OPTIMIZATION OF ELASTOHYDRODYNAMIC CONTACTS*

BY S. M. ROHDE (General Motors Research Laboratories, Warren, Michigan) AND G. T. McALLISTER** (Lehigh University)

Introduction. Hydrodynamic lubrication is concerned with a particular form of creeping flow between surfaces in relative motion. The momentum and continuity equations for this situation can be combined into a single equation—the Reynolds equation—derived by O. Reynolds near the end of the last century [1]. In this note a class of optimization problems associated with these flows will be discussed.

Analysis. The one-dimensional Reynolds equation governing the lubrication problem is given by the two-point elliptic boundary value problem:

\[\frac{d}{dx} \left(h^3 \frac{dp}{dx} \right) = \frac{dh}{dx}, \]

\[p(0) = p(1) = 0. \]

In Eq. (1) \(p \) is the dimensionless film pressure and \(h(x) \geq 1 \) is the film profile. We observe that for each \(h \geq 1 \) a film pressure \(p_h \) can be obtained and the load capacity functional \(W = W[h] \) can be written as

\[W[h] = \int_0^1 p_h dx. \]

Lord Rayleigh [2] investigated the effect of different forms of \(h \) on \(W \) and discovered the optimum profile, i.e., the profile which maximized \(W[h] \) over all profiles satisfying \(h(x) \geq 1 \). That profile is called the Rayleigh step and is shown in Fig. 1.

Due to the generation of high pressures, it is recognized that the bearing components in a practical situation may deflect and hence the film thickness becomes functionally related to the film pressure; i.e., we write

\[h(x) = h_0(x) + \mathcal{L} p \]

where \(\mathcal{L} \) is a linear operator relating the bearing component deformations to the applied pressure distribution. This situation is called elastohydrodynamic lubrication (EHD) [1]. Note that by substituting Eq. (3) into Eq. (1) a nonlinear integrodifferential equation typically results. In this note we consider the optimization problem considered by Rayleigh for the EHD case. We again require that \(h \) as given by (3) satisfies \(h \geq 1 \). For notational convenience we will denote \(p_h \), where \(h \) is given by Eq. (3), by \(p_{h_0} \) and \(W[h] \) by \(W[h_0] \).

* Received April 22, 1977.
** Research partially supported by NSF Grant MPS74-06215.
Denote by \(h_{\text{opt}} \) the optimum film thickness when \(\xi = 0 \) (Rayleigh's result) and by \(p_{\text{opt}} \) the corresponding film pressure:

\[
W_{\text{opt}} = W[h_{\text{opt}}] = \int_0^1 p_{\text{opt}} \, dt. \tag{4}
\]

Let \(h_1(x) \) be such that

\[
h_{\text{opt}} = h_1 + \xi p_{\text{opt}}. \tag{5}
\]
Then we have $\tilde{p}_{h_1} = p_{opt}$ and hence the optimum solution h^* for the EHD case satisfies

$$W[h^*] \geq W[h_1] = W_{opt}.$$ \hspace{1cm} (6)

On the other hand, consider the problem of finding an $a^* \geq 1$ such that $W[a]$ is maximized, where we do not require that $a(x) = h_g(x) + \xi \rho_a$. We thus have

$$W[a^*] \geq W[h^*].$$ \hspace{1cm} (7)

But clearly $a^* = h_{opt}$ and $W[a^*] = W_{opt}$. Hence, combining Eqs. (6) and (7), we have

$$W_{opt} = W[h^*],$$ \hspace{1cm} (8)

and we may set $h^* = h_1$. In view of Eq. (5) we have the simple result that

$$h^* = h_{opt} - \xi \rho_{opt}.$$ \hspace{1cm} (9)

Eq. (9) allows us to trivially calculate h^* for different operators L. Figs. 2 and 3 show some typical results. Note that nowhere in our derivation have we made use of the fact that Eq. (1) is one-dimensional. Hence the result (9) applies equally well to two-dimensional problems and we may use the recent results [3,4] to calculate two-dimensional EHD optimum profiles. The extension to the case in which the viscosity is pressure-dependent is more complicated and will be the topic of a future note.

References