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Abstract. The three real tensors introduced by Barnett and Lothe into the theory of

steady plane motions of an anisotropic elastic body are shown to have algebraic represen-

tations the structure of which is largely independent of material symmetry. The allied

form of the complex impedance tensor central to the analyses of surface and interfacial

waves in anisotropic elastodynamics is also obtained. A detailed study of the representa-

tions yields alternative routes to known results and a variety of new relations. The paper

concludes with a discussion of the invariance properties of quantities appearing in the

representations under rotations of the reference frame about the direction in which the

deformation is uniform.

1. Preliminaries. We are concerned in this paper with an elastic body 38 which is

homogeneous and of general anisotropy with respect to a natural reference configuration

0t. The discussion relates to small-amplitude motions of 38 which are plane and steady in

the sense that the displacement from 3ft is a function of xx — vt and x2 only, x1 and x2

belonging to a fixed rectangular Cartesian coordinate system xt, i = 1,2,3, and t being

the time. The speed v is regarded as a real parameter.

In the theory of steady plane elastodynamics a basic role is played by three real tensors,

first brought into a unified formalism by Barnett and Lothe [1], and a complex impedance

tensor introduced by Ingebrigtsen and Tonning [2]. For convenience we refer throughout

to a review article by Chadwick and Smith [3] for background information and references

to the original papers. The notations Sl5 S2, S3, and Z for the Barnett-Lothe and

impedance tensors adopted in [3] are followed here, but we take note of the alternatives

SL = S, S2 = -Q, S3 = -B and St = S, S2 = H, S3 = -L preferred by Barnett and Lothe

[1,4] and Ting [5], respectively. The following facts are sufficient for our immediate

purposes. First, S1( S2, S3, and Z are tensor-valued functions of the speed v defined on
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the half-open interval I = [v: 0 < v < v}, v being the limiting speed [3, Sec. VI. B],

Second. S2 is symmetric and, subject to the linear elasticity tensor in of the material

composing 38 being strongly elliptic, positive definite [3, Sec. IV, D]. Third, the relations

Sj = -S2S[S2\ (1)

S3 = —St 1 (I + S2), (2)

Z = S2_1(I + /Sj) (3)

connect the four tensors, I being the identity tensor and T indicating transposition. It

follows from (1) that S,S2 and S^Sj are skew-symmetric and then from (2) and (3) that

S3 is symmetric and Z Hermitian [3, Sees. IV, D, VII, D],

As in the preceding paragraph, dependence on v will be left implicit and, unless

qualified to the contrary, results are understood to hold in the subsonic interval I. The

symbol ® denotes the tensor product of two vectors; the trace and determinant of a

tensor are abbreviated to tr and det; and the principal invariants /A, IIX, IIIA of an

arbitrary tensor A are defined by

IA = trA, //A = ^ {(tr A)2 - trA2}, IIIA = det A.

2. Representation of S,. In view of the positive definiteness of S2 it follows from (1), on

taking the trace and determinant of each side, that

/Si = trSj = 0, ///Si = detSx = 0. (4)

The characteristic equation of Sj is thus

det (^ I — SJ = v3 + IIsv = 0, (5)

with

7/Si = -7trS2. (6)

Put W = SjS2, S = S2:. Then, as mentioned above, W is skew-symmetric and can be

expressed as

W = co(r ® q - q ® r),

where q and r are members of an orthonormal basis {p. q, r} [6, p. 29], Hence

Sj = WS = w{r ®(Sq) - q ®(Sr)},

and, from (6),

7/s, = "2[{(1 • <Stl)} (r '(Sr)} -(Sr)}2]- (7)

The terms in square brackets in (7) form a 2 X 2 principal minor of the matrix

representation of S relative to {p, q, r} and are accordingly positive, as is 7/s . We infer

from (5)2 that the eigenvalues of S: are + is, 0 where s is real and, without loss of

generality, nonnegative. We suppose henceforth that s > 0. An alternative proof that the

eigenvalues of Sj are + is, 0 can be obtained by setting W = SjS2, D = S2 in the

Appendix of [5].
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Since S, is a real tensor, eigenvectors associated with the eigenvalues ±is, 0 are of the

form a + /b, c where a, b, c are real vectors. We deduce from the eigenrelations

S^a + /b) = ±is(a ± /b), = 0, (8)

that

Sja = -^b, Sjb = sa, SjC = 0. (9)

If the vectors a0 + /b0, c0 satisfy (8), so do (a ± //?)(a0 + ;b0), yc0 where a, /?, y are

arbitrary real numbers such that a2 + /?2 + 0, y ¥= 0. If a0, b0, c0 is a particular solution

of (9), the general solution is therefore

a = aa0-/?b0, b = /?a0 + ab0, c = yc0. (10)

On account of the distinctness of the eigenvalues, a0, b0, c0, and hence a, b, c, are linearly

independent.

The vectors a', b', c' reciprocal to a, b, c are defined by

a' = g_1b Ac, b' = g_1c A a, c' = g_1a A b, (11)

with

g = [a,b,c].

The definitions (11) and the associated identity

a ® a' + b ® b' + c ® c' = I,

are used frequently, and without explicit mention, in the sequel.

Proceeding from Eqs. (9) we now obtain the representation

Sj = (Sxa) ® a' +(Sjb) ® b' +(Sxc) ® c'

= 5 (a ® b' - b ® a') (12)

of SL. It follows from Eqs. (10) and their reciprocals,

a' = (a2 + P2)~\aa'0 - f]b'Q),

b' = (a2 + /32) ~' (/3a'0 + abp), (13)

c = y_1Co,

that, for all allowable values of a, /?, y,

a ® b' - b ® a' = a0 ® b^ - b0 ® a'0.

This confirms that, in (12), a ® b' — b <8> a', as well as is uniquely determined by Sx.

The result of squaring (12) is

S2 = -(1 — F)(a ® a' + b ® b'), (14)

where

F= 1 - s2 = 1 - //Si = 1 + HrS2. (15)

The fact that the right-hand side of (14) is in spectral form demonstrates that -s2 is a

repeated eigenvalue and a, b, c a complete set of eigenvectors of S2. It should be noted,

however, that eigenvectors a, b of S2 corresponding to -52 do not necessarily satisfy Eqs.

(9)l,2-
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3. Representations of S2, S3, and Z. Equation (12) provides the relations

S[a' = 5b', S^b' = -5a', Sjc' = 0, (16)

reciprocal to (9). In combination with (1), rearranged as SjS2 = -S2S^, (16) and (9) yield

a' -(S2a') = b' -(S2b') = A, a'-(S2b') = 0, S2c' = Cc,

where (17)

C = c' ■ (S2c')-

Constructing the vectors S2a' and S2b' from their components relative to the basis {a, b, c}

we therefore have

S2a' = Aa, S2b' = Ab (18)

and, owing to the positive definiteness of S2,

A > 0, C > 0. (19)

Equations (18) and (17)4 lead to the representation

S2 = (S2a') ® a + (S2b') ® b + (S2c') ® c

= .4(a®a + b®b) + Cc®c (20)

of S2, with inverse

S2' = A~l(a' ® a' + b' ® b') + C"1c' ® c'. (21)

Introducing the tensor

G = a®a + b®b + c®c,

with determinant

detG = g2, (22)

we can rewrite Eq. (20) as

S2 = S2G, (23)

where

S2 = A(a ® a' + b ® b') + Cc ® c'. (24)

The right-hand side of (24) is in spectral form, A (twice) and C being eigenvalues and a,

b, c associated eigenvectors of S2. This means that A and C are uniquely determined by

S2 and it can easily be checked from (10) and (13) that a ® a' + b ® b' and c ® c', in

common with a ® b' - b ® a', are independent of a, /?, y. These tensors (but not G and

S2) are unique in the sense that the triad a, b, c can be chosen arbitrarily from the class

defined by (10).

The quantities uniquely determined by S2 are

A (a a + b b), Cc ■ c, (a • a + b • b) '(a ® a + b ® b), (c • c) 'c ® c.

Clearly this list can be replaced by A, C, a ® a + b ® b, c ® c if a, b, c are normalized so

that

a ■ a + b ■ b = 1, c • c = 1. (25)
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The conditions (25) imply, via (10), that

a - cos8, = sin5, y = +1, (26)

where S is arbitrary.

Substitution from (21), (14), and (12) into Eqs. (2) and (3) supplies the representations

S3 = -A~1F(a' ® a' + b' <8 b') — C lc' ® c', (27)

Z = /l_1{a' ® a' + b' ® b' + is(a' ® b' — b' ® a')} + C lc' ® c', (28)

of the remaining tensors. It can be verified from Eqs. (13) and (26) that when the

normalization (25) applies, the tensors a' ® a' + b' ® b', c' <8 e', and a' ® b' — b' ® a' are

uniquely determined. The symmetric and Hermitian properties of S3 and Z are evident

from (27) and (28) and, by virtue of (19) and (21),

trZ = trS^1 = A~\a' • a' + b' • b') + C"V • c' > 0

(cf. [4, Sec. 3(a)]).

In parallel with the decomposition (23),

S3 = G"1S3,

where

S3 = -A~1F(a ® a' + b ® b') — C-1c ® c'. (29)

We recognize here a third spectral form, and the coaxiality of S2, S2, and S3 is displayed

by the connections

S2 = CI -(1 - f )_1(>4 - C)S!2, S3 = -C'll +(1 - F)~1(A~1F - C"1)Sj2,

resulting from Eqs. (14), (24), and (29).

The products

S[S2 = sA{a ® b — b ® a),

S3Sj = -^'^(a' ® b' — b' ® a')

of the representations (12), (20), and (27) show that S3Sj, like SjS^, is skew-symmetric.

The axial vectors of and S3Sj are -sgAc' and sg~xA~lFc, respectively.

Bounds can be set for F, and hence for with the aid of (15)j and the relation

F= {a'-(S2a')}{a-(-S3a)},

arising from (17)12 and (27). If a and t are the smallest eigenvalues of S2 and -S3,

respectively,

ar|a|2|a'|2 < F < 1, (30)

and since |a|2|a'|2 ^ (a • a')2 = 1, (30) simplifies to

(7T < F < 1 (31)

when t ^ 0.

4. Discussion and additional relations. The representations (12), (20), (27), and (28) are

of striking simplicity, only three scalars, 5, A, C, being involved in addition to the basis

{a, b, c} and its reciprocal. Since ^ is dimensionless while A and C have the physical

dimensions of (stress)"1, the number of independent scalars cannot be less than two.
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Plainly, then, the structure of the Barnett-Lothe and impedance tensors is only slightly

influenced by the symmetry of the elastic material forming S6.

Besides revealing the essential form and interrelationship of Sx, S2, S3, and Z, the

results of Sees. 2 and 3 serve to expedite the evaluation of the tensors. Suppose that Sj

and trS2 have been found, either algebraically or from their integral representations [3,

Sec. IV, D], Then ^ and a, b, c can be derived from (8) and a', b', e' follow from (11). If the

scalar c' ■ (S2c') is now determined, by either of the aforementioned methods, (17)5 and

the relation

trS2 = A + C,

afforded by (20) and (25), fix the remaining scalars A and C. The use of Eqs. (20), (27),

and (28) completes the calculation.

The application of this procedure to formulas for an isotropic elastic body given in [3,

Sec. VI, E] yields the expressions

■s = (y2^)"1/2(2 - Y - 2^77), F = -(y2£tj) '(1 - £t)){(2 - y)2 - 4£tj}, (32)

A = + t))(1 - £17). C = (iitj) \

a = ~{v/U + 77)} 1/2e!, b ={£/(£ + rj)}1/2e2, c = e3. (33)

Here

Y = (pv2/ii)l/2, £=(1-Ay)1/2, 17 = (1 - y)'/2, A =/i/(A + 2fi),

(34)

A and /i being the Lame constants of the material and e, the unit vector in the

x,-direction. There are thus only two independent scalars in this case and the vectors a, b,

c are mutually orthogonal.

Setting v = +/ in equation (5)t and using (15)12 we obtain

det(I + /Si) = F. (35)

Then, from Eqs. (2) and (3),

detS3 = -(detS2) 'f2, detZ = (detS2)_1F, (36)

and, from (22) to (24),

detS2 = g2A2C. (37)

Equations (35) to (37) tell us that I ± iSl, S3, and Z are nonsingular for all values of

v e I for which F + 0. The inverses can be found with the help of the equality

Sj +(1 - F)S, = 0.

derived from (5)2 and (15)u by applying the Cayley-Hamilton theorem. They are

(I + iSj)"1 = I + iF~% - F~lS2,

S3"1 = -(I - F'1S12)S2, Z 1 = -Sj1 - /F"1S1S2, (38)
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and we also have

(I + S2)"1 = I - F1 Sf.

In view of (4)2, Eqs. (2), (3), and (38) imply that each of the symmetric tensors S2: + S3,

S2 + S31 and each of the Hermitian tensors Z — Sj1, Z~' — S2, Z + S3, Z"1 4- S31 is

singular. Moreover, Z — S21 and Z"1 + S3"1 are imaginary and skew-symmetric, and

therefore traceless.

Let u and v be arbitrary nonzero vectors, u real and v complex, with real and imaginary

parts v+, v~. In view of the inequalities (19) the identities

u -(-S3u) = ^"^{(u • a')" +(u ■ b')2} + C_1(u ■ c')2,

v • (Zv) = A'1 [(v + - a' - s\~- b')2 + (v + - b' + s\~- a')"

+ .f{(v~- a')2 + (v~- b')2j] + C_1[(v + - c')2 + (v —• c')2},

formed from Eqs. (27), (28), and (15) prove that F > 0, F = 0, and F < 0 are, in turn,

necessary and sufficient conditions for -S3 and Z to be positive definite, positive

semidefinite, and indefinite.

If strong ellipticity of the linear elasticity tensor is replaced by the more stringent

requirement that the strain energy of the material be positive definite, -S3 is positive

definite at v = 0 [3, Sec. V, C, 2], Furthermore, subject to the strong ellipticity condition,

the derivative of S3 with respect to v is positive definite in I [7, Sec. 3(d)], implying that

the eigenvalues of S3 increase monotonically with v ([8] and [3, Sec. VIII,A,1]). If F has a

zero, vs say, in I, inspection of Eq. (27) shows that S3 has eigenvalues 0 (twice) and

-C_1c' ■ c' at v = vs. This has two consequences. First, vs is unique since otherwise at least

one eigenvalue would vanish twice in /, contrary to the monotonicity property. Second,

-S3 has two negative eigenvalues for vs < v < v, thus limiting the validity of the bounds

(31) to the interval [0, vs). When it exists vs is seen from Eq. (36)2 to be a zero of detZ as

well as F and detS3. In fact vs is the speed with which a subsonic surface wave propagates

in the ^-direction in a semi-infinite body with traction-free boundary given by x2 = 0,

and a + z'b, evaluated at v = vs, is the polarization vector of the wave [3, Sec. VII,A,B,D],

The foregoing arguments establish F = 0 as the fundamental form of the secular

equation for an elastic surface wave (cf. [9, Sec. 3.1]) and prove that F lies between 0 and

1 in [0, vs) and is negative in (vs, v). When the material is isotropic, v = (/u/p)1/2 and Eq.

(32)2, with (34)3 4, confirms that vs is the unique positive real root of Rayleigh's equation

(2 - y)2 = 4(1 - y)1/2(l - Ay)1/2.

We have concentrated above on the representations (12), (20), (27), and (28) and such of

their implications as seem significant to us. The results by no means exhaust the relations

that could be written down and, to conclude this section, we quote as examples

S^Sj = SjSjS! = - FSj (39)

and

S3 = -ZS2Zt = -ZtS2Z.
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Recalling the properties of SjS2 and S3S, stated in Sec. 3, we deduce from (39) that the

axial vectors of the skew-symmetric tensors S^S, and (when v ¥= vs) S,S3_1 are ~sg~lA_1c

and sgAF~lc', respectively.

5. Invariance under rotations about the x3-axis. Intrinsic to the calculation of Sl5 S2, S3

is the orthonormal basis e = {e,,e2,e3} introduced in connection with Eqs. (33). The

vector ej represents the direction of steady motion (when v > 0) and e3 is normal to the

planes which are equivalent in the motion. The basis as a whole provides the three-dimen-

sional reference frame needed to define the orientation of the axes (or other elements) of

material symmetry.

Let e = {ej,e2,e3} be the orthonormal basis obtained by rotating e through an angle

6(0 < 0 < 2ir) about e3. We denote by S2 = ep ® ep (with summation on p) the proper

orthogonal tensor which carries e into e and systematically place caps above quantities

evaluated with e as reference frame.

Transformation rules satisfied by the eigenvectors of the eigenvalue problem of plane

anisotropic elastostatics under rotations of the reference frame which preserve the equiva-

lent planes have been derived by Ting [10, Sec. 3], These formulae, in conjunction with the

algebraic representations of St, S2, S3 [3, Eqs. (4.32)l7 (4.33)j, (4.34),], show that, when

v = 0,

S* = £2S^T, k = 1,2,3. (40)

Equations (40) may also be obtained directly from the integral representations of Sl5 S2,

S3 [3, Eqs. (4.32)2, (4.33)2, (4.34),] by means of the easily established properties

Q(fln) = fiQ(n)£2T, R(fim,S2n) = 0R(m,n)fi[

of the acoustical and associated acoustical tensors.

We infer from (40) that, when v = 0, the eigenvalues of the Barnett-Lothe tensors are

invariant under the transformation e -» e. In particular, s = s and, from (15)j, F = F. It

then follows from Eq. (8) that

a = Q(c#>a — xb), b = fl(x» + <#>b), c = xpQ,c, (41)

where <j>, x, $ are arbitrary real numbers such that <Jr + x2 ^ 0, ip ¥= 0. Since a proper

orthogonal tensor is self-adjugate [6, p. 20] Eqs. (11) provide the corresponding formulae

a' = {<t>2 + x2)_1Q(</>a' - xb')»

b' = (<#>2 + x2)_1fi(xa' + <#>b'), (42)

c' =

for the reciprocal vectors. If the normalization (25) is imposed in both e and e the

restrictions

<#»2 + X2=l- = l (43)

apply to (41) and (42). (The stronger conditions <£ = l,x = 0, ^=1 may be obtained by

requiring the triads {a, b, c} and (a, b, c} to be congruent in the sense that scalar products

and the scalar triple product are unchanged by the rotation e —> e.) Lastly, the application

of (40) and (42), with (43), to the definitions of A and C in (17) gives A = A, C = C.
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When v = 0 and the normalization (25) is applied uniformly the scalars s, F, A, C

appearing in the representations (12), (20), (27), and (28) are therefore invariants under an

arbitrary rotation of the reference frame about the x3-axis. The vectors a, b, c obey the

transformation rules

a = J2(cose a — sin e b), b = fi(sin e a + cose b), c=+flc, (44)

where e is arbitrary, and the reciprocal vectors a', b', c' transform in the same way. When

(a, b, c} is required to remain congruent, however, e = 0 and the ambiguity of sign in

(44)3 disappears.

When v > 0, e, assumes the role of a preferred direction since, in relation to e,

cos 9e1 — sin 9e2, and not e:, is the unit vector in the direction of steady motion. The

simplicity of behavior under rotations about the x3-axis encountered when v = 0 is

consequently lost.
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Addendum. Since the acceptance of this paper we have seen a note by Kirchner and

Lothe [11] showing, by an approach different to that followed here, how S, and S3 (or S,

and S2) can be calculated when S2 (or S3) is known together with the acoustical and

associated acoustical tensors Q and R appearing in the integral representations of S1; S2,

and S3 mentioned in Section 4.
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