
92 QUARTERLY OF APPLIED MATHEMATICS
APRIL 1979

SMALL-AMPLITUDE INTERNAL WAVES DUE TO AN OSCILLATORY
PRESSURE*

By N. C. MAHANTI** (Visva-Bharati University, Santiniketan 731235, W. Bengal)

Abstract. The initial-value problem of waves in superposed fluids which are other-
wise unlimited due to an axisymmetrical oscillatory pressure is solved by the method of
integral transforms. The wave integral representing interfacial displacement is evaluated in
an asymptotic form that remains uniformly valid through the transition zone.

1. Introduction. In the theory of wave-generation in a fluid, both homogeneous and
nonhomogeneous, initially at rest, due to an oscillatory pressure (Stoker [1], Wehausen
and Laitone [2], Sen [3], Debnath [4, 5]), one comes across an integral representing
surface (or interfacial) displacement whose integrand possesses pole and stationary point
and is bounded at the pole. This type of integral is evaluated asymptotically by the above
authors in their respective papers with the help of some well-known methods. The
asymptotic expression of the integral in each case takes different values for different
positions of the stationary point relative to the pole and becomes singular when stationary
point coincides with the pole. This leads us to seek an asymptotic solution of the problem
that remains uniformly valid even when the stationary point coincides with the pole. In an
earlier paper considering the initial-value problem of waves due to an axisymmetrical
pressure acting on the surface of an infinitely deep fluid, the author [6] has presented a
uniformly valid asymptotic solution by the method of van der Waerden [7], In this paper,
we wish to take up the corresponding problem in superposed fluids with a view to
presenting the same type of solution by the same method as used in [6].

We note that the solution of our earlier paper [6] may be recovered from that here by
letting p' = (p! — p2)/(pi + P2) = 1 i-e. p2 = 0, pj and p2 being the densities of lower and
upper fluids. The article ends with the derivation of two limiting cases of interest and the
asymptotic envelope of the progressive wave travelling at the interface of the fluids.

2. Formulation and integral solution of the problem. We suppose that a fluid of den-
sity p2 occupying the upper half-space (y > 0) lies in stable equilibrium over another fluid
of density pt > p2 occupying the lower half-space (y < 0). Evidently, the interface between
the fluids is defined by the equation y = 0. The *- and z-axes of the rectangular coordinate
system lie on the undisturbed interface. We would like to study the three-dimensional
axisymmetrical linearized wave motion consequent upon the application of a pressure/(7)
exp (iut) H(t), H(t) = Heaviside unit function, at the interface.

The equation together with the attendant boundary and initial conditions of the
linearized wave motion are as follows:

fjyy + 7"V/y + f)yy = 0, j = 1, 2 (2.1)
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where 0 < 7 < °°, 0 < _y < <» when j = 2 and — oo < y < 0 when j = 1;

<Ply ~ <p2y on y = 0| (2.2)

Pifout + gfiy) = Ptfoatt + g<f2y) + iw f(y) exp (iut) on y = 0; (2.3)
g(Pi - P2)f = Pi <Pu ~ P2<P2t ~ /(y) exp (iut) on y = 0; (2.4)

tpi —* 0 as y ->-oo, <p2 -»0 as j->+oo; (2.5)

*Pi = P2 = f = 0 at t = 0;

(y<Pjy , y<Pj)^ 0 as 7 -> 0,00;

where <?i and <p2 are velocity potentials of the wave motion in the lower and upper fluids, f
is the wave elevation at the interface and the suffixes other than j, 1,2 denote partial
derivation.

The above system of equations may be solved by the zero-order Hankel transform in
y; the zero-order Hankel transform F(k) of F(y) is defined as

F(k)=[C° yF(y)J0(ky)dy. (2.7)
J 0

By applying the transform (2.7) and solving and governing equations, the integral solution
for the displacement f at the common boundary between the fluids may be written as

y,t)=f°k f(k, y, t)Jo(ky) dk = (g(Pl - p,))"1 (fi + f.) (2.8)
J 0

where

f, = f " kf(k) + Mky)dk (2 9)
J 0 (7 CO

f2 = f kf(k)(cr/2)(a + co)-1 J0{ky) exp (~iat) dk, (2.10)
J 0

(T2 = gk/p', p' = (pt ~ p2)/(Pl + P2),

and ft is the wave number.

3. Asymptotic analysis of fi and f2 . In this section, we wish to evaluate and in
an asymptotic form for large y and t correct to terms of order 0(7~') by the method of
van der Waerden and the stationary-phase principle.

For ky » 1,

Jo(ky) ~ (2xky)~m [exp (i(ky - ir/4)) + exp (-i(ky - tt/4))]. (3.1)

By substituting (3.1) in (2.9) and (2.10) and applying the stationary-phase principle, and
£2 are reduced as follows:

f. exp (/tt/4) f °° L.i„rIL. (a/2)(c + to) exp (jot} - c2 exp (/cop
(2tt7)1/2 J0 K ](K) a2-co2

•exp (-iky) dk + 0(7~3/2), 7 (3.2)

f2 ~ eX(2wy'y/*^j~0 ^X«r/2X. + «) 1 exp (i(ky - at)) dk + 0(7 3/2 ), 7 —* °°- (3-3)
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We note that the integrand of (3.2) becomes 0/0 at the pole a = a>, i.e. at k = u2p'/g, and
the phase at — ky is stationary at k = gt2/Ay2p'. This leads us to seek a uniform
asymptotic expansion of in the neighborhood of y = gt/2up' which brings together the
pole and the stationary point. To this purpose, the method of van der Waerden is outlined
below.

Let k = p'a2/g. Then fj assumes the form

(3.4)

r 1 ~ (f,,/g)3,y0 a exp {i{at ~ d°

- 2 exp (iot)f ° P exp (-ip'<j2y/g) da ,J Q G ~ 01 J

where the path of integration is shown in Fig. 1 for « > gt/2yp' and in Fig. 2 for « < gt/
2yp . It can be easily verified that the values of the integrals on the circular quadrant and
along the imaginary axis vanish as R — oo. Integrating along this path, we obtain the
second integral of (3.4) as

iri -
 y w3 f(oo2p'/g) exp (■-ip'w2y/g) (3.5)

for cc2p'y/g » 1. In the first integral of (3.4), we put the new variable

u = <r/« — gt/2u>p'y. (3.6)

Then the integral is reduced to

f'[a>f(ay/g)(a ~ u) da
du- exp {i{gt2/Ayp' - uWp'y/g)) du. (3.7)

cr=o cr=co ct=r

<r= -iR
Fig. 1
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CT = iR

<r=o cr=w o"=R
Fig. 2

Let us write

v3f(<r2p'/g)(<t - w)"1 ^ = (w - a0)~'^ + X (3-8)

where w0 = 1 — gt/2wp'y. The constants A and B0 are found as

A = co3/(coV/g), So = /2 [g3/3/873p'3/te'V472p') " cSfW/g)].

Substituting (3.8) in (3.7) and then applying Watson's lemma to (3.7), we find that (3.7)
assumes the form

A exp (igl1/4yp')~f'° "P 1-W/fl du
— oo tl 14 o

+ B0 exp (igt2/4yp')j~ exp (-iyuWp'/g) du. (3.9)

The extension of the limits of the integrals in (3.9) introduces an error of terms of order
0(y~I). Evaluating the integrals in (3.9), we find that (3.9) is asymptotically equivalent to

- ir J2 A exp {i(wt - w2yp'/g + ir/4)} cil^

, ( l/2B0ij)~1 exp {i(gt
■ sgn u0 + y -^-j ^

where

cis(x) = c(x) + is(x) =f

w2yp'u02

g

2/4yp' — 7t/4)} (3.10)
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Introduction of (3.10) and (3.5) in (3.4) lead finally to

<VV3/V/(g>y/g)/, ./ u2p'yu02\ ___ I
~ ^3/2^2-^)1/2 \ '( ') Cl\ g /S8nw()

•exp {/'(o>f - w2p'y/g + tt/4)} + p1/2 B" exp (igt2/4yp') + 0(y~3/2), y » 1. (3.11)
z cogy

By again applying the method of stationary-phase, the asymptotic value of may be
written as

~ ny!!S)f+y2?o <\ exP i-ig<2/4yp') + 0{y~><2\ y» 1. (3.12)8(2) 7 (w + gt/2yp )
Eq. (2.8), taken with (3.11) and (3.12), now gives the complete asymptotic behavior of f.

4. Limiting cases, (a) When gt « 2wp'y, u0 > 0. Since cis ((u2yp'/g)u02) ~ 2^1/2 exp
O'ir/4) (see [8]), it is easy to see from (3.11) that the dominant term of vanishes,

(b) When gt » 2 aip'y, u0 < 0. Proceeding as above, we find that the dominant term of
is reduced to

(2tt)1/V3/2 a>3f(u2p'/g)

y
3/2 u, exp {/(cor - co2p'y/g + tt/4)}.

5. Asymptotic envelope. If f\u2p'/g) ± 0, the dominant progressive wave (3.11) has
the envelope

7r'/2p'3/y/(a>y/g)

g3/\2y)

where

R(U) = (/V + /Y)1/2,

Pl + i P2 = I + z(l + 0 cisifrU2) sgn M0, U = gT

and the phase angle is tan~1(Pi/P\). Following Miles [9], we may illustrate graphically the
time-wise distribution of R{U).

6. Physical conclusions. The wave motion at the interface may be divided into two
distinct components and having different characteristics. The first component is
uniform in the neighbourhood of 7 = gt/2up'. The non-uniformity of second component

does not arise.
The results of this paper are in perfect agreement with those of our earlier paper [6] in

the sense that the results of [6] may be recovered from those here by letting p' = 1, i.e. p2 =
0.

We note that the dominant wave is a progressive wave expressed in terms of Fresnel
integral. This wave moves with the velocity g/u>p'.

The two values of group velocities dc/dk at the stationary point k = gt2/4y2p' and at
the pole k = u2p'/g are respectively equal to y/t and g/2up'. The circular region 7 = (g/
2up')' which brings together the pole and stationary point advances with the group
velocity g/2wp'.
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The limiting case (a) shows that the progressive wave disappears and the wave motion
is wholly dispersive at places for which y » gt/2up'.
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