ON TRANSVERSELY ISOTROPIC FUNCTIONS OF VECTORS, SYMMETRIC SECOND-ORDER TENSORS AND SKEW-SYMMETRIC SECOND-ORDER TENSORS*

By

G. F. SMITH

Lehigh University

1. Introduction. There are five groups T_1, \ldots, T_5 which define the symmetry properties of materials which are referred to as being transversely isotropic. We define these groups by listing the matrices which generate the groups:

$$T_1: \mathbf{Q}(\theta),$$
 $T_2: \mathbf{Q}(\theta), \mathbf{R}_1 = \operatorname{diag}(-1, 1, 1),$
 $T_3: \mathbf{Q}(\theta), \mathbf{R}_3 = \operatorname{diag}(1, 1, -1),$
 $T_4: \mathbf{Q}(\theta), \mathbf{R}_1 = \operatorname{diag}(-1, 1, 1), \mathbf{R}_3 = \operatorname{diag}(1, 1, -1),$
 $T_5: \mathbf{Q}(\theta), \mathbf{D}_2 = \operatorname{diag}(-1, 1, -1).$
(1.1)

In (1.1), $\mathbf{O}(\theta)$ denotes the matrix

$$\mathbf{Q}(\theta) = \begin{bmatrix} \cos \theta, & \sin \theta, & 0 \\ -\sin \theta, & \cos \theta, & 0 \\ 0, & 0, & 1 \end{bmatrix} . \tag{1.2}$$

 $Q(\theta)$ corresponds to a rotation about the x_3 axis. R_1 and R_3 correspond to reflections in planes perpendicular to the x_1 axis and the x_3 axis respectively. D_2 corresponds to a rotation through 180 degrees about the x_2 axis.

In this paper, we determine integrity bases for polynomial functions $F(A_1, ..., A_N, V_1, ..., V_M, W_1, ..., W_P)$ of N three-dimensional second-order symmetric tensors $A_p = \|A_{ij}^p\|$ (p = 1, ..., N), M three-dimensional vectors $V_q = V_i^q$ (q = 1, ..., M) and P three-dimensional second-order skew-symmetric tensors $W_r = \|W_{ij}^r\|$ (r = 1, ..., P) which are invariant under any given group chosen from $T_1, ..., T_5$. Adkins [1, 2] has considered the problem of determining integrity bases for functions $F(A_1, ..., A_N, V_1, ..., V_M)$ which are invariant under the group T_1 and for functions $F(A_1, ..., A_N, V_1, ..., V_M)$ which are invariant under the group T_2 . Long and McIntire [3] have considered the problem of determining an integrity basis for functions $F(A_1, ..., A_N, V_1, ..., V_M, W_1, ..., W_P)$ which are invariant under the group T_4 . The results obtained here for this case differ from those given in [3].

^{*} Received November 6, 1980. This work was supported by a grant from the National Science Foundation to Lehigh University.

2. An integrity basis for functions invariant under T_1 . Let us employ the notation

$$B_{\alpha}^{i} = A_{3\alpha}^{i} \qquad (\alpha = 1, 2; i = 1, ..., N),$$

$$B_{\alpha}^{N+j} = V_{\alpha}^{j} \qquad (\alpha = 1, 2; j = 1, ..., M),$$

$$B_{\alpha}^{N+M+k} = W_{3\alpha}^{k} \qquad (\alpha = 1, 2; k = 1, ..., P).$$
(2.1)

It is readily seen that the problem of determining the form of a polynomial function $F(A_1, ..., A_N, V_1, ..., V_M, W_1, ..., W_P)$ which is invariant under the group T_1 is equivalent to that of determining the form of a polynomial function $G(A_{33}^i, ..., B_1^i - \iota B_2^i)$ which is subject to the restrictions that

$$G(A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, A_{11}^{i} - A_{22}^{i} + 2\iota A_{12}^{i}, A_{11}^{i} - A_{22}^{i} - 2\iota A_{12}^{i}, V_{3}^{p},$$

$$W_{12}^{m}, B_{1}^{r} + \iota B_{2}^{r}, B_{1}^{r} - \iota B_{2}^{r}) = G(A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, (A_{11}^{i} - A_{22}^{i} + 2\iota A_{12}^{i})e^{-2\iota\theta}, \quad (2.2)$$

$$(A_{11}^{i} - A_{22}^{i} - 2\iota A_{12}^{i})e^{2\iota\theta}, V_{3}^{p}, W_{12}^{m}, (B_{1}^{r} + \iota B_{2}^{r})e^{-\iota\theta}, (B_{1}^{r} - \iota B_{2}^{r})e^{i\theta})$$

shall hold for $0 \le \theta \le 2\pi$. In (2.2), $\iota^2 = -1$ and i = 1, ..., N; p = 1, ..., M; m = 1, ..., P; r = 1, ..., N + M + P. It is immediately seen that $G(A_{33}^i, ...)$ is expressible as a polynomial in the quantities (2.3) listed below which then form an integrity basis for functions $F(A_1, ..., A_N, V_1, ..., V_M, W_1, ..., W_P)$ which are invariant under T_1 .

$$A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, V_{3}^{p}, W_{12}^{m},$$

$$(A_{11}^{i} - A_{22}^{i})(A_{11}^{j} - A_{22}^{j}) + 4A_{12}^{i}A_{12}^{j} \qquad (i \leq j),$$

$$(A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i} \qquad (i < j),$$

$$B_{1}^{r}B_{1}^{s} + B_{2}^{r}B_{2}^{s} \qquad (r \leq s), \qquad B_{1}^{r}B_{2}^{s} - B_{2}^{r}B_{1}^{s} \qquad (r < s),$$

$$(A_{11}^{i} - A_{22}^{i})(B_{1}^{r}B_{1}^{s} - B_{2}^{r}B_{2}^{s}) + 2A_{12}^{i}(B_{1}^{r}B_{2}^{s} + B_{2}^{r}B_{1}^{s}) \qquad (r \leq s),$$

$$(A_{11}^{i} - A_{22}^{i})(B_{1}^{r}B_{2}^{s} + B_{2}^{r}B_{1}^{s}) - 2A_{12}^{i}(B_{1}^{r}B_{1}^{s} - B_{2}^{r}B_{2}^{s}) \qquad (r \leq s).$$

$$(2.3)$$

In (2.3), i, j = 1, ..., N; p = 1, ..., M; m = 1, ..., P; r, s = 1, ..., N + M + P subject to the restrictions indicated. We observe from (2.3) that the integrity basis for functions $F(\mathbf{A}_1, ..., \mathbf{A}_N, \mathbf{V}_1, ..., \mathbf{V}_M)$ invariant under T_1 given by Adkins [1, 2] contains redundant terms.

3. An integrity basis for functions invariant under T_2 . The group T_2 is generated by the matrices $\mathbf{Q}(\theta)$ and \mathbf{R}_1 . We have seen in Sec. 2 that any polynomial function $F(\mathbf{A}_1, \ldots, \mathbf{A}_N, \mathbf{V}_1, \ldots, \mathbf{V}_M, \mathbf{W}_1, \ldots, \mathbf{W}_P)$ which is invariant under the group T_1 generated by $\mathbf{Q}(\theta)$ is expressible as a polynomial in the quantities (2.3). In order to determine the general form of the function $F(\mathbf{A}_1, \ldots, \mathbf{W}_P)$ which is invariant under T_2 , we need only determine the general form of a polynomial function of the quantities (2.3) which is invariant under \mathbf{R}_1 . The elements of (2.3) either remain invariant under \mathbf{R}_1 or change sign under \mathbf{R}_1 . Let

 I_1, \ldots, I_a and J_1, \ldots, J_b denote the elements of (2.3) which remain invariant under \mathbf{R}_1 and which change sign under \mathbf{R}_1 respectively. With (2.3), we see that the J_1, \ldots, J_b are given by

$$W_{12}^{m}, (A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i} \qquad (i < j), \qquad B_{1}^{r} B_{2}^{s} - B_{2}^{r} B_{1}^{s} \qquad (r < s),$$

$$(A_{11}^{i} - A_{22}^{i})(B_{1}^{r} B_{2}^{s} + B_{2}^{r} B_{1}^{s}) - 2A_{12}^{i}(B_{1}^{r} B_{1}^{s} - B_{2}^{r} B_{2}^{s}) \qquad (r \le s)$$

$$(3.1)$$

where i, j = 1, ..., N; m = 1, ..., P; r, s = 1, ..., N + M + P subject to the restrictions indicated. The $I_1, ..., I_a$ are the elements of (2.3) not listed in (3.1). An integrity basis for functions $F(A_1, ..., W_P)$ which are invariant under T_2 is then given by $I_1, ..., I_a$ and $J_p J_q$ $(p, q = 1, ..., b; p \le q)$.

After eliminating the redundant elements from the set $J_p J_q$, we obtain the result that an integrity basis for functions $F(A_1, ..., A_N, V_1, ..., V_M, W_1, ..., W_P)$ which are invariant under T_2 is given by

$$A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, V_{3}^{p}, (A_{11}^{i} - A_{22}^{i})(A_{11}^{j} - A_{22}^{j}) + 4A_{12}^{i} A_{12}^{j} \qquad (i \leq j),$$

$$B_{1}^{r} B_{1}^{s} + B_{2}^{r} B_{2}^{s} \qquad (r \leq s),$$

$$(A_{11}^{i} - A_{22}^{i})(B_{1}^{r} B_{1}^{s} - B_{2}^{r} B_{2}^{s}) + 2A_{12}^{i}(B_{1}^{r} B_{2}^{s} + B_{2}^{r} B_{1}^{s}) \qquad (r \leq s),$$

$$W_{12}^{m} W_{12}^{n} \qquad (m \leq n), \qquad W_{12}^{m}(A_{11}^{i} - A_{22}^{i})A_{12}^{j} - W_{12}^{m}(A_{11}^{j} - A_{22}^{j})A_{12}^{i} \qquad (i < j), \qquad (3.2)$$

$$W_{12}^{m}(B_{1}^{r} B_{2}^{s} - B_{2}^{r} B_{1}^{s}) \qquad (r < s),$$

$$W_{12}^{m}(A_{11}^{i} - A_{22}^{i})(B_{1}^{r} B_{2}^{s} + B_{2}^{r} B_{1}^{s}) - 2W_{12}^{m} A_{12}^{i}(B_{1}^{r} B_{1}^{s} - B_{2}^{r} B_{2}^{s}) \qquad (r \leq s),$$

$$((A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i})(B_{1}^{r} B_{2}^{s} - B_{2}^{r} B_{1}^{s}) \qquad (i < j, r < s)$$

where i, j = 1, ..., N; p = 1, ..., M; m, n = 1, ..., P; r, s = 1, ..., N + M + P subject to the restrictions indicated. The quantities B_{α}^{r} ($\alpha = 1, 2$; r = 1, ..., N + M + P) are defined by (2.1). If we set the W_{12}^{m} , W_{31}^{m} , W_{23}^{m} (m = 1, ..., P) appearing in (3.2) equal to zero, we obtain an integrity basis for functions $F(A_1, ..., A_N, V_1, ..., V_M)$ which are invariant under T_2 . The integrity basis so obtained contains fewer terms than that given by Adkins [2], which would indicate the presence of redundant terms in the basis listed in [2].

4. An integrity basis for functions invariant under T_3 . The group T_3 is generated by the matrices $\mathbf{Q}(\theta)$ and \mathbf{R}_3 . We have seen in Sec. 2 that any polynomial function $F(\mathbf{A}_1, \ldots, \mathbf{A}_N, \mathbf{V}_1, \ldots, \mathbf{V}_M, \mathbf{W}_1, \ldots, \mathbf{W}_P)$ which is invariant under the group T_1 generated by $Q(\theta)$ is expressible as a polynomial in the quantities (2.3). In order to determine the general form of the function $F(\mathbf{A}_1, \ldots, \mathbf{W}_P)$ which is invariant under T_3 , we need only determine the general form of a polynomial function of the quantities (2.3) which is invariant under \mathbf{R}_3 . The elements of (2.3) either remain invariant under \mathbf{R}_3 or change sign under \mathbf{R}_3 . Let K_1, \ldots, K_c and L_1, \ldots, L_d denote the elements of (2.3) which remain invariant under \mathbf{R}_3 and which change sign under \mathbf{R}_3 respectively. Let

$$C_{\alpha}^{i} = A_{3\alpha}^{i}$$
 $(\alpha = 1, 2; i = 1, ..., N),$ $C_{\alpha}^{N+j} = W_{3\alpha}^{j}$ $(\alpha = 1, 2; j = 1, ..., P).$ (4.1)

With (2.3) and (4.1), we see that the elements K_1, \ldots, K_c of (2.3) which remain invariant under \mathbb{R}_3 are given by

$$A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, W_{12}^{m}, (A_{11}^{i} - A_{22}^{i})(A_{11}^{j} - A_{22}^{j}) + 4A_{12}^{i} A_{12}^{j} \qquad (i \leq j),$$

$$(A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i} \qquad (i < j), \qquad C_{1}^{r} C_{1}^{s} + C_{2}^{r} C_{2}^{s} \qquad (r \leq s),$$

$$C_{1}^{r} C_{2}^{s} - C_{2}^{r} C_{1}^{s} \qquad (r < s), \qquad V_{1}^{p} V_{1}^{q} + V_{2}^{p} V_{2}^{q} \qquad (p \leq q),$$

$$V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q} \qquad (p < q),$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s}) + 2A_{12}^{i}(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{1}^{s}) \qquad (r \leq s),$$

$$(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) + 2A_{12}^{i}(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) \qquad (p \leq q),$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{1}^{s}) - 2A_{12}^{i}(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s}) \qquad (r \leq s),$$

$$(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) - 2A_{12}^{i}(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) \qquad (p \leq q)$$

where i, j = 1, ..., N; p, q = 1, ..., M; m = 1, ..., P; r, s = 1, ..., N + P subject to the restrictions indicated. With (2.3) and (4.1), we see that the elements $L_1, ..., L_d$ of (2.3) which change sign under \mathbb{R}_3 are given by

$$V_{3}^{p}, C_{1}^{r} V_{1}^{p} + C_{2}^{r} V_{2}^{p}, C_{1}^{r} V_{2}^{p} - C_{2}^{r} V_{1}^{p},$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} V_{1}^{p} - C_{2}^{r} V_{2}^{p}) + 2A_{12}^{i}(C_{1}^{r} V_{2}^{p} + C_{2}^{r} V_{1}^{p}),$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} V_{2}^{p} + C_{2}^{r} V_{1}^{p}) - 2A_{12}^{i}(C_{1}^{r} V_{1}^{p} - C_{2}^{r} V_{2}^{p})$$

$$(4.3)$$

where $i=1,\ldots,N$; $p=1,\ldots,M$; $r=1,\ldots,N+P$. An integrity basis for functions $F(\mathbf{A}_1,\ldots,\mathbf{W}_P)$ which are invariant under T_3 is then given by the quantities K_1,\ldots,K_c and L_pL_q $(p,q=1,\ldots,d;p\leq q)$. After eliminating the redundant terms from the set of invariants L_pL_q , we obtain the result that an integrity basis for functions $F(\mathbf{A}_1,\ldots,\mathbf{A}_N,\mathbf{V}_1,\ldots,\mathbf{V}_M,\mathbf{W}_1,\ldots,\mathbf{W}_P)$ which are invariant under T_3 is given by

$$A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, W_{12}^{m}, (A_{11}^{i} - A_{22}^{i})(A_{11}^{j} - A_{22}^{j}) + 4A_{12}^{i} A_{12}^{j} \quad (i \leq j),$$

$$(A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i} \quad (i < j),$$

$$C_{1}^{r} C_{1}^{s} + C_{2}^{r} C_{2}^{s} \quad (r \leq s),$$

$$C_{1}^{r} C_{2}^{s} - C_{2}^{r} C_{1}^{s} \quad (r < s), \quad V_{1}^{p} V_{1}^{q} + V_{2}^{p} V_{2}^{q} \quad (p \leq q),$$

$$V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q} \quad (p < q),$$

$$V_{3}^{p} V_{3}^{q} \quad (p \leq q), \quad (A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s})$$

$$+ 2A_{12}^{i}(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{1}^{s}) \quad (r \leq s),$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{1}^{s}) - 2A_{12}^{i}(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s}) \quad (p \leq q),$$

$$(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) + 2A_{12}^{i}(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) \quad (p \leq q),$$

$$(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) - 2A_{12}^{i}(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) \quad (p \leq q),$$

$$(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) - 2A_{12}^{i}(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) \quad (p \leq q),$$

$$V_{3}^{p}(C_{1}^{r} V_{1}^{q} + C_{2}^{r} V_{2}^{q}), \quad V_{3}^{p}(C_{1}^{r} V_{2}^{q} - C_{2}^{r} V_{1}^{q}),$$

$$V_{3}^{p}(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} V_{1}^{q} - C_{2}^{r} V_{2}^{q}) + 2V_{3}^{p} A_{12}^{i}(C_{1}^{r} V_{2}^{q} + C_{2}^{r} V_{1}^{q}),$$

$$\begin{split} &V_3^p(A_{11}^i-A_{22}^i)(C_1^r\ V_2^q+C_2^r\ V_1^q)-2V_3^p\ A_{12}^i(C_1^r\ V_1^q-C_2^r\ V_2^q),\\ &(C_1^r\ C_1^s-C_2^r\ C_2^s)(V_1^p\ V_1^q-V_2^p\ V_2^q)\\ &+(C_1^r\ C_2^s+C_2^r\ C_1^s)(V_1^p\ V_2^q+V_2^p\ V_1^q) \qquad (r\leq s,\ p\leq q),\\ &(C_1^r\ C_1^s-C_2^r\ C_2^s)(V_1^p\ V_2^q+V_2^p\ V_1^q)\\ &-(C_1^r\ C_2^s+C_2^r\ C_1^s)(V_1^p\ V_1^q-V_2^p\ V_2^q) \qquad (r\leq s,\ p\leq q) \end{split}$$

where i, j = 1, ..., N; p, q = 1, ..., M; m = 1, ..., P; r, s = 1, ..., N + P subject to the restrictions indicated. The quantities $C_{\alpha}^{r}(\alpha = 1, 2; r = 1, ..., N + P)$ are defined by (4.1).

5. An integrity basis for functions invariant under T_4 . The group T_4 is generated by the matrices $Q(\theta)$, R_1 and R_3 . We have seen in Sec. 3 that any polynomial function $F(A_1, ..., A_N, V_1, ..., V_M, W_1, ..., W_P)$ which is invariant under the group T_2 generated by $Q(\theta)$ and R_1 is expressible as a polynomial in the quantities (3.2). In order to determine the general form of a function $F(A_1, ..., W_P)$ which is invariant under T_4 , we need only determine the general form of a polynomial function of the quantities (3.2) which is invariant under R_3 . We observe that the elements of (3.2) either remain invariant under R_3 or change sign under R_3 . Let

$$C^i_{\alpha} = A^i_{3\alpha}$$
 $(\alpha = 1, 2; i = 1, ..., N),$ $C^{N+j}_{\alpha} = W^j_{3\alpha}$ $(\alpha = 1, 2; j = 1, ..., P).$ (5.1)

With (3.2) and (5.1), we see that the elements M_1, \ldots, M_e of (3.2) which remain invariant under R_3 are given by

$$A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, (A_{11}^{i} - A_{22}^{i})(A_{11}^{j} - A_{22}^{j}) + 4A_{12}^{i} A_{12}^{j} \qquad (i \leq j),$$

$$C_{1}^{r} C_{1}^{s} + C_{2}^{r} C_{2}^{s} \qquad (r \leq s), \qquad V_{1}^{p} V_{1}^{q} + V_{2}^{p} V_{2}^{q} \qquad (p \leq q),$$

$$W_{12}^{m} W_{12}^{n} \qquad (m \leq n),$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s}) + 2A_{12}^{i}(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{1}^{s}) \qquad (r \leq s),$$

$$((A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i})(C_{1}^{r} C_{2}^{s} - C_{2}^{r} C_{2}^{s}) \qquad (i < j, r < s),$$

$$(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) + 2A_{12}^{i}(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) \qquad (p \leq q),$$

$$((A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) + 2A_{12}^{i}(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \qquad (i < j, p < q),$$

$$W_{12}^{m}(A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{i} - A_{22}^{j})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \qquad (i < j, p < q),$$

$$W_{12}^{m}(C_{1}^{r} C_{2}^{s} - C_{2}^{r} C_{1}^{s}) \qquad (r < s),$$

$$W_{12}^{m}(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \qquad (p < q),$$

$$W_{12}^{m}(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{1}^{s}) - 2W_{12}^{m} A_{12}^{i}(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s}) \qquad (r \leq s),$$

$$W_{12}^{m}(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) - 2W_{12}^{m} A_{12}^{i}(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) \qquad (p \leq q)$$

where i, j = 1, ..., N; p, q = 1, ..., M; m, n = 1, ..., P; r, s = 1, ..., N + P subject to the restrictions indicated. With (3.2) and (5.1), we see that the elements $N_1, ..., N_f$ of (3.2)

which change sign under \mathbf{R}_3 are given by

$$V_{3}^{p}, C_{1}^{r} V_{1}^{p} + C_{2}^{r} V_{2}^{p}, W_{12}^{m}(C_{1}^{r} V_{2}^{p} - C_{2}^{r} V_{1}^{p}),$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} V_{1}^{p} - C_{2}^{r} V_{2}^{p}) + 2A_{12}^{i}(C_{1}^{r} V_{2}^{p} + C_{2}^{r} V_{1}^{p}),$$

$$W_{12}^{m}(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} V_{2}^{p} + C_{2}^{r} V_{1}^{p}) - 2W_{12}^{m} A_{12}^{i}(C_{1}^{r} V_{1}^{p} - C_{2}^{r} V_{2}^{p}),$$

$$((A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i})(C_{1}^{r} V_{2}^{p} - C_{2}^{r} V_{1}^{p}) \quad (i < j)$$

$$(5.3)$$

where i, j = 1, ..., N; p = 1, ..., M; m = 1, ..., P; r = 1, ..., N + P subject to the restrictions indicated. An integrity basis for functions $F(\mathbf{A}_1, ..., \mathbf{W}_P)$ which are invariant under T_4 is then given by $M_1, ..., M_e$ and $N_p N_q$ $(p, q = 1, ..., f; p \le q)$. After eliminating the redundant elements from the set of invariants $N_p N_q$, we obtain the result that an integrity basis for functions $F(\mathbf{A}_1, ..., \mathbf{A}_N, \mathbf{V}_1, ..., \mathbf{V}_M, \mathbf{W}_1, ..., \mathbf{W}_P)$ which are invariant under T_4 is given by

$$\begin{split} &A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, (A_{11}^{i} - A_{22}^{i})(A_{11}^{i} - A_{22}^{i}) + 4A_{12}^{i} A_{12}^{i} \quad (i \leq j), \\ &C_{1}^{r} C_{1}^{s} + C_{2}^{r} C_{2}^{s} \quad (r \leq s), \quad V_{1}^{p} V_{1}^{q} + V_{2}^{p} V_{2}^{q} \quad (p \leq q), \\ &V_{3}^{p} V_{3}^{q} \quad (p \leq q), \quad W_{12}^{m} W_{12}^{m} \quad (m \leq n), \\ &(A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s}) + 2A_{12}^{i}(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{1}^{s}) \quad (r \leq s), \\ &((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(C_{1}^{r} C_{2}^{s} - C_{2}^{r} C_{3}^{s}) \quad (i < j, r < s), \\ &(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) + 2A_{12}^{i}(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) \quad (p \leq q), \\ &((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \quad (i < j, p < q), \\ &((A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \quad (i < j, p < q), \\ &((A_{11}^{i} - A_{22}^{i})A_{12}^{j} - (A_{11}^{j} - A_{22}^{j})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \quad (r \leq s, p \leq q), \\ &(C_{1}^{r} C_{1}^{s} - C_{2}^{r} C_{2}^{s})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) \quad (r \leq s, p \leq q), \\ &(C_{1}^{r} C_{2}^{s} - C_{2}^{r} C_{1}^{s})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \quad (r < s, p < q), \\ &V_{3}^{p}(C_{1}^{r} V_{1}^{q} + C_{2}^{r} V_{3}^{q}), W_{12}^{m}(C_{1}^{r} C_{2}^{s} - C_{2}^{r} C_{1}^{s}) \quad (r < s), \\ &V_{3}^{m}(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \quad (p < q), \\ &((A_{11}^{i} - A_{22}^{i})(C_{1}^{r} C_{2}^{s} + C_{2}^{r} C_{3}^{s}))(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) \quad (r \leq s, p < q), \\ &((A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) \quad (r \leq s, p < q), \\ &((A_{11}^{i} - A_{12}^{i})(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) \quad (r \leq s, p < q), \\ &((A_{11}^{i} - A_{12}^{i})(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{2}^{q}) \quad (r \leq s, p < q), \\ &((A_{11}^{i} - A_{12}^{i})(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{2}^{q}) \quad (r \leq s, p$$

$$\begin{split} W_{12}^m(C_1^r C_2^s - C_2^r C_2^s)(V_1^p V_2^q + V_2^p V_1^q) \\ - W_{12}^m(C_1^r C_2^s + C_2^r C_2^s)(V_1^p V_1^q - V_2^p V_2^q) & (r \leq s, \, p \leq q), \\ V_3^p(A_{11}^i - A_{22}^i)(C_1^r V_1^q - C_2^r V_2^q) + 2V_3^p A_{12}^i(C_1^r V_2^q + C_2^r V_1^q), \\ V_3^p((A_{11}^i - A_{22}^i)A_{12}^j - (A_{11}^j - A_{22}^j)A_{12}^i)(C_1^r V_2^q - C_2^r V_1^q) & (i < j), \\ V_3^p W_{12}^m(C_1^r V_2^q - C_2^r V_1^q), \\ V_3^p W_{12}^m(A_{11}^i - A_{22}^i)(C_1^r V_2^q + C_2^r V_1^q) - 2V_3^p W_{12}^m A_{12}^i(C_1^r V_1^q - C_2^r V_3^q) \end{split}$$

where i, j = 1, ..., N; p, q = 1, ..., M; m, n = 1, ..., P; r, s = 1, ..., N + P subject to the restrictions indicated. The quantities C_{α}^{r} ($\alpha = 1, 2$; r = 1, ..., N + P) are defined by (5.1).

6. An integrity basis for functions invariant under T_5 . The group T_5 is generated by the matrices $\mathbf{Q}(\theta)$ and \mathbf{D}_2 . We have seen in Sec. 2 that any polynomial function $F(\mathbf{A}_1, \ldots, \mathbf{A}_N, \mathbf{V}_1, \ldots, \mathbf{V}_M, \mathbf{W}_1, \ldots, \mathbf{W}_P)$ which is invariant under the group T_1 generated by $\mathbf{Q}(\theta)$ is expressible as a polynomial in the quantities (2.3). In order to determine the general form of the function $F(\mathbf{A}_1, \ldots, \mathbf{W}_P)$ which is invariant under T_5 , we need only determine the general form of a polynomial function of the quantities (2.3) which is invariant under \mathbf{D}_2 . The elements of (2.3) either remain invariant under \mathbf{D}_2 or change sign under \mathbf{D}_2 . Let

$$C_{\alpha}^{i} = A_{3\alpha}^{i}$$
 $(\alpha = 1, 2; i = 1, ..., N),$ $C_{\alpha}^{N+j} = W_{3\alpha}^{j}$ $(\alpha = 1, 2; j = 1, ..., P).$ (6.1)

With (2.3) and (6.1), we see that the elements P_1, \ldots, P_g of (2.3) which remain invariant under \mathbf{D}_2 are given by

$$A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, (A_{11}^{i} - A_{22}^{i})(A_{11}^{j} - A_{22}^{j}) + 4A_{12}^{i} A_{12}^{j} \qquad (i \leq j),$$

$$C_{1}^{s} C_{1}^{t} + C_{2}^{s} C_{2}^{t} \qquad (s \leq t), \qquad V_{1}^{p} V_{1}^{q} + V_{2}^{p} V_{2}^{q} \qquad (p \leq q), \qquad C_{1}^{s} V_{2}^{p} - C_{2}^{s} V_{1}^{p},$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{s} C_{1}^{t} - C_{2}^{s} C_{2}^{t}) + 2A_{12}^{i}(C_{1}^{s} C_{2}^{t} + C_{2}^{s} C_{1}^{t}) \qquad (s \leq t),$$

$$(A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) + 2A_{12}^{i}(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) \qquad (p \leq q),$$

$$(A_{11}^{i} - A_{22}^{i})(C_{1}^{s} V_{2}^{p} + C_{2}^{s} V_{1}^{p}) - 2A_{12}^{i}(C_{1}^{s} V_{1}^{p} - C_{2}^{s} V_{2}^{p})$$

where i, j = 1, ..., N; p, q = 1, ..., M; s, t = 1, ..., N + P subject to the restrictions indicated. With (2.3) and (6.1), we see that the elements $Q_1, ..., Q_h$ of (2.3) which change sign under \mathbf{D}_2 are given by

$$\begin{split} &V_{3}^{p},\ W_{12}^{m},\ (A_{11}^{i}-A_{22}^{i})A_{12}^{j}-(A_{11}^{j}-A_{22}^{j})A_{12}^{i}\qquad (i< j),\\ &C_{1}^{s}\ V_{1}^{p}+C_{2}^{s}\ V_{2}^{p},\ C_{1}^{s}\ C_{2}^{t}-C_{2}^{s}\ C_{1}^{t}\qquad (s< t),\qquad V_{1}^{p}\ V_{2}^{q}-V_{2}^{p}\ V_{1}^{q}\qquad (p< q),\\ &(A_{11}^{i}-A_{22}^{i})(C_{1}^{s}\ V_{1}^{p}-C_{2}^{s}\ V_{2}^{p})+2A_{12}^{i}(C_{1}^{s}\ V_{2}^{p}+C_{2}^{s}\ V_{1}^{p}),\qquad (6.3)\\ &(A_{11}^{i}-A_{22}^{i})(C_{1}^{s}\ C_{2}^{t}+C_{2}^{s}\ C_{1}^{t})-2A_{12}^{i}(C_{1}^{s}\ C_{1}^{t}-C_{2}^{s}\ C_{2}^{t})\qquad (s\leq t),\\ &(A_{11}^{i}-A_{22}^{i})(V_{1}^{p}\ V_{2}^{q}+V_{2}^{p}\ V_{1}^{q})-2A_{12}^{i}(V_{1}^{p}\ V_{1}^{q}-V_{2}^{p}\ V_{2}^{q})\qquad (p\leq q) \end{split}$$

where i, j = 1, ..., N; p, q = 1, ..., M; m = 1, ..., P; s, t = 1, ..., N + P subject to the restrictions indicated. An integrity basis for functions $F(A_1, ..., W_p)$ which are invariant under T_5 is then given by $P_1, ..., P_g$ and $Q_r Q_s$ $(r, s = 1, ..., h; r \le s)$. After eliminating the redundant elements from the set of invariants $Q_r Q_s$, we obtain the result that an integrity

basis for functions $F(\mathbf{A}_1, \ldots, \mathbf{A}_N, \mathbf{V}_1, \ldots, \mathbf{V}_M, \mathbf{W}_1, \ldots, \mathbf{W}_P)$ which are invariant under T_5 is given by

$$\begin{split} A_{33}^{i}, A_{11}^{i} + A_{22}^{i}, (A_{11}^{i} - A_{22}^{i})(A_{11}^{i} - A_{22}^{i}) + 4A_{12}^{i} A_{12}^{i} & (i \leq j), \\ C_{1}^{s} C_{1}^{i} + C_{2}^{s} C_{2}^{i} & (s \leq t), \quad C_{1}^{s} V_{2}^{p} - C_{2}^{s} V_{1}^{p}, V_{1}^{p} V_{1}^{q} + V_{2}^{p} V_{2}^{q} & (p \leq q), \\ (A_{11}^{i} - A_{22}^{i})(C_{1}^{s} C_{1}^{r} - C_{2}^{s} C_{2}^{i}) + 2A_{12}^{i}(C_{1}^{s} C_{2}^{t} + C_{2}^{s} C_{1}^{i}) & (s \leq t), \\ (A_{11}^{i} - A_{22}^{i})(C_{1}^{s} V_{2}^{p} + C_{2}^{s} V_{1}^{p}) - 2A_{12}^{i}(C_{1}^{s} V_{1}^{p} - C_{2}^{s} V_{2}^{p}), \\ (A_{11}^{i} - A_{22}^{i})(V_{1}^{p} V_{1}^{q} - V_{2}^{p} V_{2}^{q}) + 2A_{12}^{i}(V_{1}^{p} V_{2}^{q} + V_{2}^{p} V_{1}^{q}) & (p \leq q), \\ ((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(C_{1}^{s} C_{2}^{t} - C_{2}^{s} C_{1}^{t}) & (i < j, s < t), \\ ((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(C_{1}^{s} V_{1}^{p} + C_{2}^{s} V_{2}^{p}) & (i < j), \\ ((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) & (i < j, p < q), \\ ((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) & (i < j, p < q), \\ ((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) & (i < j, p < q), \\ ((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) & (i < j, p < q), \\ ((A_{11}^{i} - A_{22}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{1}^{q}) & (i < j, p < q), \\ ((A_{11}^{i} - A_{12}^{i})A_{12}^{i} - (A_{11}^{i} - A_{22}^{i})A_{12}^{i})(V_{1}^{p} V_{2}^{q} - V_{2}^{p} V_{2}^{q}) & (i < j, p < q), \\ ((A_{11}^{i} - A_{12}^{i})A_{12}^{i} - (A_{11}^{i} - A_{12}^{i})A_{12}^{i} & (i < j, p < q), \\ ((A_{11}^{i} - A_{12}^{i})A_{12}^{i} - (A_{11}^{i} - A_{12}^{i})A_{12}^{i} & (i < j, p < q), \\ (A_{11}^{i} - A_{12}^{i})(V_{1}^{q} V_{2}^{q} + V_{2}^{p} V_{$$

where i, j = 1, ..., N; p, q, r = 1, ..., M; m, n = 1, ..., P; s, t = 1, ..., N + P subject to the restrictions indicated. The quantities C_{α}^{s} ($\alpha = 1, 2$; s = 1, ..., N + P) are defined by (6.1).

REFERENCES

- [1] J. E. Adkins, Arch. Rat. Mech. Anal. 4, 193 (1960)
- [2] J. E. Adkins, Arch. Rat. Mech. Anal. 5, 263 (1960)
- [3] R. L. Long and L. V. McIntire, private communication (1973)