
QUARTERLY OF APPLIED MATHEMATICS 375

OCTOBER, 1971

FURTHER OBSERVATIONS ON A PROBLEM OF CONSTANT SURFACE
HEATING OF A VARIABLE-CONDUCTIVITY HALFSPACE*

BY

LEONARD Y. COOPER

Bell Telephone Laboratories, Inc. Whippany, New Jersey

Abstract. A solution to the problem of constant surface heating of an initially

constant-temperature, T%, halfspace where the material in question has a temperature-

dependent thermal conductivity is obtained. The thermal conductivity, k*, is specifically

given by k* = k% exp [X(T* — T%)/T%]. The solution is valid for both heating and cooling

of the material where X and k*0 are arbitrary in magnitude, and X can be either positive

or negative in sign.

As in a previous investigation of this problem, the present work studies the applica-

tion of integration techniques of the boundary layer equations of fluid mechanics to

the solution of a nonlinear diffusion problem of heat conduction. Exact results obtained

here for the first three variable coefficients of an expansion of <t> = k*/k*0 about its

initial state give increased confidence in the success of the previously utilized approximate

solution technique, and, in fact, suggest an improved approximate technique for treating

the type of problem under consideration. This latter technique is developed herein.

It is finally concluded that the exact solutions for the first three terms of the 0 expansion

mentioned above can be used to construct a closed-form approximate solution to the

problem which is useful over a significant range of the independent variables.

1. Introduction. This work will treat the solution to the problem of constant

surface heating, H*, of an initially constant-temperature halfspace. We will consider

that the thermal conductivity, k*, of the material in question can be accurately repre-

sented by1

4> = k*/k* = exp [\(T* - T*)/T*] = exp V (1)

where X is arbitrary and k* is the thermal conductivity at the initial uniform tem-

perature T*0, of the halfspace. Further, the material property p*C*, where p* is the

density and C* the specific heat, will be assumed to be accurately represented as a

constant.

The boundary value problem describing the above phenomenon in terms of the

dimensionless conductivity, <j>, is given [1] as

4>4>n + V<I>1 = t<t> r > (2)

lim <f>, = f, (3)
i}—»0 ;f fixed

lim <t> = 1. (4)
ij-»cd ;f fixed

* Received December 17, 1969; revised version received July 1, 1970. This work was supported by

the U. S. Army under Contract DA-30-069-AMC-333(Y).
1 Starred and unstarred quantities always refer to dimensional and dimensionless quantities re-

spectively.
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where the dimensionless independent variables tj and f are defined as

v = x*[p*c*/(2k%t*)]1/2, f = -\H*[2t*/(Pk*C*)Y/2/T$, (5)

and where x* and t* are depth into the halfspace and time after initiation of the heating

respectively. Once 4> has been obtained from the above, the dimensionless temperature,

V, can readily be obtained from Eq. (1).

A solution to the problem of Eqs. (2)-(4) has been obtained by Cooper [1]. In that

work the solution was obtained by extending a solution technique which was developed

by Meksyn [2 pp. 9Sff] for integration of the boundary layer equations of fluid mechanics.

Thus, in reference [1] the solution proceeded by relating the solution form <£ =

which satisfied the condition of (3), with the form [Z iMf)1/*] exp [ —7)2/2] for 4>„ . The

present work will treat the identical problem from the point of view of expanding <j>

as cf> = X) Thus, the solution to the nonlinear diffusion problem under con-

sideration will be treated here in a manner reminiscent, say, of the Gortler [3], [4] solution

to the boundary layer problem of fluid mechanics. As will be seen, the latter expansion

of <t> will allow the b„'s to be generally represented by solutions to nonhomogeneous,

linear, ordinary differential equations with appropriate boundary conditions. These

indicate that all the bn's are, in fact, entire analytic functions. Although the general

function cannot be practically obtained in any other than the form of quadratures

presented herein, the first few bn's are explicitly found. These shed light on the success

of the original solution to this problem as given in [1], Moreover, the original solution

technique used there is recast here in terms of obtaining approximate solutions for the

bn's under consideration directly from the governing differential equations and boundary

conditions mentioned above. Finally, as will be seen, the quadrature solution form

for the b„ obtained here also suggests a second and more direct technique, again through

use of the ideas brought forth by Meksyn, for an approximate evaluation of the unknown

functions b„ . Thus, although the exact solution to more than a few of the bn's may

not be practical, approximate solutions for these functions can be obtained through

use of a Meksyn integration technique.

2. The solution. In view of the above introduction we seek a solution to the problem

of Eqs. (2)-(4) by assuming the following expansion for the function cj>:

<t> = X bn(v)r. (6)
n — 0

Using this in Eqs. (2)-(4) we obtain separate boundary value problems for the b„ .

The problem for b0 , specifically, becomes

bo(v)bo'(v) + i]b'0(rj) = 0; b'0( 0) = 0; &o(°°) = 1.

Although the above equation is nonlinear the boundary conditions allow for the simple

solution

= 1. (7)

Using this result for b0 , the problems governing the solutions for subsequent 6„ can

be given as

K'(v) + vK(v) - nbM = - £ bm(v)KUv), n > 0, (8)



A PROBLEM OF CONSTANT SURFACE HEATING 377

?>£(0) = 1, all other 6^(0) = 0, (9)

£>nO) = 0. (10)

It is clear from the above that each bn is governed in general by a linear nonhomogeneous

ordinary differential equation where the nonhomogeneous parts are functions of the

bm's, m < n. Thus, we would expect that all the bn's can, in principle, be exactly obtained

recursively.

In order to cast the differential equations of (8) in a more usable form Kamke [5]

suggests the following transformation to new dependent variables, g„(v)'

i>n(v) = 9n(v) exp [-77V4], n > 0. (11)

Using this in Eqs. (8)-(10), we obtain the boundary value problems which govern

the <7„ :

9"(v) + [—(» + 1) + § — rf/^gniv) = KW), n > 0, (12)

g[{0) = 1, all other g'n{0) = 0, (13)

lim gjji) exp [-j?2/4] = 0, (14)
H—co

where the functions hn are given as

hi(v) = 0,

K(v) = —exp [—1?2/4] X) 9m(v)[g"-m(v) — v9n-m(v) + ~ 2)ff„_„(lj)/4]
tn — 1

= exp [?)2/4] £ b^KUv), n> 1.

(15)

m-1

The solution to Eqs. (12)-(14) for n = 1 is given by

giiv) = -(2/T)1/aD-t(v), (16)

where Dn{ri) is the nth order Weber-Hermite function [6]. For n > la quadrature

form of solution to Eqs. (12)—(14) has been found to be

gM = (-HlW I" D-,_1(m)A«0i) dfi
L " (17)

+ Z>-„-1(17) J Dn(in)hn(n) for n > 1 and even,

= i(—lYn~1)/2Dn(in) f D.n-MhM dn

+ D^ir,)|i(- l)<n-1,/2 £ Dn(in)hM dn (18)

— (2/ir)1/2nl D-x-i(n)hn(ji) dnj for n > 1 and odd.

Other than obtaining the explicit solution for gl we have also found solutions for g2

and g3 from the above. These are
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<7,(77) = (3/4)(2/t)1/2[1 - (2/3)(2M1/2D0(v)D.1(v)]D.3(v), (19)

g3(v) = — (1/48)(2/7r)1/2 {28 - (2/71-)[27(3)1/2 - 32]}!).,(,)

+ 31/2(3/32)(2/x)3/2(^s + 3i7)D0(2I/2^)D_1(31/zij)

- (1/288)(2/7r)3/2Dl(ii)[4(14 + 9^2)i)3o(^ (20)

- 18(77 + ,3)jEOOD-xO,) + 3(5 + 22„2 + S^Do^DUv)

- 8(3, + 47?3)DiI(?;)] - (1/16)(2A)D0(7?)[3^2(,)

- (5 + 7r?)Datri)D-M) + 2(3, + 2,3)Z)!.1(jj)].

The task of obtaining explicit solutions for each of the gn's from Eqs. (17) and (18)

is clearly one of evaluating two indefinite integrals / and / D_„_i(M)An(iu)d/x.

As it happens, with increasing n the effort required in the evaluation of these quickly

increases. Moreover, it is clear that the exact solution for these integrals for each n is

a necessary prerequisite for obtaining both the particular gn under consideration and

all subsequent gn's. Although we have obtained the gn's (and, as a consequence of Eq. (11),

the bn's) only for n = 0, 1, 2, and 3, the existence of all the gn's (and, therefore, the b„'s)

as entire analytic functions can nevertheless be shown. The definite knowledge of such

existence will, of course, add credence to our subsequent attempts at obtaining ap-

proximate solutions for these functions.

That the gn's are, in fact, entire functions can be shown from the solution form of

Eqs. (17) and (18). A discussion to this end proceeds as follows:

Consider the situation for gn , n — p > 1. Then assume that all the gjs, m < p

have been obtained and are found to be entire functions. From Eq. (15) it is then clear

that hv is an entire function. Furthermore, DJiy) and are also entire functions

of 7?. It follows from Eqs. (17) and (18) that gv is an entire function provided the existence

of /" D-z,-1(fx)hv(fj.)dfj. can be demonstrated. From the boundary condition of Eq. (10),

satisfied by the bm ,m < p, it follows from Eq. (11) that for , —> 00 hP(r)) = o(exp [?j2/4]).

Also [6], D-„_i(t?) = 0(7,-p-1 exp [ — 772/4]) as?/-» co. Thus, for 77 —> co; =

1 exp [ — T72/4]), o(exp [ — t?2/4]) = o(v~v~1)- In view of all the above this asymptotic

character of D-P-i(ii)hv(T)) then demonstrates the existence of the aforementioned

integral. Moreover, gx has been found to be an entire function. It follows from induction

that all the gn's are entire functions.

3. Approximate solutions for the £>„(t?) from the governing equations. We now

sketch an approximate solution technique for obtaining the bn's which follows, and is

essentially equivalent to, the Meksyn solution technique utilized in [1],

Considering expansions of the b„ about 77 = 0, we define

bn(v) = Z A„.n77m. (21)

(22)

The result of Eq. (7) and the conditions of Eqs. (9) clearly indicate that

A0,0 = 1, all other Am,0 = 0,

Alfl = 1, all other Altm = 0.

Let us assume that all bQ(0) = A0,Q, q < n have been obtained. (Note that all b„(0) = A0.,

of this work are identical to the A0,„ = aQ of reference [1].) Then, from recurrence re-
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lationships readily obtainable from Eq. (8) with the use of Eqs. (21) and (22), this

therefore implies the knowledge of all Ar,a, q < n and, in fact, the ba, q < n themselves.

These recurrence relationships are explicitly given in Eq. (17) of [1].

For a given n we now seek the value of 6„(0) = Aj,„ . Once this has been obtained

then all of the other unknown Av,„ can be obtained from the recurrence relations

mentioned above. A solution for bn(0) therefore implies a solution to the unknown

function &„(?]) itself. According to the boundary condition of (10), it is reasonable to

assume that as i? —> °° the term ribn(ji) — M#»-»(l) = fn(v) goes to zero. Let

us assume that as r/ —» <&, fj-q) = o[r]b'n(r])]. Then asymptotically, for large i?, Eqs.

(8)-(10) yield 6^(17) ~ ^n(v) exp [ — r?2/2] where ipn is essentially constant at large tj.

This suggests the following form for 6^(77):

K(v) = tn(v) exp [ —tj2/2].

We expand the \pn about 77 = 0 and for later convenience take the expanded form for

the entire function b'n(ti) as

K(v) = exp [—V/2] i) {2(1-")/JGm„,7r[(m + l)/2]} (23)
TO — 0

where F(z) is the gamma function. By placing the assumed expansion form for bn as

per Eq. (21) into the left-hand side of Eq. (23), multiplying both sides of this latter

equation by exp [»?2/2], and expanding this exponential function about 77 = 0, it is

possible in the end to obtain an equation for the Gn m as a function of the (known)

Av_„ and the unknown constant 6n(0) of interest. We are specifically able to find that

Gm,n = em,„6„(0) + where the Qm,n are constants and the gm.„ are functions of the

A„,t , p < n, q < m. These are given in Eq. (18) of [1].

We are now in a position to integrate Eq. (23) formally. Using the condition of

Eq. (10) we find

bn(0) ~ exp [-,72] Z {2(1"",/2(?ra.„,7r[(m + l)/2]} dv. (24)
•>0 m-0

We use the ~ from here on to indicate that the right-hand side is only "a representation"

of the left-hand side since the integrand on the right is itself not defined at the upper

limit of integration. We formally exchange integration and summation in this last and

eventually obtain

6.(0) Z Z [e„.A(0) + (25)
m — 0 to™ 0

The problem has now been reduced to one of obtaining a meaningful equation for the

6„(0) from Eq. (25). The identical problem comes about in [1], and the situation is

discussed at length in that work. There it was found that although the infinite sums

of Eq. (25) are in general divergent it is consistent to assume that they can be rendered

convergent by the use of the multiple Euler transformation [2] [7] S<2>) defined by

£(3TI„,m) = £a)(3H„.m) = 2-<"+1> E9Ea.„{n!/[(n - q)l <?!]},

(26)
S(,,)(3TC»,J = s[s<p-1)(3rc„.m)], p > 1.
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Thus the validity of an assumption of divergence, asymptotic divergence, or convergence

of the infinite sum ^,Z-o or any one of its multiply transformed infinite sums,

S'*'[(?„,„], could only be studied a 'posteriori after a tentative solution for the

bn(0) under consideration was obtained. This was true, of course, since the terms Gm,„

contain the unknown, &„(0), itself.

A summary of all the results for the i>„(0) which were obtained in [1] are reproduced

here in Table 1.

In the next section we will seek solutions for the b„(0) = gjfi) directly from our

formal gn(v) solution form given in Eqs. (17) and (18). As will be seen, this will enable

us to represent a given gn(0) in terms of an infinite sum of known terms, the divergence

or convergence of which can be studied previous to any actual summing process. In

the event that divergence or slow convergence is indicated we will again bring to bear

the Euler transformation with the hope of rendering the particular sum of interest

(more rapidly) convergent.

4. Approximate solutions for the g„(ri) from the solution representations of Eqs.

(17) and (18). This section will be concerned with the approximate evaluation of the

functions g„(v) by utilizing the exact quadrature form of solution presented in Eqs.

(17) and (18). For a given n attention is eventually focused here on the problem of

obtaining a solution for the leading term gjfi) in the expansion of such a function.

Once this has been obtained, all other terms in the expansion follow from readily ac-

cessible recurrence relations. In such a manner, somewhat similar to that sketched

in the previous section, solutions for the gn(r]) (and, of course, for the &„(?])) can be

constructed recursively.

We introduce the expansions of the gn as

TABLE 1

Solutions for the b„(0) = <7„(0).

Approximate Solution from [X]

and Section 3.

Approximate Solution from

Section 4.

Exact Solutions

from Eqs. (16),
(19) and (20).

6,(0) = <7i(0) = Exact to 12

significant figures

f>2(0) = <72(0) = Exact to 16

significant figures

63(0) = <7s(0) = Exact to 6

significant figures

i>4(0) = g4(0) = 0.106534(10-')

b5(0) = g5(0) = 0.2655(10-*)

b6(0) = 6fe(0) = 0.780(10-')
b7(0) = g,(0) = 0.254(10-')

i>s(0) = g 8(0) = 0.88(10-5)
69(0) = £79(0) = 0.32(10-')

MO) = <7io(0) = 0.12(10-=)
M0) = 9ll(0) = 0.5(10~6)

M0) = M0) = 0.2(10-')
£n(0) = 9u(0) = —

Exact to 14 significant

figures

0.1065341031512( 10-2)

0.26550353617(10-3)
0.7805215827(10-')
0.2538027999(10"')
0.883912653( 10-5)

0.323588330( 10~6)
0.123047433( 10_s)

0.48210506(10-6)

0.1935129(10-6)

0.792397(10-')

-(2/,)»«

(1/48) (2/tt)1'2 {19/6

+ (2/3r)[9(3)"2 - 20] J
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gM = £ A'm.nVm. (27)
m ™ 0

For now we concentrate on a particular gn thereby assuming that all gv , p < n (i.e.

all A'm_v , p < n) have been previously obtained. Taking the exact solution for ^(O)

as per Eq. (16), we will be considering n > 1. Note that the condition of Eq. (13) requires

A'un = 0, » > 1. (28)

We proceed with our solution by considering an expansion of the entire function,

hn(y), about 7? = 0. In view of the definition of Eq. (15) and for later convenience, we

take this expansion in the following form:

ft,(u) = -exp [-,74] Z {2"/2+1r[(p + n + S)/2]Kv,nVv/p!}. (29)
V-0

From the form of the (known) functions gv , p < n as per Eq. (27) it is possible, from

the definition of Eq. (15), to give explicit relationships for the Kp,„ as functions of the

A'm.v , p < n. Thus

K0.n = {2r[(n + 3)/2]}-' Z Ao.m(2AZ,n-m - A'0.n.J2);
m — 1

Ki.n = {23/2r[(n + 4)/2]}-1(-2^,„_1 + 2Ai...x + 6 £ A'0.mAi„.m) ,
\ m—1 /

K,.n = !2'/2+Ir[(p + n + 3)/2]r| p(p + 1) Ap+ii - A'v.un.j2

(30)

+ ij A0',»[(p + l)(p + 2)4 p+2 ,n—m (p + 1/2!)^._J
m-1

n—1 p—2

+ Z Z i^.p-<i.m[(3 + 1)(<Z + 2)AJ+2,„-„ — -4jin_m/2]
m-1 o-O

(? + m ~l~ 2 .»n40>n_m/4} ^ , J) > 1 ,

where we have used the result of Eq. (28). According to the solution forms of Eqs. (17)

and (18) we obtain the following exact solution for the unknown, g„ (0), of interest:

0»(O) = -2n/V1/2r[(n + l)/2] f D.n^)hM dix. (31)
•>0

We now insert the hjji) expansion as per Eq. (29) into the integrands of (31). In view

of the fact that this expansion is not valid throughout the entire range of integration

(i.e. at 7? —> ) the equality sign is no longer necessarily valid. Formally exchanging

the order of summation and integration we finally obtain

gM ~ 2"/V"1/2r[(n + l)/2] £ 2*/2+I{r[(p +n + 3)/2}/p\}Kv,n

(32)

■f nv exp (—m2/4)Oi) d,i.
*>0
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We have again utilized the ~ sign to indicate that the right-hand side of (32) is only

a formally obtained representation for the gn{0). Now the integrals of (31) for the case

p > 0 of interest have been exactly given [6] as

f J exp (-m74)I>-„-iC") + n + 3)/2].
J 0

Using this in (32) we obtain

gM ~ r[(n + l)/2] E K,.n. (33)
v-o

The problem has now become one of obtaining a meaningful equation for the g„{0)

from the representation of Eq. (33). The situation is similar to the one encountered

and briefly discussed in the previous section. The relationship of Eq. (25) in that section

corresponds, in this regard, to Eq. (33). However, as pointed out earlier, the terms of

the infinite sum on the left side of Eq. (25) contain the unknown, 6„(0), of interest

whereas the terms KVi„ on the left side of Eq. (33) are independent of the present un-

known, <7„(0), and can be determined from Eq. (30). In the present situation the Euler

transformation of Eqs. (26) will again be utilized to force convergence or more rapid

convergence of the sums of Eq. (33). Thus Eq. (33) will directly result in a solution for

g„(0). Once gJO) = A'0,n has been obtained it is a simple matter to obtain all of the

other A'v „ . These follow from a recursion relationship deduced from Eq. (12) with the

use of the expansions of Eqs. (27) and (29) and the result of Eq. (28). Thus

A'0,n = <7„(0), A'Un = 0, Ain = (2n + l)A'0.n/4 - r[(» + 3)/2]K0.n,

M.n = —21/2r [(» + 4)/2]K1.n/3,

A',.* = \p(p - l)rj(2n + l)A;_2.„/2 + (34)

P/2-1 1

- E (-DT[(p + n + l)/2 - ?]XP.2_2a,„2^-3V[g!(p - 2 - 2g)!] , p > 3,
<2-0 )

where

P/2 = pi2 if p is even

= (p — l)/2 if p is odd, and n > 1.

With all of the above in mind we now proceed actually to obtain the gn(0) = A'0^

and, in fact, the A'vn,n> 1 in general. Using the exact result for gx{r\) as given in Eq.

(16) we proceed to evaluate the subsequent gn one at a time starting with g2 ■

n = 2. In order to evaluate g2(0) from Eq. (33) we require the Kv,2 as given in Eq.

(30). These depend on the A'v l , which, according to Eq. (16) and the expansion of

Eq. (27), are exactly given by [8]

= (2A)1/2 g (—l)"[(2g - 1)2"-^! (k - ^

Alk+UJ = 2 ~2i/kl.

Using these last in Eqs. (30) all Kp,2 can be evaluated. For the present calculation,

however, it is more direct to evaluate the Kvr2 by using an exact solution for A.2(•>?).
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This can be obtained from the definition of Eq. (15) with the use of the exact solution

for gi(v) as given by Eq. (16). Thus we obtain

h(v) = -(2/t)DI(.v)D-2(v)

= -exp [-„74]{(2A) exp [-„2/2] - (2/7r)1/% + (2/*)% erf [v/2l/2]\,

where the error function, erf (x), is defined and expanded as [8]

erf (x) = (2/ir1/2) [ exp [— t2} dt
Jo

= (2/of (-Di+v*-1 m - m - do-1-
k-1

In view of the above we find that h2 can be given by

Uv) = -exp [—v2/4]{— (2/7t)1/2jj - (2/t) g (-l)V*[fc!2*(2k - l)]"1}-

Comparing this with the h2 expansion of Eq. (29), and equating like coefficients of

— t)' exp [—tj2/4], we immediately obtain

(36)
= — 4(—l)V-3/2[(2fc - l)(2fc + l)(2fc + 3)]-1, k > 0,

Ki,a = — ir~1/2/4, all other K2k+1,2 = 0.

Using these results in Eq. (33) the following representation for g2(0) results:

g2(0) ~ (t1/2/2) £
p-0

= -1/8 - (2/t) £ (—1)^(2^ - l)(2fc + l)(2i + 3)]"1 = 1/8,
k-0

where the result [8] 22"-o (—1)V(2k + 1) = 7r/4 has been used.
As it happens, the above result indicates that the infinite sum £ 2 is not only

convergent, but it is also summable in closed form. Moreover, as is evident from Eq.

(19), the representation for g2(0) as given by Eq. (33) yields the exact solution for this

quantity. As will be seen, the convergence of the infinite sums £ Kv,n of Eq. (33) is

not generally in evidence. In our computation of subsequent g„(0) we will therefore

incorporate the Euler transformation in an attempt to force convergence or more rapid

convergence of the particular £ Kv,n under consideration. With regard to the present

calculation we point out that the use of the single Euler transformation on the series

£ Kv,2 appears to render this series more rapidly convergent. Thus, assuming that

the closed-form sum of this series was not at our disposal, we would have obtained our

value for g2{0) from

g2(0) - (t1/2/2) S Kp,2. (37)
p-0

Without any further values of the Kv,2 , however, this approximation can be improved

by taking

gM ~ (x1/2/2) £ smCK,.a) (38)



384 LEONARD Y. COOPER

for some optimum value of m. This is evident from a comparison between the approximate

results obtained from Eqs. (37) and (38) for various values of q and m as given in Table 2.

This table indicates that for the present calculation the most judicious choice of m

appears to be m = 1. Using double precision accuracy on the G.E. 635 computer it

was possible to establish an approximate result for g2(0) accurate to 17 significant

figures by using m = 1 and 5 = 78 in Eq. (38). Using the same q = 78 and Eq. (37)

one obtains a result for g2(0) accurate to only 5 significant figures.

n = 8. Using the exact result g2(0) = f, and the solutions for Kv,2 as given in Eq.

(46), the coefficients A'v 2 can be computed from Eq. (34). With these at our disposal

along with the AvA as per Eq. (35), the KVi3 can be computed from Eq. (30). As with

g2(0), it is expected that the solution for <73(0) can be ascertained from the representation

of Eq. (33). Thus, for large enough q, we expect that either the representation

173(0) ~ Z Kv,3 (39)
V-0

will yield an accurate solution for g:. (0), or else, for some m, the representation

TABLE 2

Evaluation of g<z(0) from. Eqs. (37) and (38).

gr2(0)~ ff2(0)~ 02(O)~ ff2(0)~

1

9 = r(-i) £ kp.2 = r(§) £ £«(£„,*) = r(f) £ s«(£,.,) = r(|) E s(3>(^,.2) =
p—0 p—o p—0 p—0

0 .212206e .106103s ,0530516 ,026525s
1 .087206s .1279049 .085027, .047782s
2 ,129647s .1284859 .103813s ,0647566
3 .129647» .126269! .114503s ,0782583
4 ,123584 s ,125043 s .120338,, .OS8954!

5 ,123584s .1247517 ,1233432 ,0973895

6 ,125605s .124829! ,124759i ,1040102

7 ,125605s .124947, ,1253254 ,1091796
8 .1246872 ,125010„ .125469s .113192,
9 ,1246872 .1250224 ,125427s ,1162874

10 .125181, .125013s .1253234 ,118657s
11 .125181, .125003s ,1252156 ,120458s

12 .124885! .1249984 .1251276 .121814,
13 .124885! ,124997s .125064, .122824,
14 .125077i ,124998s ,1250246 ,123567a
15 .125077i .124999, .125001s .1241064

16 .124945, .1250002 .124990, ,1244896
17 .124945, .125000s ,1249874 ,124756i
18 ,125039s .125000, .124987, .124935s
19 ,125039s ,1250000 ,1249902 .1250512
20 ,1249702 .125OOO0 .1249930 .125120s
21 .1249702 ,1250000 ,124995s .125157s
22 .1250230 .125OOO0 ,124997s ,125172s

23 .125023 o .125000,, .124998, .125171s
24 .124981, .125000, ,124999s .125162,

25 .124981, .1250000 .125000, .125146,



A PROBLEM OF CONSTANT SURFACE HEATING 385

03(0) ~ E S<m)(i^.3) (40)

p-0

will optimize the accuracy of the unknown g3(0) under consideration. For several different

q, Table 3 shows the values of g2(0) resulting from the representation of Eq. (39) and

from the representation of Eq. (40) for different m. From this table it appears that

of the representations considered, the optimum accuracy for g-AO) might be expected

from the representation of Eq. (40) using m = 1 or 2. From the results of the first column

of this table it is clear that no useful information regarding the value of our unknown,

g3(0), has been obtained directly from the representation of Eq. (39). By using double

precision accuracy on the G.E. 635 computer it was possible, however, to establish

an approximate result for g3(0) accurate to 14 significant figures by using m = 2 and

q = 112 in Eq. (40). It is of interest to note that with q = 112, Eq. (40) yields 11-place

accuracy with m = 1 and 9-place accuracy with m = 3. It is worthwhile to note further

that while q = 112 is required for 14-place accuracy in g3(0), q = 78 was sufficient for

17-place accuracy in the computation for g2(0). For a given q there is a persistent loss

TABLE 3

Evaluation of g3(0) from Eqs. (39) and (40).

S,(0)~ g3(0)~ ^,(0) ~ <7,(0) ~

q = r(2) £ k„.3 r(2) £ sc»(KP,3) r(2) £ s<»(Kv,t) r(2) E s®(j^.,)
p—0 p—0 p—0 p—0

0 .052185, .026092, .013046, ,0065232

1 -.0566713 ,011925o .016027, ,010530i
2 ,048378s ,0043652 .014802s .012753,

3 .001725a .003997, ,0123362 ,0137436
4 -,012625s .005437, .009962, .013911,
5 .017357, ,0062204 .008149, .013557s
6 ,014182s .0060349 .006951, .012898,
7 -,OOS1748 .005906, .006256. .012084,
8 , 009109s .005897 E .005912, ,0112195

9 .011222, .005936, ,005784s ,0103720
10 ,006460s ,005963s .005771, .009583,
11 -.002502, .005967, .005808, .008876,
12 .010253, ,005959„ ,0058580 .008260,
13 .010501, ,005951s .005901, .007738,
14 . 003781, .005950, .005932, .007304,,
15 -.001172, .0059525 . 005950, .006950,
16 ,0114309 .005954, .005959, .00666S,
17 .011336, .005955, .005962, .006448,

18 .001160s .005954, .005962, .006279,
19 -.002000, ,0059540 . 005960,, .006153,,
20 .014035, .005953, .005957, ,0060610
21 .013873, .005953, .0059559 .005996,
22 —.0032320 .005954, .005954, .005952,

23 -.005428s .005954, .0059539 . 005925,
24 .019863, .005954, .005953, .005909,
25 .019698, .005954, ,005953s .005902,
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of significant figures in the computation for a particular g„(0) as n increases. Moreover,

in such computations for a given g„(0) full use is made of the available accuracy of all

preceding <7„(0)'s. Thus the higher the accuracy of early <7„(0)'s the more <7„(0)'s can be

computed. It is for this reason that it is useful to obtain as much accuracy as an available

computer facility -will allow in the computation of early gn(0)'s.

With regard to the above approximate computations for the (known) values of

<72(0) and <73(0), the following indicated rules are noted in summary:

1. When the infinite sums of Eq. (33), representative of the values of g„(0), are

truncated to finite sums, there is a significant improvement in the accuracy of the

representation when the single or multiple Euler transformation of these sums are

utilized.
2. For a given n (within the scope of the calculations which were performed), a

representative gn(0) partial sum, Xo , obtained from Eq. (33), and the sums, ,

7", , • • • , obtained by the various multiple Euler transformations of such a sum, all

yield approximate values for </„(0) accurate to within the order of magnitude of the

"final terms" of the particular sum, X^ , being considered.

For a given n, the optimum number of transformations, m, can be concluded by

invoking rule 2. Thus, m = m(n). In particular, the above computations have yielded

the results m(2) = 1 and m(3) = 2.

n > 8. We now extend rules 1 and 2 above, and assume that they are valid for the

approximate computation of all the ?„(0). With such an assumption further results

have been obtained for all gn(0) up to g13(0), and these are presented on Table 1 along

with the approximate results for gn{0), n = 1,2 and 3, as obtained earlier in this section.

It is of interest to note that these new results were obtained from the general representa-

tion

G (n)

gn(0) = r[(n + l)/2] £ &lmM\K,.n) (41)
2>-0

where the number of transformations, m, for optimum accuracy was found to be

m{2) = 1, m(3) = m(4) - m(5) = m(6) = m(7) = m(8) = m(9) = 2,

m(10) = m(ll) = m(12) = m(13) = 3.

5. Evaluation of <£(??, f). From the solution form for 4> as given in Eq. (6) along

with the definition of Eq. (11), the exact results of Eqs. (7), (16), (19), and (20), and

the approximate results for the A'm n of the previous section, we consider an evaluation

of our unknown function from the representation

[t j.wr]<£ = 1 + X/ exp (—7? /4)

= 1 + + gziv)?2 + exp (— '?2/4).

(42)

In the actual computation, the internal sums X^-o = Qr{v), r > 3 are truncated,

s going from 0 to 99. The index r in the second summation is taken from 4 to 13. The

error of the results in these computations, first for the gT{ri), and, finally, for <£(?7, f)

is estimated from the order of magnitude of the latter terms of the partial sums con-
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sidered. A plot of <£(??, f) obtained through use of the above calculation procedure is

given in the solid lined curves of Fig. 1. This graphical presentation of <t> (solid curves)

is plotted from calculated results which are estimated to be less than 1% in error.

Since the temperature history of the halfspace as a function of time and depth is

probably the most useful physical result of our solution, this has been obtained from

our above mentioned calculations for 4> and from ova- definition (1) of the dimensionless

temperature V. The result is presented in the solid lined curves of Fig. 2 where V is

plotted as a function of XH |Vff| t with \XH\ 2 as a parameter. Here the dimensionless

quantities x, t and H may be defined, as in [1], by

x = x*(T*0C*y/2P*/k*-, t = t*T*0C*2P*/k*-, H = H*/[(T*C*)3/2p*]. (43)

The solid lined curves of Figs. 1 and 2 are also representative of plots of solutions

for <j> and V which have been obtained from an approximation for cf> as per Eq. (42)

with the infinite sum over n truncated after only 3 terms (i.e. using only the exact

solutions <7i , g2 , and g3). Where such solution representations differ from our earlier

evaluations they are presented in dashed lines. As seen, such a readily usable approximate

closed-form solution gives good accuracy in <£ or V for a significant range of the f or

\H \\H\ t variables respectively.

6. Results and conclusions. Since the problem of the present work and that of [1]

are the same, the plots of our solution function are identical in the pertinent range of

,.v    

Fig. 1. The dimensionless conductivity, <f>, as a function of f with -q as a parameter.
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v
.X H1X Hit =4.0

IX HIX

Fig. 2. The dimensionless temperature, V, as a function of \\H\x with \H \\H\ t as a parameter.

independent variables to those plots obtained in [1], The improved solution technique

developed here along with the more extensive calculations have, however, resulted

in evaluations for <f> and V which are generally more accurate than those of [1] even

though these improvements do not show up in the relatively rough solution plots which

are presented.

For an interpretation of our solution vis-a-vis the physical phenomenon of the heated

(or cooled) halfspace the reader is referred to the discussion at the end of [1] which is

entirely pertinent to the present work.

With regard to the solution technique of this study the following summary and

conclusions are finally noted:

1. The new exact solutions for g2(v) and g3(v) (or b2(v) and b:.(v)) obtained in Sec. 2

along with the proof of analyticity of the general functions gn(v) or &»(>7) gives us in-

creased confidence in the approximate solution techniques and results of both reference

[1] and the present work.

2. The approximate solution representation obtained from Eqs. (6) or (32), where

we only consider terms up to and including 0(f3), is useful over a significant range of

the independent variables.
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