-

gon does not overlap itself, the expansion of w(z, a, «,) as a series in z centered at the

corner of angle a converges in the polygon interior with ct, in the range — 1 < ai < 1

when \z\ is less than the least of any of the following limits that are applicable to the

particular values of a and a, ,

(1) infinity when at = a = 0 (condition A),

(2) unity when ^ 0 (condition A),

(3) 2(T + sin ira,) when — 1 < < 1/6 and a ^ 0 (condition B across face 2-3), or

(4) 2 sin (it + 7rai) when — 1 < < —5/6 (condition B across face 1-2).

Finally, there are polygons for which c and the w/s cannot be related to the polygon

dimensions using standard functions. Numerical methods are then required to obtain

these relations and several exist in the literature [5], [8], [9]. In particular [8] contains an

extended discussion. We emphasize that even if these parameters are related numerically,

the resulting series in z is an exact analytic representation of the solution for the figure

to which it applies and this figure is in turn as close to the original polygon as one cares

to achieve numerically. Incidentally the whole procedure involves only standard com-

puter library functions and thus one can write a program which yields as an output an

analytic solution for a fairly arbitrary polygon. Also, analytical solutions near corners

or other boundary singularities are valuable supplements to and substitute boundary

conditions for numerical methods which often yield satisfactory solutions everywhere

except near singularities in the field.

Equivalence with the separation-of-variables representation can be demonstrated

as follows: w(z) and functions of w(z) analytic at w = 0 have been expanded in powers

of z1/<1 + a>. If z = rc'e, the real and imaginary parts of zn/ll + a) are

r-/(i-> cos-M- and r"/<1 + a) sin (17)
1 + a 1 a

which are product solutions of Laplace's equation separated in polar coordinates. Eq. (11)

is, for example, the leading term of

F(r, v) = it An(a)rn/{1+a) sin , 6 = v + x. (18)
n=i l ~r a

Finally, we note that when a = 0 the expansion in z reduces to a power series in z.

III. Extensions. So far it has been assumed that V{w) is analytic at w = 0. If the real

potential V on the boundary has a finite discontinuity at w = 0, then 13 (w) may be

analytic at w — 0 except for a term proportional to In w. Now V(iv) ~ In w implies

8*(z) ~ (w(z))~l dw(z)/dz which can be again expanded as a series in z.

When the boundary consists of any finite number of constant-potential sections,

V (w) can be expressed explicitly in terms of simple functions [2], [5], [6], a case of great

jt'ng importance. When V(w) crunot be expressed in terms of useful functions

or when an inhomogeneous term is present (Poisson's equation), the Green's function

method in the half plane is a sometimes useful alternative to mapping onto the unit

circle [6]. For example, with Dirichlet boundary conditions G(w, w'), the complex po-
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tential at w due to a point charge at w', is easily found in the half plane using the image-

charge method. Then Q(z, z') h= G(w(z), w'(z')) is the Green's function in the z plane

[11] which can be expanded as a single or double series in z and/or z' using Table I or

its extension. Here z and z' are measured from their individually chosen centers of ex-

pansion. Similarly the real Green's function can be expanded in the form of Eq. (17).

Although more than one expansion from boundary or interior points is necessary to

cover the entire interior of most polygons, in practice a single expansion is often sufficient

to cover that part of the boundary where the prescribed potential is irregular or that

part of the interior where the inhomogeneous term is nonzero.

Additional more or less similar extensions can be constructed by considering the

exterior polygon problem, other boundary conditions, analytic continuation of the

solution, and mapping functions other than the Schwarz-Christoffel transformation [13].

Acknowledgments. In an earlier, unpublished version of this article Eq. (6) was

constructed by an iterative procedure. I am indebted to B. F. Logan and L. A. Shepp

for proposing the derivation given here which yields both the existence proof and the
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