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Summary. Partial results are given on a conjecture in inverse scattering theory
concerning the interference of two-dimensional plane waves. The conjecture states that an
odd number of plane waves of the same frequency can only cancel each other at isolated
points and not along a simple continuous curve. It is partially confirmed here for curves
which are nearly flat at some point. An analysis is also made for various possible nodes for
an even number of plane waves.

1. Introduction. In [1] Karp treats the inverse scattering problem in two dimensions.
He shows that a crucial role is played by the plane wave far-field scattering amplitude. The
latter is defined by

/(Mo) = lim (ivkr/2Y,2V(r, 0; d0) exp( -i^kr - , (1.1)

where V(r, 0; 0O) is the outgoing scattered field at (r, 6) due to an incoming plane wave

<p(r, 0; 90) = exp (ikr cos (9 — d0)) (1-2)

in the direction 60, incident on a scatterer S. The inverse scattering problem is the problem
of determining the obstacle S from/(0, 60). Karp proved for Dirichlet boundary conditions
that if 6l , 021 • • •, K are distinct angles and the determinant dety^, , dj) = 0, while no
subdeterminant vanishes, then S lies on the locus

n

Yj Aj exp [ik(x cos 6j + y sin 0j)\ = 0
j=i

for appropriate complex non-zero A, , A2, ■ ■ ■, An . Hence S is restricted to being a node,
i.e. a curve of interference, of n plane waves of the same frequency. He also showed that
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three plane waves can never interfere along any smooth arc, and he conjectured that this is
the case for any odd n. This would mean that for odd n det J[6t , 9j) never vanishes (if no
subdeterminant does).

The precise, somewhat more general statement of the conjecture is: if 6l, d2, ■ ■ ■, dn are
distinct angles (modulo 2tt) and

n
Aj exp (ik(x cos dj + y sin 0,)) = 0 (1.3)

i = i
along some simple continuous arc S given by y = g(x), a < x < b, where the Aj are
complex non-zero, and k > 0, then n is even. A corollary of the conjecture is that for the
Dirichlet problem it is impossible to avoid having a scattered field when the incident field
consists of an odd number of plane waves. Conversely, it is known that if the incident field
is zero for a smooth finite arc then the field scattered off the arc is zero [3].

Although we have not settled the conjecture, we have obtained some results on the
possible shapes of the arc S. In Sec. 2 we discuss various possible curves along which an
even number of waves can interfere and exhibit a technique for generating such nodes. We
explain in Sec. 3 how the problem of settling the conjecture can be simplified by rotation
and translation of coordinates. In Sees. 4 and 5 we establish the conjecture for the cases n
= 3 and S a line (or line segment), respectively. These results are generalized in Sec. 6 to
the case where S is "almost" a linear scatterer. We explain in Sec. 7 the difficulties
encountered in attempting to "force" a decision on the conjecture by the use of general
methods.

2. Some simple results for n even. It is clear that any number of plane waves can be
made to interfere at any specified isolated point by choosing appropriate amplitudes Aj . If
n waves interfere along the arc S, always assumed simple and continuous, we will say that
they possess the scatterer S. (Hence the conjecture asserts that no odd number of waves
can possess a scatterer.)

The following facts are easy to show.
(a) Two waves can only possess a linear scatterer (a line or line segment(s)) which

bisects the angle formed by the corresponding rays (Fig. 1).
(b) For any even n = 2m there are n waves which possess a scatterer, in fact a linear

scatterer. Indeed, choose k > 0 and angles dj such that 0 < < d2 < ■ ■ ■ < dm < ir/2.
Then

m

[exp (ik(x cos Oj + y sin dj)) - exp (ik(x cos {—Oj) + y sin (-0,)))] = 0 (2.1)
j-1

along the x-axis. Here the cancellation along y = 0 occurs in pairs.
(c) Interference of an even number of waves along a scatterer need not always occur

pairwise. To see this it suffices (by (a)) to exhibit a nonlinear scatterer for four waves. Take
S as the curve defined implicitly by sin x = 2 sin y. Hence the sum

exp (ix) - exp (—ix)
2 i

-2 = 0 (2.2)exp (;» - exp (-/»
2i

along S\ This scatterer is not a closed curve (Fig. 2). However the eight plane waves
defined by putting u = sin 3x sin y + sin x sin 3>> into exponential notation, corresponding
to k = 101/2, cancel along the closed oval

cos2 x + cos2 y - i, (2.3)
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Fig. 1. The multiple scatterer^ = fl7r, « = 0, ± 1, ±2, ■ • •, for the sum exp i(x + y) — exp i(x - y) = 2i exp (ix) sin
y. Here A, = 1, A2 = — 1, 6, = it/4, 02 = — t/4.

defined by Rayleigh [2]. To see this we note that

sin 3.x sin y + sin x sin 3y =

4 sin x sin y (cos2 x + cos2 y — +). (2.4)

Here again the cancellation along 5 is not in pairs but requires the participation of all eight
waves (Fig. 3).

The method used in (c) of obtaining scatterers implicitly by putting sums of products
of sines and cosines of appropriate frequencies into exponential form is quite general.
However this procedure always yields an even number of waves, which lends credence to
the conjecture. We do not know of any other general method for producing scatterers and
waves. This method nevertheless yields a rich supply of scatterers. For example, the sum

—4 sin 7rx sin ivy = exp (iir(x + y)) — exp (h{x — ̂ ))
- exp (nr( x + j)) + exp (iir(—x - y)) (2.5)

possesses the lattice scatterer

S: x = m, y = n; m, n = 0, ± 1, ±2, • • •. (2.6)

If these four plane waves are incident on a finite portion of the grating S there will be
no scattered field (Fig. 4). On each segment of S the waves cancel in pairs although the
members of these pairs are different for vertical and horizontal segments. Each of the
rectangles of the grating is an example of a closed (but not smooth) scatterer for four
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R -- —~ 2

Fig. 2. sin x = 2 sin y. This is a periodic, curved scatterer for only 4 waves. At = 1/2, A2 = -1/2, A3 = — 1, A, = 1.

waves. We cannot come up with a smooth closed scatterer for fewer than eight waves.
Many more examples are given in Rayliegh.

3. Rotation and translation. Under a rotation and translation of coordinates the sum
in (1.3) goes over into a similar sum of plane waves with non-zero amplitudes, but the
angles dj and the scatterer S will be accordingly rotated and translated. We can therefore
assume for simplicity that any prospective scatterer goes through the origin with pre-
scribed slope.

4. The case of three waves. For n = 1 the conjecture is trivial, Karp's original proof
for n = 3 assumes that S is a C2 arc. We now present a proof based only on the continuity
of S. Neither of these admit any easy generalization, even to n = 5.

Theorem 4.1. Three waves cannot possess a scatterer.
Proof: Suppose that along some 5

3

Aj exp (ik(x cos dj + y sin #,)) = 0, (4.1)
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where the Aj do not vanish. It suffices to show that two of the angles must coincide. We
may rewrite (4.1) in the form

Ai exp (//c[x(cos - cos d3) + y(sin - sin 03)])

+ A2 exp (/&[.x(cos 02 _ cos d3) + y(sin 02 _ sin 03)]) = -A3. (4.2)

If we multiply (4.2) by its conjugate and simplify we obtain

x(cos 0, - cos d2) + >>(sin d, — sin d2) = (cos_1a-arg Al + arg/l2), (4.3)

where

a= 2\a\a2\ (W-Mil'-W)- (4-4)

In a similar way we may divide (4.1) by its second term and obtain
x(cos — cos d3) + j(sin dl — sin d3)

= (cos-1 b-arg Ax + arg A3), (4.5)

y
A

7T ■■

o
->x

Fig. 3. Rayleigh's oval. A smooth, closed scatterer for 8 waves. The incoming rays are in the directions (/V/2) ±
0,j = 0, 1, 2, 3, where cos 6 = 3/v710, sin 0 = 1/V10. There is no scattered field from (any segment of) the oval.



198 S. N. KARP: AND M. MACHOVER

y

A

-3 -2 -I

-1

-2

-3

-> x

Fig. 4. The gratingx = m,y = n; m, n = 0, ±1, ±2, ■ ■ •, defined by sin irx sin ny = 0. Here/4, = \,A2= -l,A,=
-\,Ai=l,0l- tt/4, d2 = -ir/4, d3 = 3ir/4, 6, = -3ir/4. Any finite portion is a scatterer for which the scattered

field is zero.

where

b= 2\a\\a3\ M'-IAA'-W). (4.6)

Since every point on S is a solution of the linear system (4.3), (4.5), the determinant

(cos 0! - cos 02)(sin - sin d3) — (sin 61 — sin 02)(cos di - cos d3)

- sin (d2 - di) + sin (d3 - d2) + sin — d3) ^-7)

of the system must vanish. It is easy to see that (4.7) then implies that at least two of the
angles are equal. (The continuity of 5 was used in the assumption that the multiple-valued
right-hand sides of (4.3) and (4.5) remain constant on S).

Remark: This proof can be done geometrically by representing (4.1) by vectors in the
complex plane. They form a triangle with a vertex at the origin which varies as (x, >>)
moves along S. The triangle must move as a rigid body (i.e., rotate) since the lengths \A^\,
\A2\, \A3\ of its sides are fixed. The analytical expression of the fact that the exterior angles
of such a triangle remain constant is essentially (4.3) and (4.5). Unfortunately a pentagon
(,n = 5) need not move as a rigid body when its sides are of fixed lengths. On the other
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hand, our attempt to find a possible scatterer for five waves by seeing just how such a
pentagon could distort was unsuccessful.

5. Linear scatterers. The following theorem shows that the conjecture holds for
linear scatterers.

Theorem 5.1. An odd number of plane waves cannot possess a linear scatterer.

Proof: Suppose that n waves possess the linear scatterer 5, which we may assume is
the x-axis. Then (1.3) becomes

2 Aj exp (ikx cos 6j) = 0 (5.1)
j-i

for all x. Since the angles are distinct, no three of the cos 9j are equal. Combining terms
with equal cos 0,, we obtain

m

2 Bp exp (ikx cos 6Jp) = 0, (5.2)
p=i

where the cos 6Jp are distinct and each Bp is either an Aj or the sum of two AjS. Since the
exponentials in (5.2) are linearly independent the coefficients vanish. Since no Aj vanishes,
each Bp is the sum of two AjS and n = 2m is even.

Remark: This argument also shows that if an even number of plane waves interfere
along a line the waves must cancel in pairs.

6. Almost linear scatterers. The results of the previous section can be generalized to
the case of a curved scatterer which contains a point at which it is appropriately flat. We
will say that the smooth curve S given by y - g(x), a < x < b is linear to order k > 1 at (x0,
y0)eS when

y ~ y» ~ g'Mix - x0) = o ((* - x0)k) as x — Xo, (6.1)

i.e., the tangent line at (x0, ya) approximates the curve faster than (x - x0)*. The next
theorem shows that the greater the value of k, the greater is the odd number of waves
required for interference along S; in the limiting case where 5 is a straight line it reduces to
Theorem 5.1. We will need the following lemmas, the first of which is established by simple
estimates.

Lemma 6.1. If r is any non-negative integer then

exp o{xr) = 1 + o(xr) as x ->0. (6.2)

Lemma 6.2. Let

£ Cj exp (iXjx) = o(xr) as x -> 0, (6.3)
j-1

where r is a non-negative integer, the Xj are real and distinct, and the Cj are complex. Then
C, = C2 = • • • = Cr+1 = 0.

Proof: Repeated application of L'Hospital's rule to

£ Cj exp (iXjx)
limx" — 7   = 0, p = r, r - 1, • • • , 0 (6.4)
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leads to a linear homogeneous system of r + 1 equations for the C, with non-vanishing
(Vandermonde) determinant.

Theorem 6.1. If n waves interfere along a smooth scatterer S containing a point at
which it is linear to order k, and n is odd, then n > k + 1.

Proof: It is easily established that the order of linearity of a point is invariant under
rotation and translation. Hence we may assume S is given by

y = o(x>) (6.5)

near the origin. The interference condition is then
n

2 A j exp [ik(x cos 6j + o(x*) sin dj)] = 0 (6.6)
j=i

near x = 0. Applying Lemma 6.1, this becomes

23 A j exp (ikx cos 6j)( 1 + o^)) = 0, (6.7)
i-1

or
n n

23 A j exp (ikx cos 6j) = - 23 o(x*)Aj exp (ikx cos 6j) = o(xk). (6.8)
j=i j-i

As in (5.2) we may combine terms with equal cos 6j on the left of (6.8) and obtain
r+1

23 Bp exp (ikx cos8Jp) =o(x") as (6.9)
P = 1

with distinct cos 6jp and r + 1 < n. Suppose n < k + 1. Then we would have r < k and
hence

r+i

23 Bp exp (ikx cos 6Jp) = o(xr) as x —> 0, (6.10)
p=i

so that by Lemma 6.2 the Bp would vanish, implying, as before, the evenness of n.

7. Other attempts. One might attempt to use Theorem 6.1 to prove the conjecture by
employing a change of variables to flatten out any proposed scatterer at one of its points.
This approach appears futile since such changes of variables do not seem to carry plane
waves into plane waves.

Any scatterer is a node of a sum of trigonometric functions and is therefore an analytic
curve. Accordingly one might try substituting a power series for y = g(x) into the
interference condition (1.3) and attempt to solve for the unknown real coefficients. We
have done this but were not able to ascertain whether or not the resulting recurrence
relations had real solutions. The existence of such solutions (with n odd) would disprove
the conjecture.

Any approach to a proof of the conjecture will have to distinguish between even and
odd n and not imply pairwise cancellation for even n. A useful fact in this connection is the
following. Let

n

23 A] cos,-10; = 0, /' = 1, 2, • • • , n, (7.1)
j=i

where no Aj vanishes. If n is odd then at least two angles are equal.
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We have not investigated the three-dimensional case or the case of more general
boundary conditions.
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