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Abstract. A suture function defining a one-to-one mapping between the opposite
sides of equal or unequal lengths of a hole is introduced. This function specifies the
precise manner in which the opposite sides of the hole are sutured. The problem is first
formulated in the general context of finite plane-stress theory, and then specialized for
large stretching. The suturing of an elliptic hole is worked out as an example.

1. Introduction. When an elastic solid containing a crack is deformed, the crack is
usually opened up into a hole. The shape of the hole is either infinitesimally "flat" (linear
theory) or completely arbitrary (nonlinear theory). This problem has received much
attention in the theory of elasticity because of the prominent role it plays in the theory of
fracture mechanics.

The opposite problem is the closing up of a hole by suturing the opposite sides of the
hole together. This problem has received very little attention in the literature although
the "operation" has been widely used in plastic surgery as well as in manufacturing
inflatable structures. A striking feature of this operation is that it is by nature a nonlinear
problem; and, as such, a completely nonlinear formulation must be used. While the
theory of nonlinear elasticity has been well established, the boundary conditions, and
hence the boundary-value problem, associated with a suture operation are not of the
commonly encountered types. This is particularly so when the opposite sides of a hole
are taken to be of unequal lengths. We introduce the concept of a suture function which
assigns a one-to-one mapping between the sides to be sutured together. Once this is
done, the usual continuity requirements may be applied without any ambiguity.

There are two difficulties involved in solving such a boundary value problem. The
first has to do with the nonlinearity of the governing equations which, of course, is not a
consequence of this particular problem. The second originates from the fact that a thin
membrane wrinkles under compression, a situation that is likely to appear around a
sutured hole unless the membrane is sufficiently stretched. To kill both birds with one
stone, we restrict ourselves to the cases where the applied stretches are indeed very large.
That this assumption actually has the effect of simplifying the governing equations was
discussed in [1, 2].

Finite plane-stress theory is reviewed in Sec. 2. The concept of a suture function as
well as the associated boundary conditions are presented in Sec. 3. These general results
are then specialized for large stretching problems in Sec. 4, where general solutions are
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expressed in terms of two holomorphic functions. The suturing of an elliptic hole is
worked out in great detail as an example in Sec. 5.

2. Finite plane-stress theory. In this section we outline the theory to be used, largely
without derivation. Our exposition follows closely that of [2, 3, 4],

Let (Z1, Z 2, Z3) be rectangular cartesian coordinates, and let D be the domain of the
(Zj, Z2)-plane defining the shape of the middle plane of a thin elastic membrane in its
undeformed configuration. We assume a plane-stress deformation such that the position
of a point (Zu Z2, 0) after deformation is (zu z2, 0). The deformation may be charac-
terized by a transformation

za = z.(Zu Z2) for all (Z1,Z2)eD (2.1)**

which maps D onto a domain d of the Z3 = 0 plane.
Let Fafj be the components of the deformation-gradient tensor F associated with (2.1)

and J its Jacobian determinant, whence

F«p = zxjj, J = det F > 0 on D. (2.2 )f

The right-Cauchy-Green deformation tensor G is just
G = FrF; (2.3)

where the superscript T indicates transposition, and its fundamental scalar invariants
may be taken as

J = (det G)1/2 = det F = A, A2, (2.4)

I = (FxpFxp + 2jyi2 = A1+A2, (2.5)
where A! and A2 are the in-plane principal stretch ratios. The transverse stretch ratio A3
may be deduced from the usual plane-stress assumptions.

For a homogeneous isotropic elastic material, the strain energy density per unit
volume of the undeformed solid is a function of the three (three-dimensional) invariants
involved, and the corresponding plane-stress strain energy density W per unit area of the
undeformed middle surface may be taken as a function of / and J.

In terms of W, the components taP of the Cauchy stress-resultant tensor t are

J_dW
U~dTr j a i ' * *'

II dW cW\
\i~dT+ijrii (2-6)

where Sxp is the Kronecker delta. The Piola stress-resultant tensor T associated with t is
defined by

T = Jt(F"1)7', (2.7)

where F"1 is the inverse of F. The components of T are just

\dW „ II dW dW\
~ 1~W *" + \l~dT +~sl)e^e^F"^ (2-8)

** Greek subscripts range over the integers (1, 2) and summation over repeated subscripts is taken for
granted.

t Subscripts preceded by a comma indicate differentiation with respect to the corresponding cartesian
coordinates.
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where exP are the components of the two-dimensional alternator. In the absence of body
forces, the stress equations of equilibrium are either

~ = 0 on D, (2.9)
C/jp

~ = 0, txP = tfa on d. (2.10)
OZp

Using (2.2) and (2.8), we obtain from (2.9) the displacement equations of equilibrium

(ldw \ Hdw dw\ n
(/ di z'-')j + e**ei>\1 ^ + dj)/,,-v~ on ( *

We find it convenient to use either (2.9) or (2.11) as the basis of our analyses. We note in
passing that (2.9) are identically satisfied if

Txp = extlePv$^v, (2.12)

where Oa = Oa(Zu Z2) are two stress functions. This representation, however, is not that
useful unless W is of such a form that a simple compatibility condition can be derived.
This is the case for the class of problems discussed in Sec. 4.

Let C be a curve in D defined by

Z. = CX(L), (2.13)

where L measures the arc length along C. The components Nx of the unit normal vector
N of C are defined by

N, = epxC'p(L), (2.14)

where primes indicate differentiation of functions of a single variable. The sense of L is
chosen in such a way that N is pointing away from D.

The image of C under the mapping (2.1) is a curve c in d defined by

za = zx(C(L)) = zct(C1(L), C2(L)), LeC. (2.15)

If we denote the arc length along c by I, then

{dlf = z^tz^C,Cy(dLf, (2.16)
which may be used to define

/ = l(L) and L = L(l) for LeC and I e c. (217)

It follows that c has the parametric representation

z, = ca(l) = zx(C(L(l))). (2.18)

The components na of the unit normal vector n of c are just

= epxc'p(l) (2.19)

where, as in (2.14), the sense of / is chosen in such a way that n is pointing away from d.
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Let pa and Pa be respectively the components of the Cauchy and Piola traction
vectors p and P, then

PM) = Mc(0)"/>(0 for a11 1 e c> (2-20)
Pa(L)=T!II)(C(L))Nll(L) for all I e C. (2.21)

It follows from
PM) dl = Pa(L) dL (2.22)

that
pa(l(L))l'(L) = Pa(L) for all LeC. (2.23)

3. Boundary conditions pertinent to a suture. Let C be a simple contour describing
the shape of a hole in a thin elastic membrane in its undeformed configuration. Then C is
a part of the boundary dD of D. The purpose of this section is to determine the boundary
conditions along C when the hole defined by C is closed up by a suture operation. The
boundary conditions along the remaining portion of dD are assumed to be of the types
commonly encountered in the theory of elasticity.

To define the contour C, we use the parametric representation:

C:ZX = CX(L), -Li < L < L0, (3.1)

where L measures the arc length along C so that + L0 is the total length of the
contour and

C.(-L1) = Ca(L0). (3.2)
The functions Ca are assumed to be continuous but are otherwise arbitrary. Thus, holes
with sharp corners are permissible configurations.

Before proceeding to the determination of the boundary conditions, we must give the
term "suture operation" a precise meaning. For this purpose we define intervals

I+ = {L\0<L<Lo}, /" ={L|-L, <L<0}, (3.3)
and introduce a function S(L) for all Le I + . The function S(L), together with its first
derivative, is assumed to be continuous and satisfies the conditions:

S(L)er, S'(L)^ 0, oo for all Lel+,

S( 0) = 0, S(L0) = —Lj. (3.4)

We shall call S(L) the suture function and define:
Suture operation. A suture operation performed on a hole defined by (3.1) is

uniquely determined by a suture function S(L). It requires that the pair of points Ca(L)
and Ca(S(L)) be sutured together. We shall also use the term uniform suture to indicate
the special operation defined by S(L) = — L. It is clear that for such an operation to be
possible the condition L0 = Lj must be satisfied.

To give the word suture a precise meaning, we shall henceforth use it to mean the
curve assumed by the sutured hole in the deformed configuration. The displacements
associated with the pair of points Ca(L) and (^(^(L)) must be the same. Recalling that
the position of a point (Zl5 Z2, 0) after deformation is (zu z2, 0), the above condition
becomes

za(C(L)) = zx(C(S(L))) for all Lel+. (3.5)
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Let I measure the arc length along the contour c formed by the "two sides" of a
suture. Then we may use the representation (2.17) to write

I = l(L) for -LX<L<L0, (3.6)

where 1(0) = 0. In view of (3.5), the function l(L) must satisfy the condition

l(L) = —l(S(L)) for all Lel+ (3.7)
and hence

l'(L)= —l'(S(L))S'(L) for all Le/+. (3.8)
The Cauchy traction vector p(/) on the two sides of a suture must be equal and opposite.
It follows from this requirement and the relations (2.23) and (3.8) that

Pa(L) = S'(L)PX(S(L)) for all Lel + . (3.9)

Eqs. (3.5) and (3.9) are the required boundary conditions.

4. Sutures subjected to large stretching. The mathematical problem associated with a
suture operation requires the solution of (2.11), (3.5), (3.9) together with certain addi-
tional boundary conditions of the ordinary types. While the conditions (3.5) and (3.9) do
not seem to have posed additional complications to the problem, the basic difficulties
involved in solving (2.11) are still there. Furthermore, it is intuitively clear that in a
general situation wrinkles will be induced by a suture operation. The theory presented
here cannot be used to predict the wrinkling phenomenon. It simply accepts a compres-
sive stress resultant, large or small, as an admissible solution. To kill both birds, i.e.,
(2.11) and wrinkle, with one stone we assume that the membrane is subjected to a large
stretching. It is again intuitively clear that when the stretching is sufficiently large the
stresses will be tensile everywhere and hence the membrane will be taut everywhere. As
to Eq. (2.11), it permits certain simplification when the strain-energy density function W
possesses certain asymptotic property for large stretch ratios.

It was discussed in [2] that for a rather large class of materials the strain-energy
density function W may be approximated by the form

W = C[I2 - (2 + c)J], (4.1)

where C and c are constants, provided that /2 and J are large. The case c = 0 may be
deduced from a neo-Hookean material and was first studied by Wong and Shield [1].
Some of their results indicate that the approximation is quite satisfactory even if the
strains involved are only around 60%. The simplification resulted from (4.1) is very
substantial.

Substituting (4.1) into the equations obtained in Sec. 2, one finds that the functions za
as well as the stress functions <I>a defined by (2.12) are all harmonic [2], To this end we
introduce complex variables and complex differentiations:

Z = Z,+/Z2, z = z1 + iz2, (4.2)

C(2 + c)</. = 0> = <D1+ i<D2, (4.3)

2( ),z = 8( )/dZt — i d( )/dZ2, (4.4)

2( b = d()/dZl+id()/dZ2, (4.5)
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where, and throughout this paper, (") indicates complex conjugate of ( ). The functions z
and 4> may be obtained in terms of two holomorphic functions Q(Z) and ^(Z). The
derivations may be found in [2] and the results are:

z = n + y + Z^L(Xk + iYk) In |Z-Z°|, (4.6)

^ ln(Z - Z°) - In(Z - 21) (4.7)

where Zk is a point inside the /cth hole in a multiply connected region, and Xk + iYk the
resultant force on the /cth hole. The resultant force on a sutured hole is, of course, zero.

In terms of the functions z and <p, the Piola stresses are

(Tn + T22) + i(T21 - T12) = 2C(2 + c)<t>,z = 2C(2 - c)zz, (4.8)

{T22-Tn)-i(T21 + T12) = 2C(2 + c)<t>,z = -2C(2 + c)zrz. (4.9)

Finally, the Piola traction vector (2.21) may be expressed in terms of the derivative of </>,

S--cpW''<t> + 'W (4'10,
Consider now the hole defined by (3.1). It is to be sutured according to a suture

function S(L). The condition (3.5) is simply

z(C1(L) + iC2(L)) = z(C1(S(L)) + iC2(S(L))), Lel+. (4.11)

Using (4.10), we obtain from (3.9)

d+ = S'(L)d+
dL 1 'dL

= -^<^(S(L)), (4.12)
S(L)

It follows that

<l>(Ci(L) + iC2(L)) = <t>(Cl(S(L)) + iC2(S(L))), Lel + . (4.13)
This completes the general complex formulation for a suture subjected to large stret-
ching. The results are applicable as long as (4.1) is a valid approximation.

5. Suturing of an elliptic hole in an infinite membrane. Let D be the infinite plane
exterior to an elliptic hole C having the parametric representation:

C: Z = a|cos 9 -I- i-sin #j, —n<9<n, (5.1)

where a and b are, respectively, the major and minor axes. The arc length L(9) along C is
defined by

dL
d9 = a sin2 0 + 1- cos2 9

\a

1/2
1(0) = 0. (5.2)

The hole is to be sutured uniformly, i.e., S(L)= —L. The elastic membrane is then
stretched at infinity according to:

z = AZ + BZ as Z -» oo, (5.3)
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where A = A, implying that the rotation at infinity is zero, and

B = + iB2 (5.4)

is a complex constant. The three constants A, B{ and B2 are related to the behavior of
the solution at infinity:

A = i(A? + A?) = ±(77 + Tf)/C(2-c) (5.5)
B = ±(A? - Af)e-i2l! = $(T? - Tf)e'i2"/C(2 + c) (5.6)

where T? and A® are, respectively, the principal Piola stresses and stretch ratios at
infinity, and /? the angle between the Af -direction and the Zraxis.

Since the resultant force on C is zero, the solution is (cf. (4.6) and (4.7))

2 = 0 + 9, 4) = ^^^-^, ZeD, (5.7)

where the holomorphic functions Q and must satisfy (5.3), (4.11) and (4.13) which, for
the present problem, become

n(Z) + V(Z) = AZ + BZ as Z^oo, (5.8)

Q(Z) - Q(Z) + ¥(Z) - 4>(Z) = 0, Z e C, (5.9)

2 — c,
2 c

[Q(Z) - Q(Z)] - ¥(Z) + ¥(Z) = 0, ZeC. (5.10)

To this end, we introduce a complex ( ( = Ci + i£2)-plane and define a mapping
function

Z = w(c) = y(c + ^| for all D + {|f| > 1}, (5.11)

where

r="(i+D- H'-iij/H)' <5i2»
The function m(0 maps D+ onto D. Further, we define

co(C) = Q(m(0), HO = ̂ MO), (5-13)
which are holomorphic in D +. The condition (5.8) now becomes

co(i;) + W) = *(At+BQ as C-oo. (5.14)

Since m(£) = m((), the conditions (5.9) and (5.10) are just

co(0-co(C) + W)~W) = 0 for |C| = 1, (5.15)
2 — c,
2 + c MC)-a>(D]-lKC) + *(D = 0 for |f | = 1. (5.16)
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A straightforward calculation reveals that

« = ^(c + [), * = §fl(f + £). ZeD+ (5.17)

This completes the solution in the £-plane.
To examine the deformation, we set £ = p exp(/0) and use (p, 9) as curvilinear coor-

dinates in both the undeformed and deformed configurations. The coordinate curves in
the undeformed configuration may be determined from (5.11). They are

(Zl/Xp)2 + (Z2/Yp)2 = 1, (5.18)

(ZJXe)2 ~(Z2/Y0)2= 1, (5.19)
where

Xe = a

P + -) +-\P (5.20)

(b\2
\aj

1/2
cos 0, Y„ = a

1/2
sin 9. (5.21)

For the deformed configuration, we first use (5.7) and (5.17) to obtain

which indicates that the coordinate curves 0 = 0, 9 — n and p = 1 fall on the straight
line:

z2/zi = tan a = (1 — A)sin 2/?/[(l + A) + (1 — A)cos 2/?], (5.23)tt

where

A = Af/Af. (5.24)
It is now convenient to introduce a new set of coordinates (y,, y2) defined by (see Fig. 1)

y i + iy2 = exp( —('a)z. (5-25)

To facilitate further calculations, we also introduce a set of oblique coordinates (xl5 x2)
defined by (see Fig. 1)

*1 = yi - yi cot y, x2 = y2 csc y, (5.26)

tan }' = 2A/(1 - A2)sin 2/3. (5-27)

The coordinate curves (p, 9) may now be expressed in terms of (xlt x2) by using the
above relations. They are

(xjxp)2 + (x2/yp)2 = 1, (5.28)

(xjxe)2 - (x2/y0)2 = 1, (5.29)

tt (5.5) and (5.6) have been used in deriving (5.23).
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Z

Fig. 1.

+ A2) ± i(l _ A2)cos 2/?]1/2, (5.30)

where

yP

XyJ = a(* + a)A'°^1 + ± ^ ~~ A^C0S 12{sin 0)' ^5'31^

A typical example is shown in Fig. 2 which gives a clear picture of the deformation of the
curvilinear net (p, 6).

We proceed to determine the Cauchy traction vector p2 along the " upper " side of the
suture c defined by

c: z = R(A + B)cos 9, 0 < 9 < n (5.32)

( — k < 6 < 0 defines the "lower" side of the suture). The arc length 1(6) along c is just

1(9) = R\A + B|(l - cos 9) (5.33)
It follows from (2.23), (4.10) and the above that

p1(9) + ip2(9) = iC(2 + c)d~jl

= -iC[(2 - c)A - (2 + c)B\/\A + B\. (5.34)
The outward normal n to the upper side of the suture is

n1 + in2 = —i(A + B)j\ A + 5|. (5.35)
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Fig. 2(a). An elliptic hole (b/a) = 0.5.

Fig. 2(b). Hole sutured and stretched. Given parameters: A® = 2, A" = 2/v< 3, fi = 45°. Calculated par-
ameters: a = 15°, y = 60°.

Combining the above relations, we get

Pn ~ iPt = (Pi + iPi)(ni - in2)

= C[(2 - c)A - (2 + c)B]/(A + B). (5.36)

In fact, it can be shown that this expression holds for the y2 = 0 (or x2 = 0) line. It is
interesting and perhaps surprising to note that when an infinite membrane without a
hole is stretched according to (5.3), the orientation of the Z2 — 0 line in the deformed
state is the same as the y2 = 0 (or x2 = 0) line, and the Cauchy traction along the line is
just (5.36). One must remember, though, that this conclusion has a lot to do with the
assumption (4.1).
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