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Abstract. This paper provides a theoretical description of the 3-dimensional flow

produced by a surface pressure distribution moving in a channel at speeds such that the

Froude number based on depth is near 1. The transient flow begins in a fully 3-dimen-

sional manner, then focuses away from the distribution, due to the side walls, into

predominantly 2-dimensional "solitary" or "cnoidal" waves. Two sets of these waves are

generated continuously by the distribution; one set runs upstream while the other extends

downstream.

I. Introduction. This paper grew out of a desire to give a mathematical explanation for

the solitary waves produced by Ertekin et al. [4] when they towed a ship model in a tank

at Froude numbers (based on depth) near 1. Although trains of solitary waves have been

computed as an outcome of several related 2-dimensional problems (see, for example,

Akylas [1], Chu et al. [2], Cole [3], Ertekin et al. [4], and Wu and Wu [5]), this derivation is

based on a 3-dimensional source.

The asymptotic methods used here show that for small pressure distributions, the

transient flow begins by satisfying the classical 3-dimensional linear theory. The free

surface then grows with time to become predominantly 2-dimensional away from the

disturbance [there satisfying the Korteweg-de Vries (KdV) equation with a forcing term]

while remaining fully 3-dimensional only in a small region near the disturbance.

In the following sections, the problem formulation of flow past a pressure distribution is

given, the classical linear theory is worked out, and the KdV description of solitary wave

generation in the outer region and the quasi-linear 3-dimensional, large time description of

flow near the pressure distribution are derived. Numerical computations of the solitary

wave generation are presented.
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2. Problem formulation. The qualitative results of the experiments of Ertekin et al. can

be obtained by modeling the ship as an arbitrarily small pressure distribution moving on

the free surface. The coordinate system used is depicted in Figs. 1 and 2.

The mathematical problem is put in nondimensional form by scaling according to the

width of the channel and the velocity of the pressure distribution relative to the

undisturbed fluid. The important nondimensional parameters are the Froude number F

and the pressure strength e. For this problem, F is taken to be close to 1 and e is very

much less than 1.

Under the assumption that the flow is inviscid, incompressible, and irrotational, the

velocity potential <I> satisfies Laplace's equation with boundary conditions along the

bottom, sides, and free surface

$ + + $ =0
xx 1 yy zz 7

= 0 on z = 0,

= 0 on y = ± 1, ^

on z = h + £(x, y, t),

and

2e5(x)6(>') + F2h<5>, + ^~(<1>A2 + "fr,2 + 3>,2) + z = + h on z = h + £(jc, y, t).

Observation of small ship models reveals that for a small time, the free surface is basically

undisturbed everywhere except near the pressure distribution. The disturbance grows with

time until the free surface exhibits 2-dimensional nonlinear (solitary and cnoidal) waves

away from the pressure distribution while remaining fully 3-dimensional only near the
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Fig. 1. Side view of coordinate frame fixed with respect to the pressure distribution.
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Fig. 2. Top view of coordinate frame fixed with respect to the pressure distribution.
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ship. Thus, the mathematical problem can be broken up into three parts. First, classical

linear theory can be used to describe the solution everywhere for small time. Second, a

predominantly 2-dimensional nonlinear outer solution can be used to describe the free

surface away from the pressure distribution for large time. Third, a 3-dimensional

quasi-linear inner solution can be used to describe the flow near the distribution for large

time.

3. Linear theory. The classical linear theory assumes that $ and £ satisfy expansions of

the form

0 = x + ed(x, y,z,t) + e282(x, y,z,t) +

and

£ = et)(x, y, t) + e2t)2(x, y,t) +

where the order e relations are

0XX + Oyy + = 0,

6, = 0 on z = 0,

0y — 0 on y = ± 1,

ez = Vx + V, on z = h,

and

26(x)S(j) + F2hd\ + F2hOx + 17 = 0 on z = h.

These equations can be solved exactly, giving the free surface solution

00 o

V= L — - f°° e-'"(«2 + n\2)1/2F2hch{K2 + n2-n2)\/2
IT J 

(2)

n = 0

-2vr~-(K-yr~ )e^+^' +(>C + yT~ )g''C-,r-)'

F2«2/ich(K2 + n2n2)1/2 ~(k2 + n2ir2)l/2 sh(x2 + n2ir2)\/2

where the symbol \! denotes the positive root of

dic cos niry,

(k2 + n2it2) sh (k2 + n2-n2)t

2j.„u/'„2 1 „2_2^1/2y F2h ch(«2 + n2it2)

and 8n is the «th Fourier series coefficient of S(y) on the interval -1 < y < 1; i.e.,

S(y) = E^=05„cosniry. This integral exists and is continuous for all finite time and all

values of the parameter F. However, as t tends toward infinity with F = 1. the terms

involving y remain bounded while the ^-independent term grows, giving

1 - exp(is3h2/6)
V ~ ( exp[-«(V;1/3)]

t—* co 2.1T J _t~* 00

F= 1
s2h2/ 3

ds.

Thus, the classical linear theory predicts that the given pressure distribution initially

produces a 3-dimensional disturbance which grows with time to become asymptotically

2-dimensional when F is near 1.
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4. Outer solution. The linear theory suggests that the solution away from the pressure

distribution satisfies an asymptotic expansion in which the * and t variables are large

compared to the y and z variables, the flow is predominantly 2-dimensional, and the free

surface height is larger than order e. These ideas are captured in the outer theory by using

the sketched coordinates x = e1/3x and t = et with F2 = 1 + e2/3K and the expansions

$ = x + e1/3
22

fy{x, t) + e2/3f2(x, t) - 2|-/ljEa(x, t)

+ e4/3| f3(x, i) - ||-f2Jx, t) + ^t) + G(x, y, z, f)J +

and £ = e2/3ri(x, t) + e4/3 J'') + ''' • The exact scaling used is the distinguished

limit of the general expansion of this form.

By substituting these expansions into Eq. (1), it is found that t) must satisfy the KdV

equation

2^ = Ti~^5 + y'lii5 + 8'(i)' ^

This is exactly the same equation found in the far field of flow past a small bump [3].

The outer solution matches the linear solution in an intermediate region as the outer

variables Jc and t tend to zero and the linear variables .x and t tend to infinity. This

intermediate region is defined along similarity curves in terms of the variables

x = (—) x = —and i = ( — ); = — with y -» 0 and ( —) -» oo.
V y / y1/3 \yJ y E^o W/e-o

Since the linear free surface £ = er](x, t) + ■ • ■ must match the nonlinear outer free

surface £ = e2/3f)(x, t) + • • • , this implies that fj(x, t) tends to zero as t tends to zero.

If one considers t —> 0 and neglects the term in (3), then the remaining terms must

satisfy the relation

/?2fj

T2t), = -K% + + <$'(■*)>

which has the solution

1 - exp(l/2(/kAT + iK3h2/3)t)
Vi= — (°

2tt J_
dk.

K + K2h2/ 3

In terms of the intermediate variables, this becomes

1 - exp(is3h2/6)
V, ~ yl/3t1/3 ■ y- f°° exp[~is(x/i^)]

F —* 0 -Z 77 J —e—»0

while the linear solution becomes

11/3

'p/'" hFx «p[-»('/<1/3)]

Thus e2/ir)i(x, t) ~ £^0 e7t(x, i) and the solutions match.

s2h2/ 3

1 - e\p(is3h2/6)

s2h2/3

ds,

ds.
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Fig. 3. Computed free surface for AT = 0 (F = 1).

Fig. 4. Computed free surface for K = — 1, -0.5, 0, 0.5, and 1 with t = 25.
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When computed numerically, Eq. (3) produces a periodic train of solitary waves which

run upstream. The free surface computations presented in Figs. 3 and 4 are a copy of

those given in [3]. Although Ertekin et al. observed experimentally that these waves break

for Froude numbers far enough away from 1, breaking cannot be predicted from this

theory.

In order to obtain the above results, it is not necessary to assume that the pressure

distribution is defined by the product of delta functions. It can be shown that all pressure

distributions with arbitrary shape f(x,y), where f(x, y) = Y.™=0f„(x) cosniry and

f-oofo(x)dx ~ 1/2, have the same asymptotic behavior in the far field. Thus, all such

pressure distributions appear in the far field to have been produced by a product of delta

functions. The actual shape of the pressure distribution affects only the flow near the

distribution.

5. Inner solution. The classical linear solution is valid for small time, /~e_0o(€-1),

and all x. The outer solution is valid for large time, t ~ e_0 0(e '), far away from the

disturbance, x — e_0 0(e-1/3). The solution near the pressure distribution, x ~ e_0

o(e~1/3), for large time, t ~ f_0O(e-1), completes the description and is given next.

The inner solution must match the outer solution as the outer variable x tends to zero.

As x -* 0, the outer solution takes the form

$ ~ x + e1/3/1(0, t) + e2/2xfl (0, t) + eH(x, y, z,t) + ■ ■ ■
x—*o

r2/3T)(0, t)

with £ ~ -x _o e2/3fi(0, t) + e£(x, y, t) +

= x( 1 - e2/3—^— ) + e1/3/i(0, t) + eH(x, y, z, t) +

t

y^0(th)

K<tV \ /" k<iv

\
y

t+o

Fig. 5. Regions of validity for the classical linear theory, KdV, and modified linear theories.
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The local flow has velocity Ul = 1 — e2/3rj(0, t)/h, height ht = h + e2/37j(0, t), and

Froude number squared F2 ~ f_0 F2( 1 — 3e2/3r|(0, t)/h). Since the numerical computa-

tions show that r)(0, t) > 0 for all t > 0 with F = 1 and the computations are continuous

as a function of the parameter F, the flow near the distribution is subcritical for all F

sufficiently close to 1. This allows a modified linear theory to be defined using local

parameters and the asymptotic expansion

0 = U/X + e1/3/1(0, t) + eH(x, y, z,t) +

with the free surface located at

z = h,+ ef(x, y,t) +

H and f satisfy the order e relations

Hxx + Hyy + Hz: = 0,

H, = 0 on z = 0,

Hy = 0 on y = +1,

Hz = Ufcx on z = h„

and

2S(x)S(y) + ~1HX + ^ = 0 on z = h,.

The free surface solution is

00 8 c

£ 7 / <•"„ 71 J
/7 = 0

(k2 + «27r2)1/2 sh [ ( k 2 + n2ir2)1/2hi\

F,2h,K2 ch[(/c2 + ] -(k2 + «2772)1/2 sh[(K2 + /l2^2)1,;2 ]

■cosnny + c sin k*xch k*ht

where the symbol / denotes the Cauchy principal value, k* is the positive root of

FfhfK c\\Kh/ — sh Kht = 0, and c is an arbitrary function of t which is determined by

matching to the outer solution.

The outer solution matches the inner solution in an intermediate region as the outer

variable x tends to zero and the inner variable jc tends to infinity. This intermediate

region can be defined in terms of the variable 3c = (e/y)1/3x = jc/y1/3, where (y/e)

-»e^0 oo and y -»e_0 0. In this region, the outer solution places the free surface at

, ,, .. . 1/JvJ0 + ,t) for 3c >0^
z ~ h + e t](0, t) + xe^yy I ' .J

x * o (''JjcvO , t) forx<0

d k

+ There is ajump in the slope of f/ at x = 0 of (r)i(0+ )- tj;.(0 )) = - 3/fi2 due to the presence of the term S'(x)

in the differential equation defining f/,

= KVi + YViix + 8'(x)- (3)
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while the inner solution assumes the form

sh ah/
z ~ h + e2/3T)(0, t) + e— f

\x\~* 00

cIk + ecsinK*xchK*hi
F/2h [Kchi<h i — sh« ht

~ h + £2/3tj(0,t) + 3ce2/3y1/3( —\ signx + ck*).
l*|-» oo \ 2 hi

By choosing ck* = (3/2h2) + ^^(0+, t), the solutions match.

6. Remarks. It is interesting to note that solitary waves were generated experimentally in

qualitatively the same fashion over a range of Froude numbers between 0.2 and 1.2. Thus,

it appears that the above ideas predict reasonable results even for values of e which are

not arbitrarily small.
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