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1. Introduction. A vast amount of research has been carried out on the motion of

electrically conducting fluids, using MHD approximations, since Alfven's [1] classic work.

Mathematical complexity of the phenomenon induced many researchers to adopt a rather

useful alternate technique of investigating special classes of flows such as aligned or

orthogonal flows. These special classes of flows in magneto-fluiddynamics yielded various

solvable second order mathematical structrures. However, not much work seems to have

been done in electro-magneto-fluiddynamics.

The general problem of electro-magneto-fluiddynamics is quite complex. Kingston and

Power [2] gave an elegant analysis of the dynamics of two-dimensional aligned flows. This

analysis establishes that if the charge density is not identically zero in a flow region, then

the magnetic field must be irrotational everywhere. However, by assuming that H = KpV,

where K is some constant, for compressible flow and density is a function of pressure

only, this work is restricted to flows which have irrotational acceleration vector field.

The aim of this paper is to study steady electro-magneto-gasdynamic aligned flows

when the charge density is not identically zero. In this study, we take general aligned flows

so that H = fpV, where / is an arbitrary function, and we take general equation of state

for the gas. This work is carried out by employing a well established fluid-dynamical

technique of establishing integrability conditions for scalar fields. Ratip Berker [3],

Ozoklav [4, 5] and Chandna [6] used this approach for ordinary gasdynamics. Chandna et

al. [7, 8] have employed it for compressible transverse MHD flows and incompressible

electro-magneto-fluid dynamic aligned flows.

The plan of this work is as follows: In Sec. 2 we recapitulate the basic equations

governing the steady motion of two dimensional electro-magneto-gasdynamic aligned

flows when the charge density is not identically zero. Sec. 3 contains the derivation of

integrability conditions and discusses the approach for solving flow problems. In Sec. 4,

solutions to four different flow examples are obtained.
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2. Flow equations. The steady inviscid three-dimensional flow of electro-magento-

gasdynamics is governed by the system [9]:

div(pF) = 0, (1)

p(V.grad) J? = -grad p + juJX H + qE, (2)

curl H = /, (3)

curl E = 0, (4)

div£ = q/e, (5)

J = I + qV = a[E + p.V X h] + qV, (6)

along with the energy balance equation and an equation of state p = p(p, s) for the gas.

This is a system of sixteen fundamental equations in sixteen unknown functions V (the

velocity field), H (the magnetic field), E (the electric field), J (the current density field), q

(the charge density function) and three thermodynamic variables p, p and s. In this system

of equations a, ju. and e are respectively the constant electrical conductivity, the constant

magentic permeability and the constant permitivity of the fluid. The magnetic field H

satisfies an additional equation

div# = 0 (7)

expressing the absence of magnetic poles in flow. From Eqs. (3) and (6), we obtain

/ = V X H - qV, E = [v X H - qV]/a - y.V X H. (8)

Eliminating E, J from Eqs. (2), (4) and (5), by using Eqs. (3) and (8), we get

p(V.grad)K = -grad p + ju(curl H) X H + q/a[curl H - qV] - fxqV X H, (9)

curl [curl H — qV — p.aV X = 0, (10)

div[qV + noV X H] + ^-= 0. (11)

Plane Flows: We now consider the flow to be two-dimensional, so that V and H lie in a

plane defined by the rectangular coordinates x, y and all the flow variables are functions

of x,y.

Decomposition of the vector equations (9) and (10), into their vector components in the

flow plane and their vector components perpendicular to the flow plane, yields the

following four equations:

- a2 -
p(F.grad)F = -grad p + ju(curl H) X H V, (12)

q [curl H - fxoV X /?] = 0, (13)

curl[curl H - \ioV X H\ = 0, (14)

c\xr\[qV) = 0, (15)

where Eqs. (12), (13) are equivalent to (9) and Eqs. (14), (15) result from (10).
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Equation (11), for the assumed two-dimensional flow, reduces to

div(gF) 4- oq/e = 0 (16)

From Eq. (13) and the above analysis, we have:

Theorem I. If the charge density q(x,y) is a non-zero function in a steady plane

electro-magneto-gasdynamic flow having the magnetic field H in the flow plane, then the

flow is governed by the system:

div(pF) = 0, (1)

2

p(F.grad)F = -grad p + ju(curl H) X H - V, (12)

di v(qV) + oq/e = 0 (16)

curl(<?F) = 0, (15)

curl H = fia(V X H), (17)

div// = 0 (7)

of seven scalar equations in seven unknown functions p(x, y), p(x, y), q(x, y), V —

(u(x, y), v(x, y)) and H = {Hy{x,y\ H2(x, y)).

Given a solution of this system, J, I (the conduction current density) and E are obtained

from

J = I + qV=cm\H, E = -qV/a. (18)

The above system has also been obtained by Kingston and Power [2], We study the

above flows in the following sections when V and H are everywhere parallel. For such

flows, Eqs. (12) and (17) are replaced by

p(K.grad)V = -grad p - q2V/a, (19)

curl H = 0. (20)

3. Integrability conditions. From the definition of aligned flows, we have

H = f{x, y)p(x, y)V (21)

where f(x, y) is some arbitrary scalar function.

Employing (21) in Eqs. (7), (20) and using (1), we have

F.grad / = 0,

F.grad(ln fp) + div V = 0,

grad(ln fp) X V + curl V = 0,

Taking the vector product of last equation with V and using the second equation in (22) to

eliminate Kgrad(ln fp), we obtain

... s , (curl V) X V — (div V)V - - n
grad(ln/p) =    — , V.V + 0. (23)
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Taking curl of Eq. (23), we get

curl
(curl V) X V - (div V)V

V.V
= 0 (24)

which is the integrability condition for the function fp. This is the first integrability

condition. The second one is the integrability condition for the function q and we obtain it

from Eqs. (15) and (16). These equations can be rewritten as

grad(ln q).V + (div V + a/e) = 0,

grad(lnq) X V + curlV = 0.

Taking the vector product of the second equation with V and using the first, we have

(curl V) X V — (div V + o/e)V~
grad(ln^r) =

Taking curl of (25), we get

V.V

curl
(curl V) X V — (div V + a/e)V

V.V

(25)

0. (26)

No integrability condition, in V alone, can be obtained for the pressure function without

taking additional flow assumptions. Kingston and Power [2], in their study of compressi-

ble case, had two additional assumptions. Their study was restricted to compressible fluids

having density as a function of pressure alone. Furthermore, H was taken to be directly

proportional to pV in the flow region so that fix, y) is constant throughout. These two

additional conditions, if taken in (12), (20), give

(F.grad)F= - (grad p)/p(p)~ q2V/ap,

curl(pK) = 0.

Taking curl of the first equation and using the second equation and Eq. (15), the

integrability condition for some function of pressure for such flows reads

curl[(curlK) X v] = 0.

For the flows, without the above mentioned additional assumptions, we proceed as

follows:

Subtracting Eq. (24) from (26), we get

cml[v/v.v ] = 0.

This equation, in Cartesian and polar coordinates, is equivalent to

\ V2
0; £ 77~77 "A 777^1=0(27)

dy \ u2 + v21 ' dr\Vi+V2J 90\Fi2+F2

where u, v are taken to be the Cartesian components of V and Vx, V2 are the polar

components.
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Equations (27) imply that there exist functions 4>(x, y) and <j>(r, 0) such that the

velocity field Vin the two coordinate systems is:

V =
d<p/dx d<p/dy

(d<f>/dx)2 + (d<j>/dy)2 (3 (p/dx)" + (3cf>/9 y)2

P-\    r(8|/S0)   p8)
\r2(d<f>/dr) +(d<p/dd) r2(d<t>/dr) +(d<p/dd) )

Given any <p(x, y), and therefore the velocity field, satisfying the integrability conditions

(24) and (26), the charge density function q(x, y) and the product function p(x, y)f(x, y)

are determined by integrating Eqs. (25) and (23). Knowing that f(x, y) is constant on

each individual streamline and the curves <f>(x, y) = constant are orthogonal to the family

of flow streamlines, we obtain the general solution for f(x, y ) involving an arbitrary

function. Finally, employing the solutions for V, q and p in Eq. (19), we employ the

integrability condition for p(x, y) to obtain the restrictions on arbitrary functions and

also integrate (19) to obtain the pressure function.

4. Solutions. In this section, we investigate the solutions for four flow problems.

Example 1. Letting

4>(r,6) = F(0), F(0)* 0 (29)

in (28), where F is some arbitrary function, we have

V=ree/F'(0) (30)

and, therefore,

w = curl V = 2k/F'(6) (31)

where er, eg are unit vectors in the directions of r, 9 increasing at any point and k is the

unit vector normal to the flow plane.

Employing Eqs. (30), (31) in Eqs. (23) to (26), we find that the integrability conditions

are identically satisfied and we have

grad[ln(/p)] = - -er 4- FJ°J,r ■ rF'(6)e<"

grad(ln q) = - ^er +
F"(8) _ a F'(6)

rF'{6) e r

Integrating these equations, we get

f(r,0)p(r,6) = C1F'(^)/r2, (32)

q(r,6)= (C2F'(8)/r2)exp[-oF(9)/e\, (33)

where C\ and C2 are two non-zero arbitrary constants. Since f(x, y ) is constant on each

individual streamline and r = constant are the streamlines in this example, it follows that

f(r,6) = G(r), p{rJ)^ClF\e)/r1G{r) (34)
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and

H(r, 6) = p(r, 6)f(r, 6)V = Cxee/r

where G(r) =£ 0 is an arbitrary function. Employing the above solutions for p, q,v and H,

we find that equations (1), (7), (15), (16), (20) are satisfied and Eq. (19) are

ci = 9p
rG(r)F'(6) 9 r'

CxF"{e) _ C22-F(fl)exp[ — 2oF(6)/e\ = 9p (35)

G(r)F'2{6) or2 $6'

Using the integrability condition d2p/drd0 = d2p/dddr, we find that the functions F(6)

and G(r) must satisfy

r2G(r) _ r2

G2(r) G(r)

F"(0)

F,2{6)

or2
—-F'(0) exp 2im = 0 (36)

for the flow. Here G(r) is the differentiation of G(r) with respect to r.

Differentiating Eq. (36) with respect to r, we get

d_
dr

r3G(r) r 2 F"(0)

F'2(8)
= 0.

G2(r) G(r)

Rejecting the possibility F"(9) = 0, since C2 + 0, we find that G(r) must satisfy

G(r) - G(r)/r - C3G2(r)/r3 = 0

where C3 is an arbitrary non-zero constant. General solution of this is

G(r) = r2/(C3 + C4r) (37)

where C4 is an arbitrary constant.

Using (37) in (36), we find F(6) must satisfy the differential equation

CxC3oF"(d) - 2CtF'3(d)exp[-2oF(8)/e\ = 0. (38)

General solution of (38) is given by

C22e2exp[ — 2oF(0)/e\ + 2 C5o3F(6) + 2ClC3o36 + 2 C6a3 = 0 (39)

where C5 and C6 are arbitrary constants.

Using any solution F{6) of (39) in Eq. (35) and integrating, we find that p(r, 6) is given

p(rJ).Cl-S£l + ^-^ (40)

where C7 is an arbitrary constant.

Summing up, we have

Theorem II. If the streamlines in a steady plane electro-magneto-gasdynamic aligned flow

are a family of concentric circles r = constant, then the solutions are given by Eqs. (30),

(33), (34), (40) wherein G(r) is given by (37) and F(0) is any solution of (39).
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Using the solutions obtained, we find the electric field and the conduction current

density from (18).

Example 2. Taking

<$>(r,6) = F(a)|a = rexp(-0), F'(a) ¥= 0 (41)

where F(a) is any function, Eq. (28) yields

<«>
2F (a) 2F (a)

and, therefore,

5 = (43)
rF (a)

Here er, eB and K are unit vectors at any point along r-increasing, ^-increasing and normal

to the flow plane. From Eq. (42), the streamlines for our flow are the family of curves

rexp(0) = const. Using the above expression for V in Eqs. (23) to (26), we find that the

integrability conditions (24), (26) are satisfied and we have

grad[ln(/p)] = ( r(a)^(ff) ~ 7)- ( F,(a)^(ff) + 7)-*0

and

F"(a) 1 oF'(a)
grad[ln^]

F'(a)exp(0) r eexp(0)

F"(a) + 1 _ oF'(a) \

F'(a)exp(0) r eexp(0) )

Integration of the above equations yields

<44»

and

where =£ 0, D2 ¥= 0 are two arbitrary real constants. Using the fact that f(r,d) is

constant on each individual streamline, Eq. (44) gives

P(r,0) = . f(r>0) = G(P)'> /? = rexp(0) (46)

where G(fi) ¥= 0 is an arbitrary function. Furthermore, using Eqs. (42) and (46) in (21), we

get

H = Dx(e - ee)/2r. (47)
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Using the above solutions, Eqs. (1), (7), (15), (16) and (20) are satisfied. However, Eq. (19),

by the use of above solutions, take the form

DxF"(a) ^ D1exp(0) D2F'(a) exp[ — 2aF(a)/e\ ^3p

rG(p)F'2(a) r2G(/3)F(a) ar2txp{6) dr

and

D2F'(a)exp[-2oF(a)/e] _ D.F'ja) = dp

orex p(0) G(/3)F'2(a)

Applying the integrability condition d2p/drd8 = d2p/dddr, we find that F(a) and

G(i8) must satisfy

D!
ZMIJJ 2exp (0)G(/})\
F'2(a)l\rG(l8) G2(/3) f

exp(0) exp(20)G(/?) \
(49)

F'(a) J\r2G(/3) rG2(/3) /

+ 2DjF'ia) exp[ -2oF(a)/e\ = Q

ar2exp(0)

where G(/3) is the differentiation of the function G with respect to its argument.

Now in the flow plane, with the exception of the point r = 0, the variables a = r exp( — 6)

and y8 = rexp(0) are independent variables. Expressing Eq. (49) in a, /?, we get

G(P)

F"(a) 1  + 
F'2(a) aF'(a)

)82G(/6)

G2(P)

2 F"(a) 1 — +  
F'2(a) aF'(a)

+ 2DjF'ia) exp[ — 2aF{a)/e\ = Q

D^a

(50)

Differentiating (50) with respect to ft, we have

F"(a)  1_

F'2(a) + aF'(cx) dP\G{P)J

2F"{a)  1_

F'2(a) aF'(a)

d lP2G(/3)\
dd\ G2(p) )

(51)

= 0.

If either of the differential expressions F"(a)/F,2(a) + 1 /aF'(a) and 2F"(a)/F'2(a) +

1 /aF'(a) is identically zero in Eq. (51), then Eq. (50) is not satisfied for any set of F(a)

and G(i8). Therefore, for the determination of functions F(a) and G(/3) such that Eqs.

(50) and (51) are simultaneously satisfied, we have the following two cases:

(i) d[p/G(li)\/dl3 = 0 and, therefore, d[^2G{fi)/G2^))/dp = 0,

(ii)J[0/G(/?)]/48*O.
We study the two cases.
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Case I. In this case,

G{p) = D,p (52)

where D3 is a non-zero arbitrary constant.

Using (52) in (50), we find that F(a) satisfies the differential equation

DloF"(a) - 2Z>2Z>3F'3(a)exp ^F(a) = 0. (53)

General solution for F(a) satisfying this equation is given by

Z)22Z)3e2exp + D4F(a) + 2Z>1<x3a + Ds = 0 (54)

where D4 and Ds are arbitrary constants. Using (52) in (48) and transforming the resulting

equations to a, ft coordinates, we get

4^=
3a \ Z)3

2 F"(a) 1   ' + -

afiF'2(a) a2pF'(a)

2 D\
F'(a) expj — ~F(a)

a/3
(55)

90 U3 afl2F'(a)

Integrating Eq. (55), with the use of (53), we have

p(r,8) = D6- D2l (56)

4D3r F (a)

where D6 is an arbitrary constant.

Case II. In this case, by using separation of variables, Eq.(51) splits up into two

differential equations

>2G(/?)

G2(/3)

and

(2L1 - 1 )aF"(a)+(L1 - 1 )F'(a) = 0

for the functions F(a) and G(j3). Here L, is an arbitrary constant which cannot be zero, 1

or Solving these differential equations, we get

d_

dp
-L ±

dp G(P)
0

G(p) =
L2PLl 1 + L3( 1 - Lx)

and

F(a) = f 2LiLl4 ~ j otLiA2L\ — i) + L$
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where L2, L3, L4 and L5 are arbitrary constants. Using these solutions in Eq. (50), we find

that Eq. (50) is not satisfied. Therefore, for the flow problem, we conclude:

Theorem III. If the streamlines in a steady plane electro-magneto-gasdynamic aligned

flow are a family of spirals ree = constant, then the solutions to the flow problem are

given by the Eqs. (42), (45), (46), (47), (56) with G(/8) and F(a) given by Eqs. (52) and

(54) respectively.

Example 3. We let

<#>(/-, 0) = F(r); F'(r) # 0 (57)

and proceed, as in previous examples, to obtain

•3"°" p-r75I?j1' f'Gl>>'

A2F'(r)
 exp

a a
-F(r) , H = -j-e, (58)

re

where Ax, A2 are non-zero arbitrary constants and G(B) is a non-zero arbitrary function.

The flow is a radial flow with origin as its singular point.

Using these solutions in flow equations, we find that with the exception of linear

momentum equations all other equations are satisfied and the linear momentum equations

read

dp _ AlF"(r) _ A\F'(r) exp[-2oF(r)/e\

dr rF'2(r)G(9) or2

% ' °- <59)

Using the integrability condition for p, we find the following possibilities:

(i) F(r) = C3r + C4|C3 0, C4 are arbitrary constants and G(0) is any function of 6.

(ii) G(0) = C5|C5 + 0 is an arbitrary constant and F(r) is an arbitrary function.

In either of these casesp = p(r) is given by integration of Eqs. (59). Therefore,

Theorem IV. If the flow is a radial flow with 8 = constant as its streamlines, then

solutions are given by Eqs. (58) and (59).

Example 4. Letting

y) = F(a)\ a = ay — bx, F'(a) ¥= 0 (60)

and proceeding as in previous examples, we find that

T-> I ~b a \ B1F'(a)
V= \ , , . , , , , . J, P =

(a2 + b2)F'(a) ' (a2 + b2)F'(a) j G(0)

q = B2F'(a) exp --F(a), H=\-^-U-b,a) (61)
e a2 + b2

are the solutions to the flow problem with parallel straight streamlines /? = ax + by =

constant. Here Bv B2 are non-zero constants, G(i8) is a non-zero arbitrary function and

cartesian coordinates are used.
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Using (61) in linear momentum equations in a, fi coordinates, we get

3a G(/3)F (a) °

2a . »

V (62)

and

^ = 0
3/?

Applying the integrability condition for p, we find that either F"(a) = 0 with any

non-zero choice for G(/3) or G( fi) = a non-zero constant with any non-constant F{a). In

either case, we find p = p(ay - bx) by integrating Eq. (62). Therefore, we have

Theorem V. If the flow is a straight parallel flow with ax + by = constant as its

streamlines, the solutions are given by Eqs. (61) and (62).
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