On wave propagation in linear viscoelasticity
Authors:
W. J. Hrusa and M. Renardy
Journal:
Quart. Appl. Math. 43 (1985), 237-254
MSC:
Primary 45K05; Secondary 73F99
DOI:
https://doi.org/10.1090/qam/793532
MathSciNet review:
793532
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We discuss the initial value problem in one-dimensional linear visco-elasticity with a step-jump in the initial data. If the memory kernel is sufficiently smooth on $\left [ {0,\infty } \right )$, the solution exhibits discontinuities propagating along characteristics and a (higher order) stationary discontinuity at the position of the original step-jump. For a singular memory kernel, the propagating waves are smoothed in a manner depending on the nature of the singularity in the kernel, but the stationary discontinuity remains. We also discuss the effects of these phenomena on the regularity of solutions with arbitrary initial data.
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, 1965
J. D. Achenbach and D. P. Reddy, Note on wave propagation in linearly viscoelastic media, Z. Angew. Math. Phys. 18, 141–144 (1967)
Bateman Project, Tables of integral transforms, Vol. 1, McGraw-Hill, 1954, p. 225
D. S. Berry, A note on stress pulses in viscoelastic rods, Phil. Mag., Ser. 8, 100–102 (1958)
R. M. Christensen, Theory of viscoelasticity, Academic Press, 1971
- Boa-Teh Chu, Stress waves in isotropic linear viscoelastic materials. I, J. Mécanique 1 (1962), 439–462. MR 149753
- Bernard D. Coleman, Morton E. Gurtin, and Ismael Herrera R., Waves in materials with memory. I. The velocity of one-dimensional shock and acceleration waves, Arch. Rational Mech. Anal. 19 (1965), 1–19. MR 175397, DOI https://doi.org/10.1007/BF00252275
- Gustav Doetsch, Introduction to the theory and application of the Laplace transformation, Springer-Verlag, New York-Heidelberg, 1974. Translated from the second German edition by Walter Nader. MR 0344810
M. Doi and S. F. Edwards, Dynamics of concentrated polymer systems, J. Chem. Soc. Faraday 74, 1789–1832 (1978) and 38–54, 75, (1979)
- William F. Donoghue Jr., Distributions and Fourier transforms, Pure and Applied Mathematics, vol. 32, Academic Press, New York, 1969. MR 3363413
- George M. C. Fisher and Morton E. Gurtin, Wave propagation in the linear theory of viscoelasticity, Quart. Appl. Math. 23 (1965), 257–263. MR 191196, DOI https://doi.org/10.1090/S0033-569X-1965-0191196-X
- J. M. Greenberg, Ling Hsiao, and R. C. MacCamy, A model Riemann problem for Volterra equations, Volterra and functional-differential equations (Blacksburg, Va., 1981), Lecture Notes in Pure and Appl. Math., vol. 81, Dekker, New York, 1982, pp. 25–43. MR 703531
- J. M. Greenberg and L. Hsiao, The Riemann problem for the system $u_{t}+\sigma _{x}=0$ and $(\sigma -f(u))_{t}+(\sigma -\mu f(u))=0$, Arch. Rational Mech. Anal. 82 (1983), no. 1, 87–108. MR 684415, DOI https://doi.org/10.1007/BF00251726
- Kenneth B. Hannsgen and Robert L. Wheeler, Behavior of the solution of a Volterra equation as a parameter tends to infinity, J. Integral Equations 7 (1984), no. 3, 229–237. MR 770149
M. Ianelli, Some results on linear integro-differential equations in a Banach space (preprint)
- G. S. Jordan, Olof J. Staffans, and Robert L. Wheeler, Local analyticity in weighted $L^{1}$-spaces and applications to stability problems for Volterra equations, Trans. Amer. Math. Soc. 274 (1982), no. 2, 749–782. MR 675078, DOI https://doi.org/10.1090/S0002-9947-1982-0675078-4
J. Y. Kazakia and R. S. Rivlin, Run-up and spin-up in a viscoelastic fluid, Rheol. Acta 20, 111–127 (1981)
E. H. Lee and J. A. Morrison, A comparison of the propagation of longitudinal waves in rods of viscoelastic materials, J. Polymer Sci. 19, 93–110 (1956)
- R. C. MacCamy, A model Riemann problem for Volterra equations, Arch. Rational Mech. Anal. 82 (1983), no. 1, 71–86. MR 684414, DOI https://doi.org/10.1007/BF00251725
- A. Narain and D. D. Joseph, Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid, Rheol. Acta 21 (1982), no. 3, 228–250. MR 669373, DOI https://doi.org/10.1007/BF01515712
A. C. Pipkin, Lectures on viscoelasticity theory, Springer, 1972
- M. Renardy, Some remarks on the propagation and nonpropagation of discontinuities in linearly viscoelastic liquids, Rheol. Acta 21 (1982), no. 3, 251–254. MR 669374, DOI https://doi.org/10.1007/BF01515713
P. E. Rouse, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21, 1271–1280 (1953)
- Roger I. Tanner, Note on the Rayleigh problem for a visco-elastic fluid, Z. Angew. Math. Phys. 13 (1962), 573–580 (English, with German summary). MR 151091, DOI https://doi.org/10.1007/BF01595580
B. H. Zimm, Dynamics of polymer molecules in dilute solutions: viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys. 24, 269–278 (1956)
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, 1965
J. D. Achenbach and D. P. Reddy, Note on wave propagation in linearly viscoelastic media, Z. Angew. Math. Phys. 18, 141–144 (1967)
Bateman Project, Tables of integral transforms, Vol. 1, McGraw-Hill, 1954, p. 225
D. S. Berry, A note on stress pulses in viscoelastic rods, Phil. Mag., Ser. 8, 100–102 (1958)
R. M. Christensen, Theory of viscoelasticity, Academic Press, 1971
B. T. Chu, Stress waves in isotropic linear viscoelastic materials, J. Mécanique 1, 439–446 (1962)
B. D. Coleman, M. E. Gurtin and I. R. Herrera, Waves in materials with memory, Arch. Rational Mech. Anal. 19, 1–19 and 239–265 (1965)
G. Doetsch, Introduction to the theory and application of the Laplace transformation, Springer, 1974
M. Doi and S. F. Edwards, Dynamics of concentrated polymer systems, J. Chem. Soc. Faraday 74, 1789–1832 (1978) and 38–54, 75, (1979)
W. F. Donoghue, Distributions and Fourier transforms, Academic Press, 1969
G. M. C. Fisher and M. E. Gurtin, Wave propagation in the linear theory of viscoelasticity, Q. Appl. Math. 23, 257–263 (1965)
J. M. Greenberg, L. Hsiao and R. C. MacCamy, A model Riemann problem for Volterra equations, in Volterra and Functional Differential Equations, K. B. Hannsgen et al. (ed.), Dekker, 25–43, 1982
J. M. Greenberg and L. Hsiao, The Riemann problem for the system ${u_t} + {\sigma _x} = 0$ and ${\left ( {\sigma - f\left ( u \right )} \right )_t} + \left ( {\sigma - \mu f\left ( u \right )} \right ) = 0$, Arch. Rational Mech. Anal. 82, 87–108 (1983)
K. B. Hannsgen and R. L. Wheeler, Behavior of the solutions of a Volterra equation as a parameter tends to infinity, J. Integral Equations (to appear)
M. Ianelli, Some results on linear integro-differential equations in a Banach space (preprint)
G. S. Jordan, O. J. Staffans and R. L. Wheeler, Local analyticity in weighted ${L^1}$-spaces and applications to stability problems for Volterra equations, Trans. Amer. Math. Soc. 174, 749–782 (1982)
J. Y. Kazakia and R. S. Rivlin, Run-up and spin-up in a viscoelastic fluid, Rheol. Acta 20, 111–127 (1981)
E. H. Lee and J. A. Morrison, A comparison of the propagation of longitudinal waves in rods of viscoelastic materials, J. Polymer Sci. 19, 93–110 (1956)
R. C. MacCamy, A model Riemann problem for Volterra equations, Arch. Rational Mech. Anal. 82, 71–86 (1983)
A. Narain and D. D. Joseph, Linearized dynamics for step jumps of velocity and displacement of shearing flows of a simple fluid, Rheol. Acta 21, 228–250 (1982)
A. C. Pipkin, Lectures on viscoelasticity theory, Springer, 1972
M. Renardy, Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids, Rheol. Acta 21, 251–254 (1982)
P. E. Rouse, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J. Chem. Phys. 21, 1271–1280 (1953)
R. I. Tanner, Note on the Rayleigh problem for a viscoelastic fluid, Z. Angew. Math. Phys. 13, 573–580 (1962)
B. H. Zimm, Dynamics of polymer molecules in dilute solutions: viscoelasticity, flow birefringence and dielectric loss, J. Chem. Phys. 24, 269–278 (1956)
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC:
45K05,
73F99
Retrieve articles in all journals
with MSC:
45K05,
73F99
Additional Information
Article copyright:
© Copyright 1985
American Mathematical Society