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Abstract. A macroscopic mathematical model is constructed describing the evolution of

the phases of a binary alloy or mixture undergoing solidification under the action of

simultaneous conduction of heat and diffusion of solute. The formulation is global, in the

form of a pair of conservation laws valid over the whole region occupied by the alloy in a

weak (distributional) sense. Thus it is especially convenient for numerical solution since it

does not require tracking of the interface, which, in fact, may develop into a "mushy

zone".

Introduction. The solidification of impure materials, such as alloys or mixtures, depends

not only on the removal of sensible and latent heats but also on the redistribution of the

impurity or solute. It is, therefore, a coupled heat and mass transfer process with the

strongest coupling occuring at the solid-liquid interface. The freezing temperature is no

longer constant but it depends on the concentration as dictated by the phase diagram of

the alloy.

Qualitatively, such processes are fairly well understood at the macroscopic level, at least

as far as what basic underlying phenomena are involved (cf. Chalmers [4]). At the

microscopic level, significant advances in our understanding of solidification and other

phase transformations have been achieved recently by the Theory of Critical Phenomena,

a field of Physics experiencing tremendous growth lately.

Quantitatively, however the situation is very unsatisfactory as there is very little

mathematical theory available. In view of the importance of solidification processes in

today's science and technology, the quantitative understanding of such processes becomes

imperative.
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The simplest coupled macroscopic mathematical model of binary alloy solidification

consists of heat conduction and mass diffusion equations in the solid and in the liquid,

together with interface conditions expressing energy and mass conservation. A fundamen-

tal assumption in the construction of such a model is that the solid-liquid interface is a

smooth surface, just like in the solidification of a pure material. Such an assumption

however may be physically unrealistic and may lead to self-inconsistency of the model as

was observed in Wilson-Solomon-Alexiades [23] (cf. Sec. 2). To overcome such objections

we construct here a new, more comprehensive, mathematical model of the binary alloy

solidification process directly based on fundamental principles of modern (nonequi-

librium) thermodynamics.

The model describes the time evolution of the phases of a binary alloy or mixture

undergoing solidification under the action of simultaneous conduction of heat and

diffusion of solute. It is general enough to allow thermal-diffusive cross effects (Soret and

Dufour effects), as well as anisotropic thermodynamic and transport coefficients, which

may depend on both concentration and temperature. The only physically restrictive

assumptions we make are those of a constant density and of a monotonic phase diagram

(as in Fig. 1). Both of these will be relaxed in future refinements of the model.

An important characteristic of our model is its global formulation, as a pair of

conservation laws valid over the whole region occupied by the alloy in a weak (distribu-

tional) sense. The phases are distinguished only by the values of the quantity "liquid

fraction" which is = 1 in the liquid, = 0 in the solid, and between 0 and 1 in the interface

which may be a surface, a mushy zone or a very irregular set. The point here is that we

make no a priori assumptions about the geometry of the interface, the system itself will

develop it as it pleases (see, however, Trivedi [22]). At the same time, this makes the model

especially convenient for numerical solution as no tracking of the interface is required.

Numerical experiments will be reported separately. (Solomon-Alexiades-Wilson [19]).

In Sec. 1, a brief qualitative description of the alloy solidification process is given. An

overview of existing approaches appears in Sec. 2 and some of the shortcomings are

mentioned. The development of the model is described step-by-step in Sec. 3. The

resulting system may fail to be parabolic and conditions for its parabolicity are obtained

in Sec. 4. Finally, some important particular cases are noted in Sec. 4, such as the

reduction of our model to the classical Stefan problem for the solidification of a pure

material.

1. Qualitative description of binary alloy solidification. Consider a binary alloy or

mixture consisting of components A and B. The equilibrium phase diagram of the alloy

describes the concentrations of liquid and solid that can co-exist in thermodynamic

equilibrium as functions of temperature. The simplest such diagram, for an alloy capable

of forming solid solutions in all proportions (such as Cu-Ni), is shown in Fig. 1 (cf.

Chalmers [4, p. 5]).

As concentration variable C we can use the mass fraction of component B\ thus the

concentration of A is 1 — C. The zone between the liquidus and solidus curves represents

states for which neither of the two pure phases is stable alone. Instead, both solid and
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liquid appear, each with the appropriate solidus Cs and liquidus C1 concentrations as

determined by the temperature, T.

In a macroscopic time scale such that local thermodynamic equilibrium can be assumed

to hold, the phase diagram determines the phase locally in terms of the concentration

C(x, t) and temperature T(x, t) of an elementary cell located at x at time t. Let us follow

such a cell which is initially liquid. As its temperature is lowered, the state of 3P reaches

the liquidus curve at some point (C1, T) on the phase diagram (cf. Fig. 1). With further

cooling, the first solid that appears has concentration Cs > C1. Thus the liquid fraction of

& is depleted of solute B (or enriched in A) and its state goes down the liquidus (it will

freeze at a lower temperature) while the state of the solid fraction of goes down the

solidus curve. The liquid fraction now appears supercooled (and the solid superheated).

This is referred to as constitutional supercooling [4], The average state of & now lies in the

intermediate zone, which we shall call the inter-phase (or mushy) zone. This continues

until all of ^has solidified.

This is, of course, a very rough description of the process. The latent heat of fusion must

be removed and the solute must be redistributed in a cooperative manner for solidification

to occur. Thus the process involves the strong coupling of heat conduction, material

diffusion and fluid flow, which makes the quantitative problem intractable.

2. Overview of existing approaches. The common practice is to limit attention to cases in

which only one process dominates (usually diffusion or conduction, but not fluid flow) so

that the other two can be ignored.

The most common approach probably is to ignore heat conduction and consider the

temperature at a steady-state since conduction is usually much faster than diffusion.

Another one is the case of a "well-stirred" liquid (cf. Alexiades [1]) used, for example, in

the steel industry in connection with "dunking" of cold solid steel into liquid steel for

temperature control. Alternatively, the effect of variable freezing temperature may be

CONCENTRATION

Fig. 1. An Equilibrium Phase Diagram.
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simulated by a mushy zone as in Tien-Geiger [21], Cho-Sunderland [5], Alexiades-Cannon

[2], and Clyne [25],

The purpose of such simplifications is of course to avoid the coupling of the heat and

mass transfer processes. Even then, the problem is not simple. The location of the

solid-liquid interface is an unknown. This makes the problem an, inherently non-linear,

moving boundary problem. One of the most extensively studied moving boundary

problems is the so-called Stefan problem (Rubinstein [17]), which models the solidification

of a pure material. The unknown quantities are the distribution of temperature and the

location of the interface (a surface separating the solid and liquid). The determining

conditions are the heat conduction equations in the solid and the liquid and a condition

expressing energy conservation across the interface (the so-called Stefan condition),

together with appropriate initial and boundary conditions. In this model it is assumed that

heat conduction dominates (convection in the liquid is negligible). Classical solvability of

the Stefan problem has been established only in the case of one space dimension

(Fasano-Primicerio [9], Wilson-Solomon-Boggs [25]). In higher dimensions the only suc-

cessful approach has been via weak formulations, which view the problem as a global

conservation law and which are in fact closer to the physics of the problem (Elliot-Oc-

kendon [8]). Such formulations, being of fixed-domain type, are especially convenient for

numerical computations since they do not require tracking of the moving boundary.

Recent work of Lacey and Shillor [12] also supports the contention that weak formula-

tions may be the only reasonable ones in the presence of supercooling.

A mathematical model of binary alloy solidification has been suggested by Rubinstein

[17] (see also Tayler [20]) as a generalization of the Stefan problem. In addition to the heat

conduction equations for the temperature in the solid and liquid and the Stefan condition

on the interface, solute diffusion equations for the concentration are also imposed as well

as a corresponding condition expressing mass conservation across the interface. Moreover,

the solidus and liquidus concentrations are related to the interface temperature via the

phase diagram relations. Thus, the heat and mass transfer processes are coupled only at

the interface, which is assumed to be a smooth surface. For a semi-infinite, one-dimen-

sional material, the model admits a similarity solution for all nonnegative values of the

physical parameters (assumed constants) (Rubinstein [17], Solomon-Wilson-Alexiades

[18]). In this solution, however, the concentration distribution in the solid remains

constant (even though the diffusivity there may be nonzero).

Numerical approximations for essentially the same model have been discussed by Fix

[10], Crowley-Ockendon [7], Meyer [14], Bermudez-Saguez [3], Wilson-Solomon-Alexiades

[24]. The appearance of a "mushy" zone was noted for some values of the parameters

which could not be entirely attributed to numerical errors. Finally, we observed in [23]

that, in fact, even the explicit solution of Rubinstein produces such a mushy zone when

the material diffusivity in the liquid is small enough. This of course contradicts the

assumption of a sharp interface on which the model itself is based and renders the model

self-contradictory for certain ranges of parameter values. At the same time, it suggests that

a good model should allow for the occurrence of a mushy zone, exhibiting the built-in

advantages of weak formulations over the classical ones.
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Considerations of the stability of a sharp planar interface in the presence of constitu-

tional supercooling (Langer [13], Christian [6]) also lead one to reject the classical

Rubinstein model (cf. Lacey-Ockendon-Tayler [11]). In [11] an attempt is made to model

the micro structure of the mushy zone and the difficulties this entails are discussed.1

3. The new model. Our mathematical formulation of the alloy solidification prrocess is

based directly on the basic conservation laws of mass and internal energy, and on the

assumption of local thermodynamic equilibrium (so that the phase diagram determines the

phase locally at each instant of time). We model the process at a macroscopic level,

entirely avoiding any discussion regarding the microstructure of the interface. At this stage

we have omitted convective effects and chemical reactions, focusing only on the coupling

between heat conduction and material diffusion. The mass and energy conservation

equations are taken to hold globally over the region occupied by the alloy but in a

distributional sense instead of pointwise in each phase separately (which is the case in

Rubinstein's model described in Sec. 2). In other words, we begin with a "weak

formulation" which reduces to a classical pointwise one whenever the functions involved

are sufficiently smooth. The interface conditions are then automatically satisfied, provided

that the interface is a smooth surface. Our weak formulation still expresses the fundamen-

tal conservation laws even if the interface is a thick region and not a surface.

3.1. General one-fluid equations of a binary mixture. We begin with general equations

describing a compound fluid consisting of two components A and B, always considered to

be at the same temperature. We assume that there are no body forces acting, no chemical

reactions and no convection taking place, so mass is transfered only by diffusion and heat

only by conduction. Then the conservation laws for mass and energy are (cf. Woods [26,

pp. 209-213]):
0C

p-^+V-^= 0, i — A, B, (3.1)

Pj;+V-q = <t>, (3.2)

where p = constant is the fluid density, C, the concentration (mass fraction) of component

/, Ji the diffusion momentum (= pwt, with vv, the diffusion velocity) of component i, u the

(thermodynamic) specific internal energy of the fluid mixture, q the energy flux and 4> the

internal heat source or sink (radiation heat). The only approximation made in the

derivation of (3.2) is the "weak diffusion approximation" by which terms quadratic in the

diffusion vectors vv, and Jt are neglected (Woods [26, p. 212]) and it follows that

q = Q + hA JA + TigJg, (3-3)

where Q denotes the heat flux and hi the partial specific enthalpy of component /.

'After the circulation of a previous version of this work as an Oak Ridge National Laboratory Report, the

recent paper by Luckhaus and Visintin [28] was brought to our attention by Professor Ockendon. Their

appraoch is also via non-equilibrium thermodynamics but with a different aim. In the solid and liquid their

model coincides with ours, but they assume that the interphase is a smooth surface. Thus they do not model

the mushy zone, which is the main objective of this work.
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Constitutive equations, relating the fluxes J, and Q to the thermodynamic driving forces

Vg; and vT/T, where g, = partial specific Gibbs energy (chemical potential) of i, are

provided by the following first-order phenomenological laws of modern (irreversible)

thermodynamics:

Jt = -£A,y- V[g,]r+ 8, - i = A,B, (3.4)
j

Q = -K • • V [gy] r (3.4)
j

Here [g,]T means we take g, as if isothermal, the thermal contribution being included in

the VT terms (cf. Rosenberger [16, p. 222]). They are generalizations of Fick's and

Fourier's Laws (Woods [26, p. 215]). The phenomenological tensors k, A,y, 8,, t), have all

the same structure (described in Woods [26, p. 215]) and satisfy Onsanger's reciprocal

relations from which it follows that

AA ~ BA = ^ A B = Agg,

8a = Ha = -Tie = -8/j-

Since, also for a binary mixture, JA + JB = 0, we can express (3.3) and (3.4) as JA = — JB,

JB ~ ~ ^ BB ^7 [ Sb ~~ 8A ] T 8g ry ,

Q = -K • ~ + 8S • v[gB - gA]T, (3.5)

q Q + (h F hA)JB.

In addition to the conservation laws and constitutive relations, the Gibbs relation:

du = Tds + (gB — gA) dC must hold and equations of state u = u(C, T), g, = g,(C, T)

must be specified.

Now we introduce the notations

M(c,r) = gB- gA, (j/g)

h(C,T) = hB-hA, (J/g)

and the following macroscopic transport coefficients:

conductivity k( C, T) = y k (J/m-sec °C),

diffusivity D( C, T) = — ■— A BB (m2/,sec),

thermal diffusion coefficient (Soret) 8(C, T) = — 8fi (w2/sec °C),

diffusion-thermo coefficient (Dufour) P(C, T) = —8B (J/m sec).

All these tensors retain the structure of the original phenomenological ones [26, p. 215].
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This notation already indicates that we consider the concentration C and temperature T

as the primary independent thermodynamic variables describing the state of the material.

In order to avoid confusion with the standard notation in which the internal energy is

considered as a function of the entropy and concentration, we shall denote the specific

energy u by e(C, T), (usually called enthalpy in the context of the Stefan problem). In

terms of these independent variables the Gibbs relation becomes (see Appendix)

de = cdT + T"~T9T dC,

where c(C, T) denotes the specific heat capacity of the fluid.

In this notation, the conduction-diffusion model for the binary fluid takes the following

form:

Equations:

~ = V [D vC] - V [8 - vr],

a (3-6)
p"S7 = V ■ [(k - p/i8) • vr] + V • [(p/iD - P) • VC] + <t>.

Fluxes:

JR = -pD • vC + p8 • vr,

Q = -k • vT+ 3 • vC, (3.7)

q= Q + hJB.

Relations'.

de = cdT fi TdJ, dC,

e = e(C,T), (3.8)

M = M(C, T),

phase diagram.

3.2. The Gibbs relation. In the previous section nothing was said about the phase change

process. The Eqs. (3.6)—(3.8) describe heat and mass transfer in any binary fluid, in any

phase. The phases can only be distinguished by the equation of state

e = e(C,T),

which we have to specify subject to the phase diagram and the Gibbs relation.

Our assumption of local thermodynamic equilibrium implies the validity of the equi-

librium phase diagram of the alloy for the elementary cell 0*. We consider SP to be small

enough to possess nearly uniform properties but much larger than a mean free path. The

observer's time scale is taken to be of the order of magnitude of the intrinsic time scale dt

of 3s (the time it takes for an infinitesimal change in the state of ^to occur).

We shall assume that the phase diagram of the alloy has the simple form shown in

Figure 1. The liquids and solidus curves T = fj(C) or C = gj(T),j = /, 5, demarkate the
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three possible phases for 3P\

liquid, 0V T>f,(C) or C ̂  g,(T),

solid,tPs: T <fs(C) or C > gs{T),

inter-phasfs(C) < T < f,(C) or g,(T) < C < gs(T).

The inter-phase is not a pure phase but a mixture of liquid and solid. Introducing

the

1, C < g,(T)(liquid)

liquid fractionX(C, T) = —y—, g,(T) < C < gs( 7) (inter-phase)
7 s(T)~ g,( T)

{0, g,{T) < C(solid)

(3.9)

by an application of the lever rule (cf. Chalmers [4, p. 6]), we can write any specific

(extensive) property Xm of SPm as

Xm = XX1 +(1 -X)XS. (3.10)

In the liquid or solid the Gibbs relation is

deJ = CjdT + aJ - T^~
M a t

dC, j = /, 5.

In fact, the term in the brackets coincides with the difference hJ:= hJB — hJA between the

partial specific enthalpies at constant temperature, because

h = ft - Tdfi/dT (3.11)

as we show in the Appendix (cf. (A7)). Hence

deJ = CjdT + V dC, j = l,s. (3.12)

In the inter-phase, applying (3.10) to the energy e, we have

em = Xe' +(1 - X)es,

whence

dem = X de' + (1 — X) des +(e' — es) dX

. de1 , , , des

W+( ~ ^~dT
dT +

. de' ,, . , des

"a7+ ( ~ )_a7
dC +(e' - es)dX

= [\c,+(l - A)cJ dT + [Xh' +(1 - A)/js] dC + (<?' - es) dX.

Note that

L(T):= e'(gl(T),T)-e°(gs(T),T) = latent heat

of fusion. Defining

+(1 - X)cs, (3.13)

and

A" = Xh' +(1 - X)h\ (3.14)
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the Gibbs relation for^OT is

dem = cmdT +hm dC + LdX. (3.15)

In fact, since dX = 0 in the liquid or solid, the Gibbs relation (combining both (3.12) and

(3.15))

dej = CjdT +hJ dC + LdX, j = l,m,s, (3.16)

is valid in any phase j = /, m, s.

Note that chemical equilibrium between adjacent phases requires the chemical potential

ju to be continuous across the inter-phase and therefore constant in C at each T in the

inter-phase region of the phase diagram. Consequently, 9ju/3C vanishes in the inter-phase

and diffusion occurs there only due to the temperature dependence of the diffusivity

D(C, T).

On the other hand, the specific heat, c, as well as the partial specific enthalpy, h, are, in

general, discontinuous across the inter-phase and the averagings (3.13) and (3.14) make

the quantities

(c,(C,T), f,(C) < T,

c(C,T) = I cm(C,T), fs(C) < T < f,(C), (3.17)

U(c,r), T<f,(c),

and

(h\C,T), f/(C) < T,

h(C,T)= lhm(C,T), fs(C)<T<f,(C), (3.18)

\hs(C,T), T <fs(C),

continuous but with discontinuous derivatives across the liquidus and solidus. Defining

e(C, T) similarly as eem, es according to phase, we can express the Gibbs relation (3.16)

in any phase as

de = c dT + h dC + L dX. (3.19)

3.3. Equation of state. The differential of energy is determined by the Gibbs relation

(3.19). Since e is a state variable, its value depends only on the initial and final states and

not on the path joining these states on the phase diagram. Thus de must be an exact

differential whenever smooth. This requirement imposes certain compatibility conditions

among the thermodynamic data c,h,L and the phase diagram. Then we can define the

energy e(C, T) by integration of the exact differential de along a convenient path. Taking

as reference state the point (0, Tref), with Tref a high temperature, and following the path

shown in Fig. 2, the energy (drop) of SP at state (C, 7") is given by the following
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expressions:

For//(C) < T,

e(C,T)= fCh'(i, Trel) di + [Tc,(C, r,) dr,;

For/s(C)< T </,(C),

e(C,T)= fCh'((,Tn[)d(+ f''{C)cl{C,T]) dn + /'
0 ' ref ^(C)

For T < fs(C),
rcT//^ x , /'//<c»

Cr 1 I / / \ 3A(C, 7))cm(C, V) + i(i?) ^ 

(C,T)= f h\i,TTel)dt+ [M )cl(C,v)dv
J0 JTr

+

The term

ffAC) cjc,v) + L(v)^-^L dn+r Cs(c,v)dv.
Jf.ir\ Jfir\7/(0

9A(C, rj)

Jfjc>

rT . 9A(C, tj)
/ L^> 3T d11
fi(C) dT

represents, of course, the latent heat contribution to the energy.

Introducing the augmented specific heat

c(C, 7) = c(C, 7) + L(7) 9A(^r) , (3.21)

where c is given by (3.17) and A by (3.9), we can write (3.20) simply as

e(C, 7) = pi'U, rref) ^ + fTc(C, t)) rfi,. (3.22)
•'o •/rrcf

Thus e(C, T) has discontinuous derivative de/dT = c, because 9A/dT jumps across the

liquidus and solidus curves. Note moreover that

9A(C,T) g's(T) - A[g;(r) - g',(T)] \g',(T)+(\ -\)g[(T)

a T g,(T)-g,(T) gs(T)-g,(T)

c
CONCENTRATION

Fig. 2. Integration Path for Energy Computation.
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in the inter-phase since g's(T), g',(T) > 0, and = 0 in the liquid and solid. Hence

£-t(C.T)-c + L$>c>0,

(in fact it is bounded away from zero) everywhere, and therefore, given C and e, the

equation

e(C, T) = e

is uniquely solvable locally for T. It follows that the pair C, e characterizes the state as

well as C, T does.

3.4. The binary alloy solidification model. In summary, the model consists of the Eqs.

(3.6) with e given by (3.22) (or more explicitly by (3.20)) together with the phase diagram.

The coupled PDE system (3.6) is to hold in the domain S2 occupied by the alloy. Since

many of the coefficients, as well as C, T and e are not differentiable across interfaces, the

PDEs can only be required to hold in distribution sense, as discussed earlier. Thus, they

are valid pointwise wherever the variables are smooth and appropriate jump conditions

will hold automatically. Such conditions could be stated explicitly if we assumed that an

interface is a piecewise-C1 surface (all one has to do is multiply the PDE's by a test

function and integrate by parts separately over the liquid, inter-phase and solid). How-

ever, imposing the PDE's over the whole domain in distribution sense is both more general

and more convenient, and also free of the shortcomings and inconsistencies of classical

formulations.

The thermodynamic data c, L, ju, as well as the transport coefficients k, D, 8, |3 are

determined experimentally, at least in the liquid and solid. For theoretical purposes we

assume them known everywhere and satisfying the necessary compatibility conditions for

e to be path-independent (cf. Sec. 3.3), and as we observed in Sec. 3.2 (see discussion

following (3.16)) 3ju/3C must vanish in the interphase. For practical purposes (computa-

tions), in order to fill the gaps in available data, one has to make physically reasonable

approximations regarding their values.

The PDE system (3.6) is already in a form suitable for numerical solution. Knowing C,

T we can update C and e at the next time step and then use the definition of e, (3.22), to

find T. This is analogous to the "enthalpy method" for the Stefan problem. It requires

however the inversion of the energy, i.e. solving for T the complicated equation e(C, T) =

e. It is possible to write (3.6) in a more convenient form, by eliminating e completely from

the equations as follows.

We rewrite the Gibbs relation (3.19) in the form

de = , 9A
c + dT dT + t , 9A

a c dC,

and use it to express er in the energy equation, in terms of Tt and Cr We move the C,-term

to the right-hand-side and substitute for C, from the concentration equation. After some

cancellations and regroupings, and using relation (3.11) the energy equation takes the

form

, 3AC+L9T Tt = V -(k ■ vT - 3 • vC) + pL9^1 ^ V (C • VC - 8 • vT)

+ pVh -(C ■ VC - 8 • VTJ) + ip.
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Let us point out that 3A/3T and 3A/3C are explicitly known from (3.9). In fact, 3A/3T is

given in (3.23) where we noted that it is always > 0. Similarly,

3(1 — X) 3A 1 „ . , . ,
 ^— = -^7= + T^r\ > 0 in the intei"-Phase< (3-24)

9C ac gs(T)-gi(T)

- 0 elsewhere.

In summary, the model consists of the strongly coupled quasilinear (not necessarily

parabolic) system for the unknowns C and T:

C, = V (D • vC - 8 • vr),

r 3A
C+L3f

T, = V (k ■ VT - p ■ VC) + A' V (D VC - 8 - VT)

+ v(pJt) "(D • VC - 8 • vr) + (3.25)

and the phase diagram of the alloy as in Fig. 1. The system is to hold in distributional

sense in the region 12 occupied by the alloy, and appropriate initial and boundary

conditions must be specified.

4. Parabolicity of the PDE System.

4.1. Parabolicity condition. A system of partial differential equations of the form (3.25)

is classified as parabolic if the coefficient matrix of the highest order derivatives is

positive. For a 2 X 2 non-symmetric matrix [a,..] this amounts to the condition

(al2 + a21) < ^al\a22- (4-1)

Before we can apply this to our system its principal coefficients must have the same units,

and the simplest way of achieving this is to undimensionalize the temperature by replacing

T by T/AT for some convenient temperature difference A7" (e.g. AT = TB — TA). The

resulting condition for parabolicity is (for scalar D, k, 8, P)

/? + pLD\r
  * \ rr< + SAT

pcAT
< 4D— pLSXc. (4.2)

pc

4.2. Parabolicity in the absence of cross effects. For /? = 8 = 0, the parabolicity condition

(4.2) reduces to

LD\C

cAT

which can be rearranged in the form

3A
3C

< 4

2 k
< 4D-,

pc

kAT\tcAT

pDL){ L )
)■ (4.3)

We observe immediately that in the solid and liquid where Ac = 0, the condition is

satisfied automatically. In the inter-phase, we have

Xc= 7^r\~ T?T and c = c + L\t>c
gs(T)~ g,(T)
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(see (3.9) and (3.23)), so (4.3) will be satisfied if

This can be expressed in a better form by introducing the thermal diffusivity a := k/pc.

Then, the condition sufficient for parabolicity becomes

4(f)(£2I)[gJ(r)-g/(r)]2> 1. (4.4)

Typically, a/D » 1 and the Stefan number cAT/L > 1, so (4.4) can fail only for

temperatures very close to TA (see (Fig. 1)). We conclude that

in the absence of cross effects, the system (3.25) can fail to be

parabolic only inside the inter-phase and only for tempera-

tures very close to TA.

4.3. Parabolicity in the presence of cross effects. For simplicity we consider the situation

only in the solid and liquid where \c = XT = 0. Then (4.2) reduces to

(1
pcAT

+ sat
2

< 4Da, (4.5)

where a = k/pc. Since, typically, a > D, simple sufficient conditions for parabolicity in

this case are

- and S ■ AT < D < a.
pcAT

It is conceivable however that (4.5) (or rather (4.2)) may be violated for some materials.

This will happen, if, for example,

P > 0, 8 ■ AT > 2a >2D,

in which case the system will not be parabolic. We do not know if such materials exist.

5. Particular cases of the general model.

5.1. No cross effects. It is almost always the case that the coefficients 8 and (3, which

measure the Soret and Dufour effects, are much smaller in magnitude than the direct

effect coefficients k and D. Thus, taking 8 = 3 = 0, the system becomes

C, = V -(D ■ VC),

pcT, = V -(k • vT) + V -(D • VC) + v(ph) -(D • VC) + i>, ^

where c = c + LdA/dT (as in (3.20)).

5.2. Slowly varying chemical potential. If the chemical potential can be considered as

constant during the process, then so is h, so = 0 and the temperature equation in (5.1)

reduces to (also taking k, D as scalars for simplicity):

r 3\

C + Lat
Tt = V -(kvT) + pL^-^- V (DvC) + <t>. (5.2)
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In the liquid or solid, this is simply the heat equation

pcT, = V •(kvT) + <j>,

but in the inter-phase it is augmented by two latent heat terms. One term affects the

specific heat and the other adds a heat source due to material diffusion. The diffusion

equation in (5.1) and (5.2) constitute a corrected version of the Rubinstein model [16],

which does not a priori preclude the appearance of a mushy zone.

Note that taking D = 0 in the inter-phase uncouples the equations and then (5.2) is

exactly the conduction equation used in [2] and [27] to account for the latent heat

evolution.

5.3. Recovery of the Stefan problem. For a pure material we have

M = 0, C = constant, f,(C) = fs(C) = const. = Tcr, gs{T) = g,{T).

Thus, the liquid fraction becomes the Heaviside step function H:

n, t > t
Mr,-W T<t„-H(T~TJ

and the specific heat

c + L^ = c + L-8(T- Tcr),

where 8 denotes the Dirac delta. Then, taking Txe{ = Tcr in (3.15),

e(T)= (Tc(i)di= (TcU)d$ + L- H(T- Tcr).
Tcr Tcr

This is exactly the "enthalpy" of the classical Stefan Problem (cf. Elliot-Ockendon [8]).

Our model reduces to

pe, = V •(kvT) + <#>,

which is the usual enthalpy formulation of the Stefan problem.

Appendix. We consider the temperature T and concentration C as the independent

thermodynamic variables and seek to express the Gibbs relation

du(s,C) = Tds + ndC (Al)

in terms of these variables. Recall that the pressure-volume term is missing due to our

assumption of constant density.

Replacing u(s,C) by e(C, T), whence

3e 9e
d'-vrdT* acdc-

and ds by

9s 05 , „

9T + aC '
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(Al) becomes

p r) c

dC, (A2)de = T~dT +
^+TdC

and therefore we have

3 € 051
= T—= = c(C,T) = specific heat capacity, (A3)

dial

and

de/dC = n + Tds/dC. (A4)

Differentiating (A3) w.r.t. C, (A4) w.r.t. T, and equating the results we see that

0s/0C = -9/i/ar. (A5)

Therefore (A2) takes the form

de = cdT + [fx - Tdfi/dT] dC. (A6)

Next we show that

ja - Tdfi/dT = h (A7)

where A := hB — hA with

/j,- = (dh/dCj)T,c = partial specific enthalpy of species i = A, B.

Indeed, the (specific) enthalpy h, Gibbs function g, entropy s and temperature T are

related by (see Woods [26]) h = g + 7s. Differentiating w.r.t. C,, i = A, B under constant

temperature, subtracting the results and using (A5)

3s 3s \ 3
h = h,-h,-g,-lA + T^-^ = f-T^,
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