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1. Preliminaries. The concept of normal mode vibrations in mechanical systems
originates with the idea of finding the fundamental frequencies of a linear system and in-
troducing normal coordinates which decouple the system. We begin with a Hamiltonian
H(x, y): IR2" —< IR, which, expanded in a Taylor series, has the form

H(x, .y) = H2(x, y) + Hi(x, /) + •••,

where H2(x, y) = (aJ2)y,2 + V2(x), a, > 0 for all and with V2(x) a positive definite
quadratic form in the n variables jc, , • • •, x„. It is well known that in this case we can find
a linear canonical transformation which takes H2(x, y) to

H2(x,y)= X (X,/2)(x,2 + y,2),
/= I

where A, > 0 for all If we assume for a moment that H3 and all the higher-order terms
vanish identically, we can define the normal modes via the invariant eigenspaces, on
which the flow is circular. If we fix an energy surface H2(x, y) = h, we immediately obtain
n circular solutions, each of energy h. These are the normal modes, and their frequencies
of vibration are the fundamental frequencies. If the higher-order terms do not vanish, the
construction above can no longer be performed. In the case of low energy and positive
definite H2(x, y), Weinstein [23] has proven the existence of periodic solutions continuing
the modes. In the case of arbitrary energy the only results available seem to be the ones of
Seifert [21], Rosenberg [14, 17] and Gordon [7], but the solutions so obtained may or may
not be "modes" in any recognizable sense. Following Rosenberg [10, 12], we shall adopt a
definition of "normal mode" as being that of a solution (jc,(r), x2{t), • • •, x„(t), y,(t), • ■ -,
yM) of

* = Hy, y = -Hx (HJO, 0) = H,(0, 0) = 0)
satisfying:

i) All the jc,'s and >>,'s are periodic functions of t with a common period;
ii) There exists a time t0 such that jc,(/0) = 0 for all

iii) There exists a time /, ^ l„ such that y{t,) = 0 for all i.
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This definition is too general since it allows, in the linear case, for periodic solutions
which are not modes [16]. We thus add a further condition:

iv) The variational equation Z = y(t), y(t))Z (where is the Hessian of
H) uncouples, via a canonical transformation, i.e. there exists a canonical transfor-
mation (£, rj) = S(x, y) taking H(x(t), y(t)) to H(£(t), tj(*)), with £ and 17 satisfying
i)-iii) in place of x and y respectively and such that Z = tj(/))Z with

7)(0) of the form

m

0 m
where a,, ■ ■ •, a„ are constants and • • •, /3„(t) are periodic functions with the same
period.

Although this last condition does not necessarily eliminate all solutions which are not
modes, it provides a computationally useful condition automatically satisfied by the clas-
sical modes of linear systems. We shall not investigate existence of modes in the most gen-
eral setting, although it would be of considerable interest to know whether the modes
shown to exist by Rosenberg [14, 17, 19] and Cooke and Struble [6] also satisfy our condi-
tion (iv). We shall instead apply this definition to the study of isoenergetic stability of
some special modes of vibration for a class of simple conservative nonlinear oscillators.

To be more specific, we shall study the isoenergetic stability of the two-degree-of-free-
dom oscillator with Hamiltonian

H(x,y) = (a,/2)y,2 + (a2/2)y22 + (1/2 )(a,x,2 + a2x22)

+ (a,/2)(x, - x2y + (1/4)(&,*,4 + b2x2< + bi(xl - x2y). (1.1)

We can think of this oscillator as being realized by the frictionless spring system of Fig. 1,
where x, and x2 are the displacements from rest of the masses a, and a2,x, = ay,, i = 1, 2,
and the restoring forces are

F{ (A) = a, A + b, A\ /= 1,2,3;

a, > 0, b, > 0, / = 1, 2; a3 > 0, b3 > 0 (not both zero).
In case the outer springs are identical and a, = a2 = 1, we have two natural periodic

solutions, the in-phase oscillation (x, = jc2), and the out-of-phasc one (jc, = —x2). It was
incidentally shown in [11] that these two oscillations are indeed modes in the sense of (i)-
(iv), and their isoenergetic stability was studied in considerable detail. It should be clear
that without such symmetry, the obvious candidates no longer exist, but fortunately they
can be replaced by some fairly simple motions.

Definition 1.1. For the energy function

H{x, y) = {ai/2)y{2 + (a2/2)y22 + V(x,, x2), (1.2)
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Fig. 1.

where V(x) is sufficiently differentiable, we say that a nonstationary periodic solution x(t)
of

x, = -a, VXi, x2 - —a2 VX2,

is an (similar) in-phase mode for the Hamiltonian system

(*) = JHm(x,y),

o)'
H„ = grad H, if (x(t), x(t)) satisfies conditions (i)-(iii) above; if there exists k > 0 such that
x,(/) = kx2(t) and if (iv) above is satisfied with a linear canonical transformation. We have
an (similar) out-of-phase mode when k < 0. We further say that two modes coexist if the
same linear canonical transformation uncouples the variational equations of both modes.

As we shall see in the development, certain restrictions on the oscillator are required
for the coexistence of (similar) in- and out-of-phase modes. Furthermore, no analysis will
be attempted for modes that are obtained as perturbation of similar modes by small
changes of parameters [19]. Nevertheless, a surprising richness of behavior is still possible,
even in the relatively simple case a, = a2 = 1, for which we will carry out a detailed analy-
sis of the in-phase mode.

Some of our conclusions on the stability of the periodic orbits under study will be
based on the following Arnold-Moser-Riissmann criterion [1, 13, 20]. Let H consist of
those complex numbers /i of modulus one such that for some positive constants c, v we
have

\n" — 1| > en'" for n = 1, 2, 3, • •• •
The complement of H in the unit circle has measure 0. Consider an area-preserving real
analytic map P : R2 —> R2 of the form

P: jc, = ax + by + ■
yt = cx + dy + •

where the dots represent power series beginning with terms of order at least two and con-
verging in some neighborhood of the origin. Then we have:
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Theorem 1.1. If the eigenvalues of the linear part of P are complex conjugate (thus of
modulus one) and belong to H, then the origin is a stable fixed point of P.

Stability off a set of measure zero can be improved to stability off a closed set of mea-
sure zero in some cases. In the fifth section we show how to do this using the twist theo-
rem of Kolmogorov-Arnold-Moser. The procedure involves computing a twist coefficient
and analyzing the set where it vanishes. The main result here is Theorem 5.1. Roughly
speaking, the result is that when there is a chance for stability (i.e., when the Poincare
map is not hyperbolic), then one has stability except for those parameters lying in a closed
set of measure 0. Some remarks concerning generalizations of these ideas are included.
Most computations are relegated to the Appendix.

The second author wishes to acknowledge the support of the Alexander von Hum-
boldt Foundation and the University of Wiirzburg during the period in which this re-
search was initiated.

2. The Poincare map: uncoupling, reduction of the number of equations and the eigen-
values of the linear part. We consider a Hamiltonian system with energy function

H{x,y)= ^y,2 + fy22 + V(x), (2.1)

where a, ,a2^ 0, and V(x) is sufficiently differentiate. Let w(t) be a periodic solution of

= JH.(x,y)0)
with period 2T>0. The variational equation along this solution is

Z = JH„(w(t))Z =
0 0 a, 0
0 0 0 a2

0 0
-r.XO)

0 0 .

z, (2.2)

where Z = [z„]; j = 1, 2, 3, 4; Z(0) = /„ and //„ and are the Hessians of H and V
respectively. The system (2.2) is equivalent to the system of second-order scalar differen-
tial equations

z, = -a\Vuz, + Vnz2], z2 = -a2[Vl2z, + V22z2\, (2.3)

with appropriate initial conditions and V0 = (d2V/dx,SXj)(w(t)).

Theorem 2.1. There exists a real linear change of variables with constant coefficients

U, = azy + bz2, U2 = cz| + dz2 (2.4)

with ad — be = 1, which transforms (2.3) into a system of the form

t/, + P(0t/, = 0, U2 + Q(t)U2 = 0 (2.5)

(with P and O periodic of period 27) if and only if
i) V,2 s 0 on w(t)

or
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ii) There exists a constant K such that «, Vu — a2 V22 = KVn along w(r), and K2 +
4a,a2 > 0.

Remarks. (1) The theorem holds, modulo the periodicity of P and Q, for any solution
w(t), periodic or not. It will generally hold along a solution that lies on a gradient line of
the potential, although this by no means exhausts its. applicability.

(2) The condition K2 + 4a,a2 > 0 is clearly redundant if a, and a2 represent positive
masses.

(3) In case (i) the identity transformation works.
(4) One of the referees suggested that this result is reminiscent of results of Hsu [9, 10],

who obtained some conditions for a Hill's equation to be uncouplable via a transforma-
tion with constant coefficients. We observe that (2.3) under hypothesis (ii) can be rewrit-
ten as

+ «2 ^22(^(0)
1 0
0 1

+ Vl2(w(t))
K a,

a2 0
= 0 (2.3')

and can be seen to satisfy the conditions of Hsu [20], which are that in a vector Hill's
equation of the form

• + (! fMB)z = o

one of the B's has distinct eigenvalues and all the B- s commute. What our result shows is
that, in case f,(f)B, arises from a potential function in two variables, then m need be
no larger than 2 with the B- s having the form in (2.3'). Furthermore, our conditions are
necessary and sufficient (while in Hsu [9] the conditions are not quite so) and are stated in
terms of the potential function rather than the Hill's equation.

Proof. The "if' part of the statement (i) is obvious. To prove statement ii), differenti-
ate (2.4) twice and use (2.3), obtaining

U, = -[a,aVn + a2bVi2]zt - [o.aF,, + a2bV22]z2,

U2 = — [a,cVn + a2dV,2]z, — [a,cV,2 + a2dV22]z2.

If the transformation exists we must then have (since z, and z2 are arbitrary)

a,aFn + a2bVl2 = aP(t); a,aVl2 4- a2bV22 = bP(t),

a,cFn + a2dVl2 = cQ(t); a,cVl2 + a2dV22 = dQ(t).

If one of the constants a, b, c or d vanishes, then case (i) must hold. Thus we can assume
abed ¥> 0. We immediately obtain

{a,aVu + a2bVl2)/a = (a,aVl2 + a2bV22)/b

(ot,cVu + a2dVl2)/c = (atcVl2 + a2dV22)/d

Some elementary algebra gives

a, V„(w(t)) ~ a2 V22(w(tj) = [(a,a2 - a2b2)/ab] Vl2(w(t))

= [(a,c2 - a2(f)/cd\ Vl2(w(t)).

Thus K = (a,a2 - a2b2)/ab = (a,c2 - a1d1)/cd. Some further algebra shows that a,ac +
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a2bd = 0 and K2 + 4a,a2 > 0. The "only if' part of the theorem is thus proven. To finish
the proof of the "if' part, we must show that, given K, the constants a, b, c, d can be cho-
sen in an appropriate manner. We assume K2 + 4«,a2 > 0 and find a, b, c, d so that ad —
be = 1; (a,a2 — a2b2)/ab = K = (a,c2 — a1d2)/cd and a,ac + a2bd = 0. With b = r,a we
have r, = (—AT ± (K2 + 4a,a2)1/2)/2a2, and with d = t2c we have r2 = (-K ± {K2 + 4a,a2)1/2
/2a2. The other two algebraic relations require that ac(j2 — r,) = 1 and ac(a, + a2r,t2) = 0.
The second is satisfied by the choices

r, = (-K - (K2 + 4a,a2)'/2)/2a2, r2 = (-K + (K2 + 4a,a2),/2)/2a2,

r, = (-K +(1C + 4a,a2)'/2)/2a2, r2 = (-K - (K2 + 4a,a2)l/2)2a2 • (2.6)

Since t2 — r, = ±((A^ + 4a,a2)l/2)/a2 ^ 0, the constants a, b, c, d can now be chosen (not
necessarily in a unique manner). This completes the proof.

We observe that P{t) = a, Vn + r,a2Vt2 and Q(t) = a,Vu + T2a2K22; thus P and Q are
determined up to interchange by choosing a sign for r, . Some easy computations, using
the expression for K established in the proof and using condition (ii), give the following
corollaries:

Corollary 2.2. With a, b, c, d as in Theorem 2.1, the transformation

= ax, + bx2, £2 = cxt + dx2 r],=dyl-cy2, r)2 = -by, + ay2,

is canonical and takes the Hamiltonian (2.1) to

m,v)=f v'+j V22 + m, (2.7)
where a, = a,a2 + a2b2, a2 = a,c2 + a2cf and Vl2 = 0 on the image of w(t).

Corollary 2.3. Under the hypotheses of Corollary 2.2, the further canonical transfor-
mation

0i = (|«i|)i/2£i > 02 = (|«2|),/2£2, = iji/(|a.|)'/2, & = t/2/(I«2|)i/2,

takes (2.7) to the form

ff(Q,0 = ±\ €f±y fl.+ kQ),
where Vl2 = 0 on u(t), the final image of w(t). Furthermore, the original variational equa-
tions reduce to the uncoupled second order linear system

U, ± P.MO)U, = 0, U2± P22(w(t))U2 = 0. (2.8)

Since Z(27) is the linearized Poincare map [8, p. 253], it should be clear that, under
the conditions of Theorem 2.1, a detailed study of its eigenvalues becomes substantially
more feasible. It is well known that, if w(t) lies on an energy surface H(x, y) = h, then
Z(27) has two eigenvalues equal to one. We now show what effect this has on the un-
coupled equations of the linearized Poincare map. We state and prove a result for two de-
grees of freedom, the partial generalization to rt degrees of freedom being then obvious, a
little messier and not as useful. We begin by stating two lemmas.
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Lemma 2.4. Let Z be a 4 X 4 matrix such that det (Z) = 1, with A = 1 as a double eigen-
value. Then the remaining two eigenvalues are given by

A = | [(D - 2) ± (£>(£> - 4)'/2)],

where Z> = Trace (Z).

Proof. Straightforward elementary algebra.

Lemma 2.5. Let /4(f) be periodic and even with period p > 0. Let m, and u2 be normalized
solutions of ii + A(t)u = 0 (i.e. m,(0) = u2(0) = 1, m,(0) = u2(0) = 0). Then

i) u,(t ±P) = u,(p)u,(/) ± ut(p)u2(t);
ii) u2(t±p) = ±u2{p)u,(t) + u2(p)u2(t);

iii) u,(t)u2(t) - u,(t)u2(t) = 1;
iv) u,(p) = u2(p).

Proof. Well-known and easy (see e.g. [2]).

Theorem 2.6. If the conditions of Theorem 2.1 hold and F,,(w(r)), V22(u(t)) are even func-
tions of t, then Trace Z(27) = 2[U,(2T) + U2(2T)], where U, and U2 are the solutions of
(2.8) with U,(0) = U2(0) = 1, t/,(0) = U2(0) = 0. Furthermore, if the period of both
Vn(u(t)) and V22(co(t)) is T, we have Trace Z(2T) = 4[t/,2(7) + U2(T) — 1].

Proof. Let

M =
d/(\a\)w2 -c/(|d|),/2 0 0

—b/(\a\y/2 a/(\a\)"2 0 0
0 0 a(|a|),/2 b(\a\)w2
0 0 c(|d|),/2 </(|a|),/2

Let U(t) = MZ(t). Then U(t) satisfies the matrix equation

U =

0 0 ±1 0
0 0 0 ±1

-Pn(u,(0) .0 0 0
0 - V22(u(t)) 0 0

U. (2.9)

Let W(t) be the principal matrix solution of (2.9); then

W(t) =

u,(t) 0 u2(t) 0
0 v,(f) 0 v2(t)

"i(0 0 u2(t)
0 v,(0 0 v2(/)

(2.10)

where u, and u2 are the normalized solutions of ii + Vu(w(t))u = 0 and v, and v2 are the
normalized solutions of v + V22(u(t))v = 0. ("Normalized" means that «,(0) = 1 = ii2(0)
and ii,(0) = 0 = m2(0).) Since U(t) satisfies (2.9), it is a constant multiple of W(t) and, by
initial data, we find that W(t) = MZ(t)M '; hence Trace W(2T) = Trace Z(2T). Using
Lemma 2.5(iv) we obtain the first part of the theorem; using the full lemma with a bit of
algebra we obtain the rest.

We are now ready to assume that the Poincare map along w(t) is restricted to an en-



288 G. PECELLI AND E. S. THOMAS

ergy surface H(x, y) = h. We also assume, for simplicity, that a, and a2 are both positive.
We begin with a Hamiltonian

#(0, f) = } f,2 + + fie,,e2), fi(Q,0 = h, (2.11)

which possesses a periodic orbit u(t) of period 2 T and such that Vl2 = 0 on u(t). w(0) is an
arbitrary point on the orbit, to(0) = (0,(0), 02(O), f,(0), f2(0)). By the third remark follow-
ing Theorem 2.1, the matrices Z(t) and W(t) given by (2.11) agree. It is well known that

W(27)w(0) = <b(0), Hj(a(0)), fV(2T) = HJtj(0))m (2.12)

where Ht(co(0))t is the transpose of the gradient to the energy surface H = h at the point
«(0). Writing (2.12) in scalar form and performing some elementary algebra, we obtain

[«,(2T) + ti2(27) ~ 2]f,(0) = 0, [v,(27) + v2(27) - 2]fc(0) = 0,

[11,(27) + m2(27) - 2] P,(0,(O), 02(O)) = 0, [v,(27) + v2(27) - 2] fc(0,(O), 02(O)) = 0.

Using Lemma 2.5, we obtain

[",(27) - l]f,(0) = 0, [v,(27) - ltf2(0) = 0,
[",(27) - 1] ̂ 1(0,(0), 02(O)) = 0, [v,(27) - 1]P2(0,(O), 02(O)) = 0 . (2.13)

By recalling that m,(27) = £7,(27) and v,(27) = U2(2T), Theorem 2.6 and Lemma 2.4, plus
the fact that «(0) was an arbitrary point on the solution, we get:

Corollary 2.7. Suppose H has form (2.11) and Vn vanishes identically on a periodic or-
bit w(0 = (0,(0, 02(£)> £>(0> £>(0)- Then this orbit is parabolic unless f,(0 = 0 = P,(0,(/),
02(O) or U0 ■ 0 = F2(0,(O, 0,(0).

Example. H(x, y) = 2 y2 + j y22 - cos jc, — cos x2; the orbit in question satisfies x, +
cos xi = 0, x2 4- cos x2 = 0, x, = x2 (see Fig. 2). By Corollary 2.7 the parabolicity is imme-
diate. That not all periodic orbits of Hamiltonians of the form

^y>2+ \y* +/iC*,) +

are parabolic can be seen by studying the orbit x, + cos jc, = 0, x2 = 0 of the example.
This orbit will be elliptic or parabolic depending on the value of the total energy [4] (at
least for those values of the energy which give rise to a periodic orbit).

Corollary 2.8. In a Hamiltonian of the form

\y? + ^y22 + f*(x*) + f(x 2),

any nontrivial periodic orbit such that neither x,(t) nor x2(t) is constant is parabolic.

Corollary 2.9. If the periodic orbit w(0 of (2.11) is such that f2(/) = 0 = P2 (0,(0. 02(0)
and V22 (0,(0, 02(O) is an even function of t, the remaining two eigenvalues are given by

X = U2(2T) ± (U2(2T)2 - 1 )l/2 if V22 (0,(0, 02(O) has period 2T,

X = [U2(T) ± (U2(T)2 - iy/2]2 if ~V22 (0,(0, 02(O) has period T. (2.14)
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Proof. Lemma 2.4, Lemma 2.5, Theorem 2.6 and Corollary 2.7.
Remark. In general the solutions depend on some parameters, including the total en-

ergy of the system. If the dependence on parameters is analytic, we can thus conclude
that, as the appropriate parameter changes, one of the Hill's equations (2.8) governing the
linearized Poincare map will lie on a "boundary of instability", while the remaining equa-
tion will determine the character (elliptic, parabolic or hyperbolic) of the periodic orbit.
Occasionally a further change of variables is needed to transform the final Hill's equation
to a canonical form (Mathieu, Lame, etc.) but it is clear that this will in no way alter its
stability behavior.

3. Coexistence of modes and uncoupling of the variational equations for the oscillator
(1.1). As an application of Theorem 2.1 we find relations among the constants of the
Hamiltonian (1.1) which will guarantee the existence of "coexistent in- and out-of-phase
modes." In case we do not ask for simultaneous uncoupling of the variational equations
along the modes, many configurations are possible, with four, two or no modes at all.
Whether orbits analogous to modes, over which the Poincare map can be uncoupled, will
always appear, is an open question and any answer in this direction would be of interest.

In the next sections we will omit most of the details, with a warning to the reader that
complete verification of all formulas, although elementary, is time-consuming.

Theorem 3.1. In the oscillator with Hamiltonian (1.1) assume that a, > 0 and a2> a, .
The oscillator will possess coexistent in- and out-of-phase modes along which the varia-
tional equations can be simultaneously uncoupled by a transformation with constant co-
efficients if and only if one of the following holds.

I. = 0; and
i) a, = a2> = a2, b{ = b2, k = ±1, a3 arbitrary; or

ii) a, ¥= a2, a2 > a,, b2/b, = ax2/a2, k = ±(a,/a2)l/2, a3 = (a2a2 - ala,)/(a, - a2) > 0.
II. &3 > 0; and
i) a, = a2, a, = a2, bt = b2, k = ± 1, a3 arbitrary or



290 G. PECELLI AND E. S. THOMAS

ii) b2 — r\b, > 0,b2 — rj2b, > 0, a2 — t]a, > 0,
a, = [{b2 + ybt) (a2 - 7?a,)]/[(l + v) (b2 ~ ^i)].
b3 = [(b2 + rib,) (b2 - 172^,)]/[(l + ri)\b2 - tjZ>,)], and
k = {(b2 - rfb,) ± ((1 + r,) (Z>22 + rfb?)y*]/{b2 + 7A),
where rj = «,/a2, or

iii) the configuration obtained by reversing inequalities in (ii).

Proof. We provide a sketch of the computations. The equations of motion are

x, = - + a3(x, - x2) + (b,x,y + b3{x, - x2)3)],

x2 = -a2[a2x2 - a3(x, - x2) + {b2x2 - b3(x, - x3)3)]. (3.1)

Solutions of the form *,(/) s kx2(t) will exist if and only if the algebraic system (with rj =
a,/a2)

a3k2 - [(a2 + a3) - rj(a, + a,)]k - rja3 = 0,

b3k4 + (r]b, + 63(tj — 3))A:3 + 3£>3(1 — -q)k2 — (b2 + (1 — 2ti)b3)k — i]b3 = 0 (3.2)

is satisfied for some real k. Solving the first equation we have

k = {\(a2 + a3) - rfa, + a,)] ± ([(a2 + a3) - rfa, + a3)]2 + 4r)a32),/2} /2a3. (3.3)

In applying Theorem 2.1 we observe that the condition VI2 (kx2, x2) = 0 can never be sat-
isfied, since a3 > 0, and we are led to the system

(a2 + a3) - r/(a, + a3) = Ka3,

v(b,k2 + b3{k - l)2) - (b2 + b3(k - l)2) = - Kb3(k - l)2. (3.4)

I. b3 = 0. Both (3.2) and (3.4) imply that j]b,k2 — b2 = 0. Hence k,, k2 = ±(b2/j]b,)'/2 in
some order, so that k, + k2 = 0. Apply this to (3.3) to obtain (a2 + a3) — rj (a, + a3) = 0.
The claim follows, with K = 0.

II. b3 > 0. Eliminating K in (3.4) and solving for k, we obtain, with a = a3/b3,

k = [(a2 - rj a,) ± ({a2 - -qa,)2 + (tjoZ>, - -qa, + a2) (ab2 - a2))w2]/(-qab, - -qa, + a2), (3.5)

where (yob, — -qa, + a2) cannot be zero. Set the product of the roots (3.5) equal to —q (by
(3.3)) and write this as an equation in a to obtain

o(b2 - rfb,) + (tj + l)(7ja, - a2) = 0.

If b2 — rfb, ¥= 0, we have a = (tj + l)(a2 - -qa,)/(b2 — rfb,) = a3/b3 > 0; if b2 - rfb, = 0,
then a, = a2. Using the latter in (3.3) we obtain k = 1, —rj; using it in (3.5) we find that k
= ± (i](fb,b2y/2/T)ob, . The only way that k, and k2 can have both forms is if -q = 1. Thus
we have a, — a2, a, = a2, b, = b2, with a3 arbitrary (the symmetric case [11]). Returning
to the alternative b2 - rfb, ^ 0, we see that either a2 - rja, > 0, b2 — rfb, > 0 or a2 — -qa, <
0, b2 — rfb, < 0. Assume, for simplicity, the first alternative. Replace a in (3.5) to obtain

k = [(&2 - rfb,) ± ((17 + 1)(Z>22 + rfb,2))'/2]/(b2 + T]b,). (3.6)

Using (3.3) and (3.6) we further compute

a3 = [(b2 + rjb,)(a2 - rja,)]/[(l + rf){b2 - rjb,)], (3.7)

^3 = [{b2 + r]b,){b2 - rfb,)]/[( 1 + rf)2{b2 - r/ft,)]. (3.8)
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So the linear and nonlinear terms of the coupling spring are uniquely fixed by the remain-
ing parameters. We also observe the further condition b2 - r]b, > 0 (b2 — rjb, = 0 would
imply a2 — rja, = 0 and this would revert us to Case I). Notice that b3 depends only on the
mass ratio and the nonlinear terms. Replacing b, in (3.2) via (3.8) we compute

y + c - ixm- ¥>,)■ - 2(t, - „'*,)■ _
(b2 + 17b,)(b2 - rfbx)

_ *, - ixt. + *>.)■ ± m - t%f k _ 0 (39)
(Z>2 + tjZ>,)(Z>2 - T72Z>,)

which can be shown by long division to have the two real solutions (3.6), thus adding no
further constraints.

4. Lame's equation and a stability theorem. We now undertake a detailed study of
the in-phase-mode in the case a, = a2 = 1, a2> a, , b2> b, > 0, a3 = [(a2 - a,)(b2 + ft,)]/
2(b2 — bt) > 0, by = (b2 + Z>,)/4 > 0, k = [(b2 — bx) + (2(bt2 + />22))1/2]/(Z>, + Z>2). We observe
that the x2-coordinate must satisfy, by (3.1), the equation of motion

x + ax + bxi = 0,

Duffing's equation, with a = a2 — a^(k — 1), b = b2 — i>3 (k — l)3. The desired solution of
this equation is [7]:

x = x0cn(u, \2), where

t = (a + bx02yW2u, u= f (1 — X2 sin2 \p)~'/2d\p, (4.1)
Jo

\2 = y bx02(a + bx2)'\ cn(u, A2) = cosy.

At this point we leave k indicated, rather than explicitly substitute. Since jc(0) = 0 by
choice, we can insert x2 = x0, x, = kx0 in the Hamiltonian (1.1) at energy h, recall that x02
> 0 and solve to obtain

2 _ ((<*1 k2 + a2 + a,(k - l)2)2 + 4h(b,k" + b2 + b3(k — 1)4))'/2 — (a,k2 + a2 + a3(k - l)2)
X° ~ b,kA + b2 + b3(k - l)4

The next step involves computing the variational equations along the mode. One then
performs the change of variables of Theorem 2.1, specifically

(1 + k2)'/2U1 = kz, + z2, (1 + k2)'/2U2 = —z, + kz2.

To see that this is indeed one of the coordinate changes whose existence was discussed in
Theorem 2.1 we first note that, since 17 = 1, the similarity constants for the in- and out-of-
phase modes are k and - \/k. One then finds that the constant K must satisfy K = k - 1/
k. Using this in the recipe for a, b, c, d in Theorem 2.1 yields the above transformation.
With this and a change of independent variable from t to u (see (4.1)) we obtain, after a
fair amount of algebra:

U," + [4A2 +1-2-3 \2sn2(u, A2)]C/, = 0

U2" + [(a, + a3(k + 1) + 3(b,k2 + b3(k + l)(/c — l)2)x02)/(a + bx,2)

- 3 • 2[(b,k2 + b,(k + l)(k - 1 f)/(b2 - b3(k - lf)]\2sn\u, X2)]U2 = 0,
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two Lame equations. The first equation has the periodic solution sn(u, \2)dn(u, A2) and so
if U, and U2 are as in Theorem 2.6, we conclude that = 1 and £/,2(Jf) = 1, where
,W= Jf"(A2) is the real half period of the Jacobi elliptic function sn(u, A2). In view of the
results in Sec. 2, we are now left with computing U2(K) as a function of the various pa-
rameters of the Hamiltonian (1.1). The equation for U2 has the form

U2" + [A - 6/?A2sn2(u, A2)] U2 = 0, (4.2)

with A and /8 the obvious expressions. Letting a = bjb2 and using the formulae for b3 and
k, we compute

p = P(a) = [3(a + l)2 + 2(o + l)(2(o2 + 1 »,/2]/(o2 + 18a + 1).

For a = 1 (the outer nonlinearities are the same), /?(1) = 1. As a —* 0 (the nonlinearity on
the right becomes much larger than the one on the left), /3(a) —* 3 + 2sj2. It is well known
[12] that the Lame equation

y" + (A - B\2sn\u, \2))y = 0

has exactly it bounded intervals of instability when B = n (n 4- 1) and has no collapsing
intervals of instability if n(n+ 1) (n a positive integer). Since B = B(a) = 3 • 2{i(o), we
have

a = 1, B(o) = 2-3,
a = 1/7, B(a) = 3 4,
a = [729 - 40(329)l/2/71 s .0488, B(a) = 4-5,
a = [40 + 41 V2 - (4958 + 3280 V2)'/2]/2 = .0102, B(o) = 5-6,

and no other possibilities arise: all other choices of nonlinearity ratios lead to equations
with no collapsing intervals of instability. To examine the stability properties of the in-
phase mode, we must determine the exact stability characteristics of this Lame equation
for various choices of the parameters. To do this we must study the coefficient A, which
we can easily see is of the form A = A(a, , a2, b[ , b2, h). We observe that

lim A(a,, a2, b, , b2, h) = [a, -I- a3(/c + 1 )]/[a2 - a,(k - 1)]
/i|0

= [2(t - a) + (t - l)(2(a2 + 1)),/2]/[2(t - a) - (t - l)(2(a2 + l))"2],

with r = a2/a, > 1 and a = bjb2 < 1. This limit can be made arbitrarily large by first
choosing t large and then choosing a close to 1. We can also show

lim A2 = 0; lim A2 = 1/2;
A|0 Afoo

lim A(at, a2, b„ b2, h) = 3[btk2 + b3(k + 1 )(k - 1 f]/[b2 - b,(k - l)3] = 5(a);

lim 5(a) = 3.
of

We summarize the results above in the following lemma.

Lemma 4.1. Given any positive integer n and a small positive number w, there exists two
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numbers M> 1, 0 < m < 1, such that if a2/a, > M and 1 — m < bjb2 < 1, then

A(ai, a2, b,, b2, 0) > n2, lim A(at, a2, b,, b2, h) <3 + w.

For the reader's convenience we include two figures (Figs. 3 and 4) representing the sta-
bility chart for the Lame equation when B = 6 and when B > 6 but near 6 (the latter one
will be only indicated, and is only qualitatively valid). Note that the stability boundaries
enclosing nontrivial regions of instability correspond to unstable solutions. The curves
joining the /1-axis to the point (1/2, 3) or (1/2, 3±) represent images on the A - A2 plane
for the curves given by A = A (a,, a2, b,, b2, h) as h goes from 0 to +°o. The case B = 6
was studied in detail in [11], and we refer the reader to that paper. The case in which B is
slightly greater than 6 will now be sketched: the continuity of solutions with respect to pa-
rameters implies that the "instability boundaries" for B close to 6 are near those for B = 6.
Thus Fig. 4 is at least qualitatively true, except that we do not know that the point (1/2, A
(a,, a2, b,, b2, °o)) lies exactly on an "instability boundary" (which is the case for B = 6
and the symmetric oscillator: in that case A = A (a,, a3, h)). The "stability regions" are
foliated by analytic "constant discriminant" curves (curves where the discriminant of the
Lame equation is constant) and these are constant eigenvalue curves for the linearized
Poincar6 map. As h increases, with the other parameters fixed, the point (X2(h), A(h))
moves down the curve of Fig. 4 in a smooth manner. This variation is smooth enough, so
that, if H is the set of "good" eigenvalues defined in connection with Theorem 1.1, then
the set of h for which the corresponding eigenvalue is unimodular but not in H has mea-
sure 0. Thus by Theorem 1.1 we have:

Fig. 3. Fig. 4.
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Theorem 4.2. Consider the in-phase mode x, = kx2 of the nonlinear oscillator (1.1) with

a! = a2=l; a2 > a, > 0; b2> b, > 0;

«3 = [(a2 - a.)(^2 + bt)]/2(b2 - b,); b, = (b2 + b,)/4;

k = [(62 - b,) + (2(bt2 + V)),/2]/(^, + *>2).

For any given positive integer n there exists numbers M and m, both positive, such that
for all aj a K > M and 1 — m < bjb2 < 1, the in-phase-mode will be hyperbolic over at
least n nontrivial intervals for the parameter h £ [0, 00]. In the complement of these inter-
vals the orbit will be elliptic stable for almost all values of h.

We omit the formal details of the proof; the reader is referred to [15] for the details in
a simpler application. Although we cannot at present prove it, we conjecture that the in-
phase mode is elliptic for all large values of h: this was indeed the case for the symmetric
oscillator [ 15].

We leave the investigation of the out-of-phase modes to the interested reader, with the
caveat that the computations are likely to be even messier.

5. A stronger form of stability. In the case of normal modes of "symmetric cubic" os-
cillators, the almost everywhere iso-energetic stability which one obtains by using the Ar-
nold-Moser-Russmann criterion as in [15] or in the last section, can be considerably
strengthened. To do this we must analyse the reduced Poincare map P associated with a
normal mode w(/). Here, unlike the situation of the preceding sections, we shall need more
than just the linear part of the map.

Let h be the energy of u(t) and let 2,, denote the corresponding energy surface defined
by H = h where H is the Hamiltonian of our system. In we choose a small 2-disk a
orthogonal to co(0) at w(0). If x is a point of a which is sufficiently near w(0) then the posi-
tive orbit through x will intersect a at least once. The point P(x) of first return defines the
reduced Poincare map P. By choosing suitable coordinates for a, with co(0) corresponding
to the origin, we may regard Pas a map from a neighborhood of the origin in R2 to R2
which has the origin as a fixed point.

The map P is real analytic at the origin and therefore has a power series expansion
which converges in a disk centered at x = 0, y — 0, say:

x' = f,(x,y) + f2(x,y) + ■ ■ ■, / = gt(x, y) + g2(x, y) + ■■ ■ (5.1)

where the /,, g, are homogeneous polynomials of degree Now, as noted earlier, the ei-
genvalues A± of the linear part of P have product 1. (This also follows from the area-pre-
serving character of P.)

In [22] it is shown that if the eigenvalues have unit modulus (i.e., if P is not hyper-
bolic) and if \k ^ 1 for k = 1, 2, 3, 4, then there is a real analytic area preserving change of
variables which takes P into so-called Birkhoff normal form through terms of order 3. If
the change of variables is denoted by (x, y) = C((£, rj)) then the normal form N = C1 PC
may be written very simply in complex notation as:

r = Afexp(/Y|f|2) + a (5.2)
where f = £ + irj, y is real, and 04 denotes a convergent power series in I beginning with
terms of order 4.

The Twist Theorem of Kolmogorov, Arnold and Moser [1], [13], then states that if the
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coefficient y in the power series for « is not zero, then the origin is a stable fixed point for
P. In our context, this means that if y ¥" 0 then our normal mode will be iso-energetically
stable. Now y may be regarded as a function of the parameters appearing in H, e.g., the a,
and b, of formula (1.1), together with the energy h, and we wish to determine the nature of
the set of parameters where y ^ 0. Actually, it follows from the statement of the Twist
Theorem which is given in [13] that if y is not zero at some point (a,, b,, h) in parameter
space, then the orbit is not only iso-energetically stable but also orbitally stable in the full
four-dimensional phase space.

Thus our task is to compute the form (5.1) well enough so that the twist coefficient y
can be analyzed as a function of the parameters a„ b, and h. We indicate how these com-
putations go for the in-phase mode of the symmetric, cubic oscillator

H = \ 07!2 + yi) ~ <*2*1*2 + ^ (fl| + a2)(*,2 + *22) + ^ (*I4 + *24) + j(*, - *2)4 (5.3)

where a,, b, > 0 (a,, b, are the constants of the outer springs, a2 and b2 the constants of the
middle spring).

We begin by making the substitutions

*2

yi

yi

= 1/V2

i/V«, i/V«2 o o
i/V«, i/-V«2 o o

o o Vft2

0 0 yja, —\fa2

9.

<h

P<

Pi J

where a, = -Ja, and a2 = (a, + 2a2)'/2 followed by the partial action-angle substitution:

pt = (2R)W1 sin r, <7, = (2/?)'/2 cos t, q2 = x, Pi = y-

The total transformation is canonical and brings the Hamiltonian (5.3) into the form:

H — atR + y (x2 + f) + hoX4 + h,x2R + h2R2 (5.4)

where h0 = (6, + Sb2)/Sa22, /i, = 3fc,cos2T/2a1a2, h2 = ft|Cos4r/2al2. In these coordinates
the in-phase mode ai(t) is given by x(t) = y(t) = 0.

We now fix any energy h > 0. The equation H = h, which defines the corresponding
invariant three-dimensional energy surface may be solved for R as a function of x, y, t
(and the parameters a,, b,, h). Indeed, for |x|, \y\ sufficiently small we may write R as a
power series in x and y involving only even powers of these variables:

R = 4>(X^) = 2 <p,jX'y'[ ) (5.5)

We shall need the first six coefficients in what follows. They can be found using (5.4) and
(5.5) as functions of the h,, a,, b,,, h and <pa2, cfm (see Appendix).

Since dj/dt # 0, we may replace t by t as the new time variable and then the differen-
tial equations may be expressed near the in-phase mode in by:

x = d<!>/dy, y = -d<S>/dx (5.6)

where the dot denotes differentiation with respect to r. With t as time variable, the Poin-
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care map will be obtained by computing the general solution and then following a point
from time t = 0 to time t = 2ir. We now write out the general solution P(t) as a power
series in the initial values x = jc(0) and y = j>(0), valid for pt|, \y\ small:

x(r) = X a„ x'y' I i,j> 0

y(T) = Zbvx'y< \i+J-1
(5.7)

where the , b„ are functions of t and the parameters a,, b, in the original Hamiltonian.
In order to compute the twist coefficient y we need information about the coefficients a,,,
b,j for i + j < 3. Substituting (5.7) into (5.6) and equating coefficients, we find first that

= la"
\b„

_ /a,0(r) a0i(r)'
.(t) &oi(t) ,

is just the principal matrix solution of the equation:

Z = AZ,v/hereA = ( ° 2^02|- (5.8)

(This, of course, also follows from the fact that (5.8) is the linear part of the Hamiltonian
system (5.6) and that P|(t) is the linear part of the general solution P(t).) Next we observe
that the second-order coefficients, taken in pairs (a20, b20), etc., satisfy Eq. (5.8) with initial
data (0, 0). Hence all six second-order coefficients vanish identically.

We now need to compute the third-order coefficients in (5.7). Fortunately they can be
expressed in closed form as integrals of polynomial expressions in the lower order a0, bv
and the cpjs with / + j < 4, once again we refer to the Appendix for details. The Poincare
map P is then simply P(2tt).

Now recall that to put P in Birkhoff normal form through terms of order three, the
eigenvalues A± of the linear part must have unit modulus and satisfy \k ^ 1 for k = 1, 2, 3,
4. The eigenvalues are just A±(A2 — 4)l/2/2 where A = (at0(2vr) + b0i(2"n))/2 in the notation
of (5.7). The conditions A2 < 4, A 0, — 1 imply the above conditions on Therefore we
consider only parameter values (a,, a2, b,, b2, h) for which these conditions hold; let 91
denote this set of "admissible" parameter values.

If one now follows the transformation into normal form described in [12, page 155]
one finds that y may be computed entirely in terms of the first-, second-, and third-order
coefficients, a,, and b,j. After a good deal of work (see the Appendix), we get a formula for
y which looks like this:

/2tt {<<p40(s)G(al0(s), flmCv), a10(i), a0i(.s))

+ <p22(s)G(al0(s), a0i(-y), bl0(s), b„,(s)) + qjl>4(s)G(bw(s), b0l(s), bw(s)b0l(s))} ds (5.9)

where G is a certain homogeneous polynomial of degree 4.
Regarding y as a function of parameter points in the set 2lC(i?5)+, we observe that it is

real analytic at each point of 21. (Actually for the in-phase mode, it is enough to observe
that y is C1 in all variables; however, in other cases analyticity becomes important.)

Finally, if one computes dy/db2 one finds that it is everywhere positive in 21. Con-
sequently the equation y = 0 defines a set which is a four-dimensional manifold 31 lying in
21. Of more interest perhaps is the fact that 9? will be a closed set of measure 0 in (R5)+.

Combining this result with the Twist Theorem mentioned earlier, we have:
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Theorem 5.1. There is a closed manifold 91 of codimension 1 and measure 0 in SI such
that, for parameter values in 21-9?, the in-phase mode of (5.1) is stable in phase space.

Note that 21 can be regarded as the set @ of parameters where A2 < 4 (i.e., the non-
hyperbolic parameter values) minus the set 93 where A = ±2, 0, — 1; certainly 93 is closed
and of measure 0. Thus whenever the mode of Theorem 5.1 is not hyperbolic (and thus
automatically unstable) then it is stable except for a very thin set (9^93) of parameters.

The above result holds also for the out-of-phase mode up to and including integral
formula (5.9) for y. However, at present we cannot find an everywhere nonvanishing par-
tial derivative of y and thus are unable to prove that the set 9? is a manifold. Since 9? is
the zero set of a continuous function it is automatically closed. It can also be shown that
9? has measure 0 as follows. If 9? had positive measure then y would vanish identically on
some connected component of the open set 21. (This can be proved using Fubini's theo-
rem and the analyticity of y.) Thus, we wish to show that each component of 21 contains a
point where y does not vanish.

This may be seen by the following argument (which will apply in much more general-
ity than it appears here). Let p = (a,, a2, b, , b2, h) be a point in 21; thus A2{p) < 4. Let &
be the subspace of (R5)+ consisting of all points whose a,, bx, b2 coordinates agree with
those of p\ thus, £> is coordinatized by a2 and h. Let S(p) be the connected component of
the constant discriminant set A = A(p) which contains p\ it is natural to refer to S(p) as the
constant discriminant hypersurface containing p. What one can show is that the set 2lfl£>
is foliated by the constant discriminant curves {S(/?)n<£>|pe2l} and that these S(p)n£> are
indeed curves which abut the a2-axis given by h = 0. Moreover, 2If)£> will contain a
neighborhood of all but a finite number of points on the a2-axis. The situation is pictured
schematically in Fig. 5, where the lines separating components of 2ln£> are the sets where
A = ±2, 0, 1.

Aa'H

f / '

^rftT* nn A I / ■ ' ■■fi,, i,' / / / / /' > •' '' , / / /
i !// 11/i/l /!//!// ' 

Fig. 5.
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All this follows from an analysis of how the Lame equation governing the eigenvalues
depends on the variables a2 and h. This Lame equation appears as Eq. (14) in [11]. If we
write it in the form y" + (a + /3srt2u) y — 0 then the map which sends (h, a2) to (/J, a) can
be shown to be a diffeomorphism of 2In£> onto an open subset of the first stability region.
This diffeomorphism maps constant discriminant curves S(p)C\/Q to constant discriminant
curves of the Lame equation. The above assertions concerning 2ln£> follow from the ge-
ometry of the stability regions and constant discriminant curves for the Lame equation.

Now, in [3] it was shown that, for fixed a, , b, , b2> 0, there is a finite set F such that if
a2 $ F and h is sufficiently small then the twist associated with the out-of-phase mode is
not zero. By what we just proved, each component of 21 will certainly contain a point with
a2 $ F and h sufficiently small, so we are done.

(Remark. A weaker result than the above was stated in [3] but the same proof actually
gives the above assertion, since—as was alluded to in the middle of p. 41—one merely
needs a finite number of conditions on the a, and a2 of that paper. We also wish to correct
a mistake in [3] at this point. D. Rod has pointed out that there is a gap in going from
formula (9) to formula (11). However, the formula for y is still correct. This can be seen
by beginning with (9), changing to Cartesian coordinates, and then following the proce-
dure of [22, pp. 155-173] for computing y as we have done in this paper.)

In summary, we have a result much like Theorem 5.1.

Theorem 5.2. There is a closed set 9? of measure 0 in 21 such that for parameter values in
21-9J, the out-of-phase mode of (5.1) is stable in phase space.

All of the above also applies to these modes for a general odd power restoring force up
to the assertion that each component of 21 contains a point where the twist does not van-
ish. Although we believe this to be the case, we do not at present know how to prove it;
the governing Hill's equation is no longer a Lame equation and, what is worse, we are un-
able to determine the precise connection between its constant discriminant curves and the
surfaces S(p),p £ 21.

Finally, we remark that the methods of this section apply to some non-symmetric os-
cillators. However, for geometrical reasons they cannot be applied to the general cubic
non-symmetric case, the difficulty being that we cannot canonically transform into a form
sufficiently like (5.4) to carry out the rest of the analysis as it is here developed. Thus, for
these oscillators, the best stability techniques available at present are those of Sec. 2, 3 and
4—namely decoupling, reduction, and the Arnold-Moser-Rtissmann criterion.

6. Appendix. In this section we provide some of the details omitted in Sec. 5.
With a,, h and h, as in (5.4) we first let C = a,2 + 4h h2. Then the lower-order tp0 are

given by

hta, - h2a2-s/C
•Poo v^- c* i / 2/i2, <p20— 2/j '

/*» i/^ h0 — h,<p20 — h2(p2o2 /<r lx
f02 <*2/2 \JC , <p4 o » ("•!)

  ft|y02 ~ 2<p20<p02 _ ,2 / //-
•P22 > <fo4 ~ hi<p 02/ V C

The next step is to compute the av and b:/ of formula (5.7) where i + j = 3. One
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finds by substitution of (5.7) into (5.6) that these functions satisfy

= A
, V (6.2)

with initial data a0(0) = 0 = b0(0), where the forcing functions eu, fy are given by:

^30 == ^9^04^10 2(p22^lO ^10

/30 = —^^04^10 2(p22^IO^IO >

^21 = 4^04(3^10 ^Ol) 2<JD22(^I0 ftoi ^^lo^oi^io))

/21 = _'4^40(3^10 fl0l) 2(p22(fl01^l0 2^10^io^Ol)» (6'3)

^12 = 4^04(3^10^01 ) 2^22(^01 ^10 + 2ax0a0,b0x\

f 12 ~ 4<P4o(3flj0^01 ) 2^22(^10^01 2floi^lO^Ol))

^03 = 4<P04(Z)013) + 2^)22(^01 ^0l)» f 03 = 4(p4o(fl01 ) 2^)42(^01^01 )•

Explicit solutions of the system (6.2)—(6.3) can be written down by variation of pa-
rameters. Indeed, we have

<to(T) = P(r) f.*0
p~'(a)

e,j(o)

fijip).
do •

Define functions vip w0 by the formulas

vo(T) = / (K(o)e„(a) - a(n{o)f,j{o))d<3,
*0

vo(t) = /(-
J 0

(6.5)

but(a)e„(a) + a,tl(o)f„(o))do ■

Then the third order coefficients take the form:

a,/j) = a, 0(t)v0(t) + ao,(r)w,;(T),
= b, o(t)V(,(t) + • '

The coefficients of P are then obtained by evaluating the au, b0 at t = 2m.
Next we outline how to obtain the integral formula (5.9) for y. These computations

are based on [22, pp. 155-1973]. For notational convenience we shall write a, b, c, d
rather than a10(2w), ant(2ir), bl0(2m), bm{2rn). We now assume that the parameter point p
= (a,, a2, b,, b2, h) lies in 21. In particular, A2 < 2 and this implies b ^ 0. We let \ be
that eigenvalue of P satisfying sgn(/wA) = - sgn (b).

To compute y we begin with P in form (5.1) and transform into the normal form
(5.2). We first complexify by the substitution x = a£ + ar), y = /?£ + /?tj where a and fl
are chosen so that afi — fia = i/2 and aa + bfi = aX, ca + dfi = X having been
chosen just above. To be specific we shall take a to be the positive real number satis-
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fying a2 = - b/Almk and ft = a(A — a)/b. If we denote the above linear transforma-
tion by C0 then C0'XPC0 = S has the form:

£' = A£ + Pi& V) + Pid V) H » rj' = Xi] + q2(£, 17) + q 3(£, ij) -I  (6.7)

where the pn q, are homogeneous polynomials of degree i and />,(£> tj) = q,(i, tj), where
the bar means conjugation of coefficients. (Note: In our case p2 = q2 = 0.) If one now
follows the transformation of (6.7) into Birkhoff normal form through terms of order 4
as described in pages 155-173 of [22], then one finds that the twist coefficient y of order
2 satisfies an equation of the form

A,y = p2l + 8 (6.8)

where, in general, 8 is a rather messy expression involving the second-order p2 and q2.
In our case this expression is automatically 0 since the second-order f,, g, in (5.1) are
zero.

Thus we need p2l which is, of course, the coefficient of £2tj in p,. From the form of
C0 we find that p2l is 2/i times the quantity (film — ag30) (3a3) + (fif2i — ag2,) (a2/? +
2a2/?) + (yS/2, — ag2|) (2afifi + a/32) + (j3fm — ag03) where it should be recalled
that a was taken real. The f0, g0 are simply the a„, b,j of (6.6) evaluated at t = 2it.
Note also the relations ySa — ac — \fi and jib — ad = — aX. Using these facts we may
write the expression for p2l as 2\/i times 3a3^v30 - aw30) + (a1 ft + 2a2/?) (ftv2, — aH>21)
+ (2a/Sy8 + a/32) (fiv[2 — aw12) + (3/32j3) (ySv03 — aw03) where all the v,y, w0 are given by
(6.5) evaluated at r = 2tt.

This expression becomes somewhat more attractive if we write it as one large in-
tegral. To this end one first needs to write out the v„, wu using the expressions (6.3) for
the e0, f0 . For example, v30 is the integral from 0 to 2m of the expression <pm(4awy) +
cp22 (2al02bwb0l + 2awa0,bw2) + 9<M(4/)|(,3fc(ll) and similar expressions appear for the other
seven v0, w,y. Then, bringing the a and fi inside the integral sign and collecting coeffi-
cients of the <f>,y, we find that p2l is 2A// times the integral of formula (5.9), which we
shall not rewrite here. The polynomial G is given by

G(p, q, r, s) = (12a4)p2r2 + (12a4T ) (pr) (ps + gr)

+ (y2 + 2a2/ifi ) (2p2s2 + 8pqrs + 2q2r2) + (\2/3ftT) (qs) (ps + qr) + (\2fl2fl2)q2r2, (6.9)

where F — aft + (3a. In view of the relationship (6.8) between y and p2l we obtain for-
mula (5.9) for y.

The computation of dy/db2 is quite straightforward. We have dh,/db2 = dh2/db2 = 0,
whence d<pm/db2 = d<p20/db2 = d<pu2/db2 = 0. Therefore the partials of the a0, b0 with i +
j = 1 also vanish identically. Next dhjdb2 = 8/8a22 and we get that d<p40/db2 = — 1/
«22VC, while the partials of the other two fourth-order <p0 vanish. It follows that

db2 = ~2[ ^ = (-2)(~^) I ^(-..v + W + W)2

have suppressed the arguments of the integrands. The last expression shows
2 > 0.

where we
that dy/db2 > 0.
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