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Abstract. The vibrations of a vertical pendulum consisting of a bob suspended from

a wire are studied by the method of integral equations and the composite method,

respectively. The composite method combines the minimum principles and the method of

integral equations. This problem consists of the fourth-order differential equation and the

boundary conditions dependent on the eigenvalue parameter. Lower bounds are estab-

lished for the lowest natural frequencies by both methods. Numerical results are pre-

sented. Both theoretical and computational efficiencies are illustrated and the method of

integral equations is stressed.

1. Introduction. The problem of determining lower bounds is considered for the

lowest frequencies for the vibrations of a stiff wire pendulum consisting of a bob su-

spended from a wire by the method of integral equations and the composite method.

Handelman and Keller [6] derived the fourth order partial differential equation govern-

ing the motion of a stiff wire pendulum, separated it under the assumption that the

solution is harmonic time-dependent and reduced it to the time-independent eigenvalue

problem in dimensionless form:

r\2uiv — [{a(l — x) + l}u']' = <xv2u, 0 < x < 1,

u(0) = u'(0) = «"(1) = 0,

i)2u'"(l) = u'( 1) - v2w(l),

where u is the dimensionless time-independent displacement of the pendulum, t]2 is the

dimensionless stiffness, a is the mass ratio of the wire to the bob, and v is the dimension-

less frequency that corresponds to the eigenvalue of this system of equations. The math-

ematical problem is then to establish lower bounds for the smallest eigenvalues of the

above problem. A special feature of this problem is the dependence of the boundary

condition on the eigenvalue parameter.

It is the purpose of this paper to study the above eigenvalue problem by the method

of integral equations. The above problem is converted to an equivalent Fredholm inte-
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gral equation whose kernel is meromorphic in A and depends on one solution of the

differential equation L[(p] = 0 in section 2, [1], where

L[cf)] = t]24>" — {a(l — x) + 1 }(f>, 0 < x < 1.

It is shown in section 3 that the spectrum of the above problem consists of an unbounded

sequence of positive eigenvalues without accumulation points in the finite complex

A-plane using a few theorems of R. Iglisch [8], Lower bounds depending on the para-

meters a and r] are established for the smallest eigenvalues by the method of integral

equations in section 4, [1] Lower bounds depending on a and rj are also established by

the composite method which combines the minimum principles [2, 3, 5] and the method

of integral equations in section 5. Numerical results of the two methods are obtained in

section 6. Both theoretical and computational efficiencies for the method of integral

equations are illustrated in this paper.

The limiting case of zero stiffness, t] = 0, is that of a perfectly flexible pendulum for

which the problem has been previously solved. We assume in the sections 2, 3 and 4 that

the stiffness is not zero, i.e., rj ± 0. A value A for which the integral equation

. i
u(x) = A I K(x, y; k)u(y) dy

• 0

has nontrivial solutions is called an eigenvalue of the kernel K(x, y; A) [8].

2. The integral equation formulation. Let A — v2. Then the eigenvalue problem in-

troduced in the section 1 is rewritten as

M[u] = Am, 0 < x < 1,

u(0) = u'(0) = u"(l), f/V"(l) = u'(l) - Aw(l), (1)

where
M[u] = tx~1[rj2uw — [{a(l — x) + 1}«']'].

The problem (1) is converted into an integral equation whose kernel is the Green's

function for the fourth order differential operator M and the boundary conditions above

[1]. The dependence of the boundary condition of (1) on the eigenvalue parameter causes

the Green's function to be meromorphic in the eigenvalue parameter L Hence the equi-

valent integral equation is a linear homogeneous Fredholm integral equation of the

second kind with the kernel dependent on the eigenvalue parameter.

Integrating the equation of (1) and applying the boundary condition of (1) to the

resulting equation leads to

. i
t]2u"'(x) - {a(l - x) + l}w'(x) = -od | u(y) dy - Au(l).

* X

Letting y(x) = u'(x) in the equation above the problem (1) reduces to the second order

integro-differential problem:

L[v] = —od | u(y) dy - Au( 1), ^

1,(0) = i/(l) = 0,

where
L[v] = t]2v" — {a(l — x) -I- l}y.



VIBRATIONS OF A PENDULUM CONSISTING OF A BOB 111

The equation L[v] = 0 is a type of the Airy differential equation [10]. According to the

Sturmian theory of ordinary differential equations [9, P. 227] there exists a solution of

L[v] = 0 which has no zeros on [0, 1]. We assume that y(x) is a positive solution on

[0, 1], and then w(x) = t;(x) jjj [i>(0] 2 dt is the second linearly independent solution

obtained by the method of reduction of order. Using these two linearly independent

solutions and the definition [9] of Green's function we obtain the Green's function

K(x, y) for the operator L and the boundary condition of (2):

K(x, y) = >1~2s(x, y) + t]~2N(x, y),

where

s(x v\ = I~v(yMx)> 0<x<y<l,
| - r(x)w(y), 0 < y < x < 1,

N(x, y) = r(l)i/(l)[l + i/( 1 )w( 1)] ~1 w(x)w(y).

Then the integro-differential problem (2) is equivalent to the integral equation

.1,1 ,i

f(x) = — clX I I K(x, z)u(y) dy dz — Au(l) I K(x, z) dz
■0 'z "0

which is rewritten, by interchanging the order of the double integral, as

u'(x) = X I A(x, y)u(y) dy - Au(l) I K(x, y) dy, (3)
■ o • o

where

,-y
A(x, y) = —a | K(x, s) ds.

• o

Integrating the equation (3) and using the boundary condition u(0) = 0 it follows that

u(x) = X \ A(z, y)u(y) dy dz — Au(l) \ K(z, y) dy dz (4)
•o -o -o -o

from which we obtain by substituting 1 for x

provided that

u(l) = A[<5(A)] ) A(t, y)u(y) dy dt (5)
*0 *0

.1 .1

5(1) = 1 + A I I K(t, s) ds dt ± 0.
'0 *0

Substituting (5) into (4) and interchanging the order of the double integrals of (4) the

integral equation equivalent to the problem (1) is obtained:

. i
u(x) = X I G(x, y; X)u(y) dy, (6)

• o
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where

G(x, y; A) = T(x, y) + f(A)X(x)X(y),

,* .y
T(x, y) = — a | ) K(t, s) ds dt,

• o • o

A'(x) = ) I K(t, s) ds dt,
• 0 '0

and

/(A) = cd[l + X(1)A]-'.

It has been shown that the kernel of the equation (6) is the Green's function for the

fourth order differential operator M and the boundary condition of (1). It consists of a

nondegenerate kernel T(x, _y), a degenerate kernel A^xjA^y) and a meromorphic function

/in X. The function T(x, y) and A(x)A(y) are positive definite L2-kernels on [0, l]2. The

Green's function G(x, y; A) depends on one solution v(x) of L[v] = 0 in the sense that the

second solution w(x) is obtained from t>(x) by the method of reduction of order.

The classical Green's function G(x, y; A) does not exist at the simple pole

> 0. In this case there exists the generalized Green's function H(x, y; A0)

[7, P. 300] for the operator M and the boundary condition u(0) = u'(0) = u"(l) = 0,

t]2u'"( 1) = u'(l) - X0u(l).

3. Existence of eigenvalues. We use the notion of the Green's function along with a

few theorems of R. Iglisch [8] to show that the set of the eigenvalues of the problem (1)

consists of an unbounded sequence of positive eigenvalues without accumulation points

in the finite complex 1-plane.

Theorem 1. The spectrum of the problem (1) consists of an unbounded sequence of

positive eigenvalues without accumulation points in the finite complex A-plane.

Proof. Let 10 < k < oo, where X0 = — [A'(l)]-1 >0. Then G(x, y; k) is the Green's

function for the operator M and the boundary conditions:

M[u\ = Au, 0 < x < 1,

u(0) = w'(0) = w"(l) = 0, t]2u'"( 1) = m'(1) - ku(l). (7)

Multiplying the equation above by u(x) and integrating the resulting expression from

x = 0 to x = 1 leads to

t]2 (m")2 dx + {a(l - x) + l}(w')2 dx + /c[u(l)]2 ^

^ «|J u> dx >0' (8)

after integrating by parts and using the boundary conditions above.

The function G(x, y; oo), defined by lim^^ G(x, y\ k), is the Green's function for the

operator M and the boundary conditions:

MM = Au, 0 < x < 1,
(9)

u(0) = u'(0) = w(l) = w"(l) = 0,
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where the boundary condition is the limiting case of that in (7) as k -* oo. In a similar

procedure applied to (7) it follows from (9) that

x _ n2 Jo («")2 dx + J£ {a(l - x) + 1 }(u')2 dx > Q

<x jo u2 dx

Since the function G(x, y\ k) is real, continuous and symmetric in x and y on [0, l]2 and

is continuous in k on (A0, oo), it follows from (8) and (10) that the spectrum of the kernel

G(x, y; k) consists of an unbounded sequence of positive eigenvalues without accumula-

tion points in (- oo, oo) for each k > 10, [14, p. 84]. Remembering that the function/is

meromorphic in X and letting a = a, b = 0, c = X(l) and d = 1 leads to ac - bd = a > 0.

Therefore, the hypotheses of Theorems X-XII in [8] are satisfied. Furthermore, applying

a similar procedure used for (7) to the problem (1) leads to

x _ n2 Jo K)2 dx + ja {«(! - x) + 1}(»')2 dx >
a Jo "2 dx + [m(1)]2

This completes the proof.

4. Lower bounds by the method of integral equations. Lower bounds are established

for the lowest eigenvalues using the integral equation (6) and Goodwin's method [4,

Pp. 77-78],
Rewrite the equation (6) in the form

u(x)-sI I T(x,y)u(y)dy = Xf(X)\ X(x)X(y)u(y) dy, (12)
•o '0

and consider it temporarily as a nonhomogeneous Fredholm integral equation with the

kernel T(x, y). Let R(x, y; A) be the resolvent kernel of the kernel T(x, y), [8]. Then the

equation (12) is converted to a homogeneous Fredholm integral equation with a degener-

ate kernel from which the Fredholm eigenvalue equation for (12) is obtained [4,

Pp. 77-78]:

1 - A/(A) f Z(x)[X(x) - f R(x, z; X)X{z) dz] dx = 0. (13)
• 0 '0

Rearranging the equation (13) in terms of power series in k leads to the transcendental

equation

1 + 4- =

where

, i
al = A'(l) - I T(x, x) dx

• o

I lr1 \2 lr1
= | T(x, x) dx J - - | T2(x, x) dx

. 1 .1

— X(l) T(x, x) dx — (x [X(x)]2 dx.
• 0 ' 0
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Let {A„: Xn = v2, Xt < A,- if i < j, n= 1, 2, ...} be the set of the eigenvalues of the

problem (1). Then it follows from the Spiegel's formulae [13] that

Ik1 =
n = 1

oo

Z K 2 = a\ - 2a 2,
n= 1

.1 .1

= [A'(l)]2 + 2a | [*(x)]2 dx + | T2(x, x) dx.
• 0 -o

The kernel K(x, y) of the integral

.1.1 .x .y

X(l)=| | K(t, s) ds dt and T(x, .v) = — aj | K(t, s) ds dt
■ o • o • o • o

are continuous on [0, l]2. Therefore, the series

oo oo

IK' and X kn2
n = 1 n = 1

are convergent (see [11]). The two equations above lead to the lower bounds for the

lowest eigenvalue of the problem (1):

vt > {-ax)~il2, (14)

Vj > (aj - 2a2)"1/4, (15)

where ( —aj-1'2 and (a2 — 2a2)~1/4, denote the lower bounds for the lowest natural

frequencies of the problem (1) by using the first and second iteration, respectively. In this

paper, for simplicity, the numerical result for (14) is presented. However, the lower bound

(15) is a better approximation than (14).

5. Lower bounds by the composite method. An alternative approach is introduced to

obtain lower bounds for the smallest eigenvalue of the problem (1) by the composite

method, which combines the minimum principles [2, 3, 5] and the method of integral

equations introduced in section 4.

Consider the equation (11) in which the right-hand side is the Rayleigh quotient for

the problem (1). Let V be the class of admissible functions that consists of all functions

y(x) with continuous fourth derivatives, satisfying the boundary conditions u(0) =

i/(0) = 0. Let V be the class of functions i;(x) that consists of all functions with contin-

uous second derivative satisfying y(0) = 0. Then the class V contains the class V.

Consequently, the minimum principles [2, 3, 5] together with the Southwell [12]

technique and equation (11) lead to

i ^ 2 • Jo (v")2 dx {a(l - x) + 1 }(u')2 dx
A ^ VJ min fi 2 j r /i\l2 mm pi 2 j r /i\T2 ( /

veV a V dx + [t;(l)]2 VGy a jo v2 dx + [t>(l)]2

Let

n , ■ jo (O2 dx

P~™V a ji v2dx + [v(l)]2"
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Then /? is the eigenvalue of the fourth order eigenvalue problem

-ulv=Bu, 0 < x < 1, (17)
a

with the required boundary conditions

u(0) = u'( 0) = 0,

and the natural boundary conditions

u"(l) = u"'(l) + Hi) = o.

The eigenvalue equation of the problem (17) with the boundary conditions above is

a2/?2 - cot(a/?)coth(a/?) = 0 (18)

and the set of the eigenvalues consists of the positive roots of (18). We assume ^ to be

the smallest eigenvalue of (18). Let

.. ̂  min Jo Ml - *) + l}(t>')2 dx
— min c\ 2 j r /i \i2 * (19)

veV' a jo V2dx + [v(l)]2

Then /i is the eigenvalue of the second-order eigenvalue problem

[{a(l - x) + 1}«']' = nu, 0 < x < 1, (20)

with the required boundary condition u(0) = 0 and the natural boundary condition

m'(1) =/iu(l). This system of equations is equivalent to the linear homogeneous Fred-

holm integral equation of the second kind whose kernel is the Green's function for the

system

where

g(x, y; ju) = k(x, y) + h(n)Y(x)Y{y),

a(l — x) + 1
y(x) = log

1 + a

uxv)_Jy(x)> 0 < x < _y < 1,
k(X'y)~\Y(y), 0 < y < x < 1,

and

%) = ~H log(l + a) + a

Applying the method of integral equation introduced in section 4 to the kernel g(x, y)

leads to

Hi > y/2a[ix2 + 2a - 2 log(l + a)]-1/2, (21)

where nx is obtained from the second iteration and assumed to be the smallest eigenvalue

of the problem (20).
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Therefore, it follows from (16), (18) and (21) that the lower bounds for the lowest

eigenvalue of the problem (1) by the composite method are given by

> D/2/?, + s/2a{a.2 + 2a - 2 log(l + oc)}~ 1/2]1/2. (22)

6. Numerical results. In this section numerical results are obtained to illustrate the

efficiency, practicality, and accuracy of the method of integral equations. Since the lower

bound (14) depends on one solution of the equation L[u] = 0, an infinite series solution is

employed. In actual computation y(x) = cnx"> co = is used as an approximate

solution to the infinite series solution u(x) = cnx"> c0 = 1. The basic idea of com-

puting the lower bound (14) is to evaluate the multiple integrals involved recursively by

Simpson's and the trapezoidal rules using a step size 0.02 and the approximate finite

series solution. A FORTRAN program for computing the lower bound (14) has been

written based on this idea and executed by IBM 360. The results are given in Figure 1.

n2"0.5

FIGURE 1. Lower bound* of the Bmallest eigenvalues.

-14-

Fig. 1. Lower bounds v, of the smallest eigenvalues.
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The numerical results of the lower bound (22) by the composite method are obtained

from elementary computations using Newton's method. The results are so close to the

ones of (14) that they are hardly distinguishable for the scale of the dimensions chosen in

Figure 1.

7. Conclusion. The Green's function for the fourth boundary value problem (1) has

been analytically obtained. The efficiency and the practical importance of Green's func-

tions were illustrated. There are characteristic difficulties in this problem since the boun-

dary condition depends on the eigenvalue parameter. However, the reformulation of the

problem (1) by an integral equation with the kernel, Green's function (6), dependent on

the eigenvalue parameter enabled us to overcome the characteristic difficulties along with

the remarkable results of R. Iglisch and Goodwin's method.

Finally, we have shown how the method of integral equations and the composite

method can be utilized to obtain the lower bounds of the lowest natural frequencies of

the transverse vibrations of a pendulum consisting of a bob suspended from a wire.

Without using a computer it might have been impossible to present the numerical results

by the method of integral equations in this paper. A related result by the singular

perturbation method can be found in [6].
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