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1. Introduction. In this paper we will discuss the solutions to the initial-value prob-

lem for a single hyperbolic conservation law in a non-homogeneous medium which has

sharp discontinuities in its flux function; that is,

ut(x,t)+f(u(x,i),x)x = 0 (1.1a)

where f(u, x) is a function which is discontinuous in x. This problem has properties of

nonuniqueness which have not been previously encountered. The classical theory of con-

servation laws has been developed, in part, to handle the question of non-uniqueness for

weak solutions. Unfortunately this theory is insufficient for our study. More specifically,

when waves collide with a sharp inhomogeneity, which we will call an interface, they may

be transmitted, reflected, or partially transmitted and partially reflected. Unfortunately,

the classical theory cannot be used to decide how an interface will affect a wave when

such a collision occurs, leaving our solution undetermined.

We will consider the initial value problem for Eq. (1.1a) under the initial condition

u(x, 0) = u0(x). (1.1b)

We assume that for each x,/(«, x) is a uniformly convex function of u which attains its

minimum and for each u,f(u, x) is a piecewise constant function of x. We note that if/(«,

x) is independent of x, (1.1) reduces to the classical conservation law studied by Hopf [9,

10], Lax [13,15], Oleinik [19,20] and others.
The main focus of our study deals with the situation where

/(«, x) =Mu), x < 0,
(1.2)

= f2(u), x > 0.

Eq. (1.1a) now takes the form

, x < °1 n n -> \u,(x,t) + < <> = 0. (1.3a)
[f2(u)x, x > 0J

This makes the line x = 0 an interface. An interesting feature of the above choice is that

the Riemann problem for (1.3a), i.e., the problem with initial data

u(x, 0) = u,, x < 0
(1.3b)

= ur, x > 0

attains solutions which are constant along rays x/f = constant.
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As can be easily seen, a function u(x, t) which is smooth except along a family of

smooth curves, will be a weak solution to Eq. (1.1) if and only if it satisfies (1.1) at points

of smoothness, while along a curve of discontinuity x(t) it satisfies the Rankine-Hugoniot

condition

?( ) = f(u(z(0 + , t), x(t) + ) —f(u(x(t) — , t), x(t)~)
1 "(zW+, t) - u(x(t)—, t)

In particular, along the interface %(t) = 0, for Eq. (1.3),

/i(u(0 —, t)) =/2(u(0 + , t). (1.4)

Eq. (1.4) will be referred to as the interface condition.

It is necessary at this point to select a unique weak solution for the Riemann problem.

However, the classical admissibility criteria seem to be inadequate to single out such a

solution. It is possible to construct examples for which no possible weak solution satisfies

the Lax E-condition at the interface. There is no clear way to devise an entropy for our

problem. If we let rj(u, x) be an entropy, there is no a priori information to decide the

jump of rj across the interface. Hence there is no clear way to apply the pointwise entropy

criterion or the global entropy rate criterion. If we now consider the viscosity criterion, in

general

"t +/(»> X)x = euxx ■

does not possess smooth solutions and it is not clear that it possesses a unique weak

solution. In the light of what is to follow, no further investigation of the above criteria

seems necessary here.

In Sec. 2, we will demonstrate that if the discontinuity in the flux function is smoothed,

then many different solutions may be attained as the limit of different smoothings. With-

out a good physical reason to choose a particular smoothing, this indicates that some

additional criteria must be added to our problem to single out a unique solution. In Sec.

3, a characterization is given for admissibility criteria which will select solutions in an

acceptable fashion, and an existence theorem is presented for arbitrary bounded measur-

able initial data.

2. Smoothing off(u, x). Since it is possible to visualize our differential equation (1.1)

as a model of some physical problem, we begin our study by drawing on some physical

intuition. Usually, sharp discontinuities in physical problems attempt to model very rapid

continuous transitions. For this reason, it looks natural to study here solutions to a se-

quence of smooth approximations which approach our discontinuous problem.

We would therefore like to approximate the solution to the Riemann problem

j/l(")x, *<0

\f2(u)x, x > 0
= 0, (2.1a)

/,(u(0-,t))=/2(u(0 + ,0), (2.1b)

u(x, 0) = u,, x < 0,

= ur, x > 0
(2.1c)

by smoothing the discontinuity in /(«, x) at x = 0. We assume/x(u) and/2(u) are uniformly

convex functions that attain their minima. We will assume that g(u, x) approximates /(«,
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x) in the following sense: g(u, x) = fY(u) for x < — 1, g(u, x) = f2(u) for x > 1, and g(u, x) is

a C3 function of u and x which, for each fixed x, is uniformly convex and attains its

minimum. Next, we will let a„ be a sequence such that an > 0 and a„—► 0 and we will

investigate the solutions to

u, + g(u, x/an)x = 0,

u(x, 0) = u,, x < 0,

= ur, x > 0

as n—> oo.

The main tool in commencing our investigation is the use of generalized character-

istics. Classical characteristics are defined for smooth solutions u as solutions to

£ = gjv, 0, v=-gx(v,0 (2.3a,b)

where c(f) represents the characteristic trajectory and v(t) is the restriction of the solution

to this characteristic. A generalized characteristic is a solution of (2.3a) in the sense of

Filippov [6]. It turns out that generalized characteristics are either classical character-

istics or shocks. It has been shown [2, 3] that from each point (x, t) of the upper half

plane there emanates a unique forward characteristic. On the other hand, the set of back-

ward characteristics through (x, t) either consists of a single classical characteristic or an

infinite number of characteristics spanning the sector between two classical character-

istics. These two characteristics are the minimal and maximal backward characteristics,

the minimal having the larger speed at (x, t).

Notice that the curves £(f) and v(t) which satisfy

g(v(t), c(t)) = k (2.4)

are integrals of the characteristic equations (2.3) for each fixed k. Now, if we look for the

point (w, x) which satisfies g(u, x) = maxx (min„ g(u, x)) and assume that (u, x) is uniquely

determined, then (u, x) will be a saddle-point. Consider the minimizer /i(x) of g(u, x) for

each fixed x. By the implicit function theorem, n(x) e C2. Let x be the minimizer of g(n(x),
x) in [ — 1, 1]; then we have (w, x) = {fi(x), x). From this point on, we assume thatx e ( — 1,

1) is unique, and {d2/dx2)g(n(x), x) is strictly negative at x. However, similar results may be

proven for x e [ — 1, 1] and (d2/8x2)g(p(x), x) non-positive. It is clear from the above

definitions that we have the following.

Lemma 2.1. (/i(x), x) is a saddle-point of Eq. (2.3) and the stable (a+(x)) and unstable

(c_(x)) manifolds are given by g(a±(x), x) = g([i{x), x), gu(a+(x), x) > 0 for x < x, gu(o-(x),

x) < 0 for x < x, gja+(x), x) < 0 for x > x, and gu(cr_(x), x) > 0 for x > x.

We shall now use the phase portrait to identify the limiting solution for any given

Riemann problem. In doing so, however, we must watch out for possible collisions of

characteristics which can cause shocks. We will be able to understand the limit of our

solution as an—> 0 in spite of these interactions. A typical phase portrait for the above

approximation is illustrated in Fig. 2.1.

We first distinguish the case u, > a+(— 1) or ur < <r+(l). This leads to transmitting

characteristics at the interface. When u, > <r+(— 1) and ur < <x+(l) then both waves could

potentially transmit. The one that does transmit will form a shock which travels away

from the i-axis. When u, < a+(— 1) and ur > ff+(l), we are in the critical region of the
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Fig. 2.1

approximation where there are characteristics that are traveling towards the critical point

via the stable manifold. It is our claim that

Lemma 2.2. Assume u, < c+(— 1) and ur > <r + (l); then there exists a characteristic

such that v*(t))—> (x, fi(x)) as t—> oo.

Proof. We will first show that there is a bounded interval of x, (x — a, x + /?), so that

no characteristic with £(0) e ( — oo, —1] or {(0) e [1, oo) can enter this interval. Let a be

such that x — a is the largest value of £(t) which is attained by the orbit which starts from

(^(0), v(0)) = ( — 1, u,). Since u, < a+(— 1) then we must have a > 0. Also, let be such that

x + P is the smallest value of £(t) which is attained by the orbit which starts from (£(0),

u(0)) = (1, ur); then /? > 0. Let (x, t) be such that x e (x — a, x + /?); then we claim that the

minimal and maximal backward characteristics through (x, t) must have started at

<f±(0) e (—1, 1) (<f_(t) and <f+{t) represent the minimal and maximal backward character-

istic respectively). Indeed, if not, <f_(0) e (— oo, — 1] or <f+(0) e [1, oo). If <f_(0) e (—oo,

— 1] then £_(0) = w,. Now, (<f_(t), v~(0) is classical up until <f_(t) = x; however, by the

phase portrait, the largest value which can be attained by <f_(f) is x — a < x, and this is a

contradiction. If <f+(0) e [1, oo), then v+(0) = ur. Since the smallest value attained by cf+(f)

will be x + P > x, we again get a contradiction. Hence, <f±(0) e (— 1,1).

Now, consider the sequence of points (x, n), where n is an interger, and let(£„(f), y„(t))

be the minimal backward characteristic through (x, n). The sequence £„(0) is contained in

(—1, 1) and so it must have a convergent subsequence £nj(0). By continuous dependence

(£ni(t), converges to a solution of the characteristic equations (2.3). Let

(£*«, v*(t)) = limfcjt), vni(t)).

It is clear that £*(t) cannot leave (—1, 1), so we must have (£*(t), v*(t))—<>(x, t4*)X since

this is the only characteristic that remains classical for all time in ( — 1, 1).

Corollary 2.3. In the limit, cr_(— 1) and <r_(l) will be the values at the interface when

u, < <r+( — 1) and ur > Ml)-
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We note that, in general, solutions to the Riemann problem will consist of four con-

stant states, two classical waves and a discontinuity at the interface. We denote these

solutions by (u,, u_ ,u+ , ur) where u_ = limx^0_ u(x, t) and u+ = limx^0+ u(x, t) for t > 0

(note that u_ and u+ are constant because of the radial nature of the solutions; also note

that u_ may equal u, or u+ may equal ur).

We can now use Corollary 2.3 to construct approximations which give any solution of

the type (u(, u , u+ , ur), where/i(u_) < 0 andf'2(u+) > 0, the only limitation being that if

f'i(ut) > 0 then we must have /i(m_) > fi(ut) or if/'2(ur) < 0 then we must have f2{u+) >

f2(ur). To see this, we assume («,, ur) are given and choose (m_ , u + ) with the properties

stated above. It is easy to select an approximation so that the maximizer of g([i(x), x) is

uniquely determined and so that g(n(x), x) =/i(u_) and g{fi(x), x) =f2(u+). Also, x e ( — 1,

1), since/i(u_) < 0 and f'2(u+) > 0. The solutions to (2.2) will now converge, in the sense

of distributions, to the desired solution. We have shown the following

Theorem 2.4. If/^u,) < 0 and f'2(ur) > 0, then there exists an approximation g(u, x) such

that the solutions to (2.2) converge to (ut, u_, u+, ur) for any pair (w_, u+) where

/i(«-) =/2("+)» /i(»-) < 0 and f'2(u + ) > 0. Also, if f\(ut) > 0 or f'2(ur) < 0 then for

/,(u_) > or f2(u+) > f2(ur), respectively, there is an approximation so that the solu-

tions to (2.2) converge to («,, , u+ , ur) where/^w.) = f2(u + ), < 0 and f'2(u+) >

0.

3. Tractable admissibility criteria and existence. At this point it is clear that if a

physical problem is modeled in a manner which leads to solving the discontinuous con-

servation law (1.5), the model is incomplete. It is the opinion of the author that if such a

case arises, one should study the disturbance at the interface more closely. If this disturb-

ance can be shown to be the limit of some continuous approximation, one can use the

method of smoothing to identify good solutions.

If some physical motivation is presented, criteria may be proposed to resolve the

indeterminacy at the interface. An admissibility criterion is said to be tractable if there is

one smooth approximation which, in the limit, yields the same solution at the interface. It

is clear that this insures that our equation remains evolutionary since backward charac-

teristics can be defined which will extend all the way back to the x-axis. Along these

characteristics f(u, x) will remain constant. Therefore, if we assume that a solution exists

for

, f/i(")x x<0l_n
' i/2(")x X > Oj

u(x, 0) = u0(x),

and assume u0(x) is bounded, then it must follow that u(x, t) is bounded.

Even if we are using a tractable admissibility criterion, it is possible to transmit a wave

with bounded variation and produce a wave with unbounded variation along the inter-

face.

Assume u(0 —, t) is of bounded variation and there exists an a > 0 so that |/'2(w(0-l-,

t))l > a. Then the total variation of u(0 +, t) is bounded. In view of the interface condition,

we have

| m(0 +, t) - m(0 +, f')| < — | u(0 —, t) — u(0 —, t')\
a

where K = max f)). The difficulty occurs when f'2(u(0 + , f)) = 0.
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Consider the following example: ft(u) = (l/2)u2, f2(u) = (1/2X« + l)2,

2, x < — 2,

X = — 5

u°(x)~< 1-irrf("+1+(fTT)5)' ~('+f)<'< ~('+^rri)v

'• "-(1+(Tmf) '
1, X > -1.

We will use any tractable admissibility criterion which requires that a wave which can

transmit will transmit to decide the interactions at the interface. There are no shocks

formed to the left of the interface, so

CO J

TV u(0 —, t) = TV u0(t) = 2 X ^ < oo.
i=l '

However, by the interface condition

00 (2 l\1/2
TV u(0 + , t) = £ (j2 + ,

which diverges.

We now turn to the question of global solutions to

, J/i("L x < °1 n cxi \

u(x, 0) = m0(x). (3.1b)

We assume that fx(u) and f2(u) are uniformly convex and that u0(x) is an arbitrary bound-

ed measurable function. We also postulate any admissibility criterion, tractable in the

above sense, which yields uniqueness for the Riemann problem at the interface. Let g(u, x)

be the approximation that induces the criterion.

Pick a„ > 0 such that an —> 0 as n —> oo and let un(x, t) be the unique weak solution to

u, + g(u, x/an)x = 0, u(x, 0) = u0(x)

which must exist for all time, by Kruzkov [12].

For u„(x, t), minimal and maximal backward characteristics through any point (x, t)

are well-defined, in the sense of Dafermos [2], The backward characteristics (±(t; x, t) for

x £ ( — an, an) either enter the strip ( — an, a„) x [0, oo) or they emanate from the x-axis

without intersecting x = ±a„. If they enter the strip let T±(x, f) be the first time of entry;

otherwise let £±(x, t) be their starting points from the x-axis. We note the preservation of

ordering for these points. Assume an < x < y < oo; then if £+(t; x, t) does not enter the

strip, we must have that £±(t; y, t) do not enter the strip and {+(x, t) < ^±{y, (). Also, if

C_(t; y, t) enters the strip then we have that C±(i; x, t) enter the strip and T (y, t) < T±(x,

t). The same type of ordering is preserved in the negative quadrant. Let £ > 0; then there

is an N(e) so that n > N(e) implies that an < e/2.
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Lemma 3.1. For x < y < —e or e < x < y, t > 0 and n > N(e) there is a K such that

un(y±, t) - u„(x±, t) < K

y — x ~ min(t, £)

Proof. Let (I(t), t) be the set of points whose backward characteristics enter the strip

(— a„, a„) x [0, oo) for each fixed t. Also assume that if x £ I(t), then the backward charac-

teristics through (x, t) do not enter the strip. The boundary points of I(t) may have one

characteristic which enters the strip and one which does not. Clearly I(t) is a bounded

interval for each fixed t.

If x > 0, x $ I(t), then the starting points of (±(t; x, t) and £±(t; y, t) are £±(x, t) and

£±(y, t), respectively. We have £±(x, /) < £±(y, t). By Dafermos [2],

£±(x, t) = x - t/"2(u„(x±, t)), Z±(y, t) = y- tf'2(u„(y ±, t)).

So we must have

f'2(K(y±, 0) t)) < l

y — x ~ t

Similarly, if y < 0 and y $ I(t), then

f\iK(y±, 0) -f'i(u„(x±, t)) < l
y — x ~ t

Now, if £ < x, y e I(t), then the starting points from x = a„, £±(*; x, t) and £±(*; x, t) are

T±(x, t) and T±(y, t), respectively. We must have T±(x, t) > T±(y, t). It is clear that

x- an =f'2{w„(x±, t)Xt - T±(x, t)), y — a„ =f'2(u„(y±, t))(t - T±(y, t)).

Hence we must have

/M±. 0) -f'2(x±, 0) ; /'2(un(x + , t))

y — x ~ x — a„

Now, u0(x) is uniformly bounded, so w„(x, f) must be uniformly bounded. Hence there

must be a Cj < oo such that f'2(u„(x±, t)) < Cv Since x > £ > 0 and a„ < e/2, then

fi(Un{y±, ')) -f'liKjxt, t)) <2C1

y — x ~ e

Similarly, when y < — e and x 6 I(t), there is a C2 such that

/'l("n(y±. 0) t)) „ 2c2 < . (3.6)
y — x e

Combining Eqs. (3.3H3.6), we obtain

9u(Kiy±, *), y) ~ 0, x) < max(l, 2Ct, 2C2)

y — x — min(i, £)

Since g(u, x) is uniformly convex in u for each fixed x, there is an a > 0 such that guu(u,

x) > a, so by (3.7) and the mean value theorem we arrive at (3.2) where K = (1 /a) max(l,

2C„2C2).
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Corollary 3.2. For M < oo,

Var \u„{x, t)l < t, M), n > N(e),
\x\>z

U|«M

for each e > 0 and t > 0.

Now, let t' > t > 0; then

un(x, t') - u„(x, t) =

So we must have

{gf(u„(x, t), x)}x dx.

% ft'

| u„(x, t') - u„(x, f)| dx < K2 \ Var u„(x, x) dx
Jt \x\>t

|x|^£ |x|=SM
|x|«M

where \fu{u„{x, t), x)| < K2 ■ Hence

|u„(x, t') - u„(x, t)| dx < K1K2\t' - £|.

\x\2t
|x|SM

Theorem 3.3. Assuming an admissibility criterion which is compatible with the approxi-

mation g(u, x), there exists a global solution to

, \fM)x *<0l_n
' l/2(")x X > Oj

u(x, 0) = u0(x)

where fi(u) and/2(") are uniformly convex.

Proof. By Corollary 3.2, Helly's theorem and the diagonalization process there must

be a subsequence un,(x, t) of un(x, t) which converges to a weak solution to (3.1).
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