Nonoscillation in a delay-logistic equation
Author:
K. Gopalsamy
Journal:
Quart. Appl. Math. 43 (1985), 189-197
MSC:
Primary 34K15; Secondary 92A15
DOI:
https://doi.org/10.1090/qam/793526
MathSciNet review:
793526
Full-text PDF Free Access
References |
Similar Articles |
Additional Information
G. E. Hutchinson. Circular casual systems in ecology, Ann. N. Y. Acad. Sci. 50 (1948), 221–246
- G. Stephen Jones, On the nonlinear differential-difference equation $f^{\prime } (x)=-\alpha f(x-1)\{1+f(x)\}$, J. Math. Anal. Appl. 4 (1962), 440–469. MR 151690, DOI https://doi.org/10.1016/0022-247X%2862%2990041-0
- S. Kakutani and L. Markus, On the non-linear difference-differential equation $y^{\prime } (t)=[A-By(t-\tau )]y(t)$, Contributions to the theory of nonlinear oscillations, Vol. IV, Annals of Mathematics Studies, no. 41, Princeton University Press, Princeton, N.J., 1958, pp. 1–18. MR 0101953
- E. M. Wright, A non-linear difference-differential equation, J. Reine Angew. Math. 194 (1955), 66–87. MR 72363, DOI https://doi.org/10.1515/crll.1955.194.66
G. E. Hutchinson. Circular casual systems in ecology, Ann. N. Y. Acad. Sci. 50 (1948), 221–246
G. S. Jones. On the nonlinear differential-difference equation $f’\left ( x \right ) = - \alpha f\left ( {x - 1} \right )\left [ {1 + f\left ( x \right )} \right ]$, J. Math. Anal. Appl. 4 (1962), 440–469
S. Kakutani and L. Markus. On the nonlinear difference-differential equation $y’\left ( t \right ) = \left [ {A - By\left ( {t - \tau } \right )} \right ]y\left ( t \right )$, Contributions to the Theory of Nonlinear Oscillations. Vol. IV, Princeton University Press, Princeton, N.J. (1958), 1–18
E. M. Wright. A nonlinear difference-differential equation, J. Reine. Angew. Math. 194 (1955), 66–87
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC:
34K15,
92A15
Retrieve articles in all journals
with MSC:
34K15,
92A15
Additional Information
Article copyright:
© Copyright 1985
American Mathematical Society