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Abstract. We study the dependence on C\ and c2 of the solution u{t,C\,Ci) of the

equation

u'(t)+ A(t - s, Ci, c2)u(s) ds = 0, m(0) = 1,
Jo

where the conditions on A are stated in terms of its Fourier transform. We obtain

sufficient conditions and (weaker) necessary conditions for

r oo

sup \u(t, Ci, C2)| dt < 00, i = 1,2L0 0<c,<l

and for
roc

/ sup \u(t,c\,c2)\dt < 00.
Jo 0<d,c2<l

The kernel A is a combination of nonnegative nonincreasing convex functions and

arises in the linear theory of viscoelastic rods and plates.

1. Introduction. We study the solution u — u(t, C\, c2) of the scalar equation

u'{t) + f A{t - s,C\,C2)u{s) ds = 0, t > 0, «(0) = 1, (1.1)
Jo

{' indicates differentiation) where the parameters C\ and c2 satisfy 0 < C\ < 1, 0 <

c2 < 1, and the hypotheses on A are stated in terms of its Fourier transform A; the

fact that A is locally absolutely continuous follows from [3, Theorem 1.1 (i)] under

the assumptions (1.2)—(1.5) below.

In this paper, the Fourier transform h is defined for a function h such that

h(t)e~at G L'(0,00) for all a > 0 by the formula

roc

h(t) = / e~lUh(t)dt (ImrcO), h(To) = lim h(x) (r0 e R)
Jo r<0

wherever the limit exists. We suppose that A satisfies

A(t) = (a(t) -ci/'t_1)/(t) (1.2)
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where
/(r) =f{r,c\,c2) = F{{b{T) - c2h'x)/{a{x) - cxh'x)),

, w + m (1-3)
F[w) = ,

pw + q

the nonnegative constants m, p, and q satisfy

p>0a.ndq>mp, (1.4)

and the functions a and b satisfy

a(t) and b(t) are nonconstant, nonnegative, nonincreasing, convex,

-a' and —b' are convex on [0, oo) and a{oo) = b(oc) = 0.

We consider the question, when is the solution u of (1.1) integrable on [0, oo)

uniformly with respect to the parameters ci, q? In particular, we ask when do each

of the following hold:
r OO

(i) / sup \u(t, c\, C2)| dt < 00 (fixed C\ ± 0),
Jo 0<c2<l

roo

;i-5)

(ii)

111

(iv)

rOO

/ sup \u(t, 0, C2)| dt < 00,
J 0 0<c2< 1

r OO

/ sup \u(t, c\, C2)| dt < 00 (fixed C2 / 0), (1.6)
Jo 0<c,<l

r OO

/ sup \u(t, c\, 0)1 dt < 00,
JO 0<C|<1

rOO

(v) / sup \u{t, c\, C2)| dt < 00?
Jo 0<C|,C2<1

The necessary and (stronger) sufficient conditions below depend on whether m- 0

or m / 0. Parts (i)-(v) in Theorem 1.1 give necessary conditions for parts (i)-(v) of

(1.6) to hold, respectively.

Theorem 1.1. Suppose that (1.2)—(1.5) hold. In order that the solution of (1.1)

satisfy (1.6) (i)-(v) respectively, it is necessary that the following hold, respectively:

(i) b $lLx [0,00) when m = 0,

(ii) a & L'[0, 00) or b £ L'[0, 00) when m / 0,

b Lx[0,00) when m = 0,

(iii) a ^ L'fO, 00) (m > 0),

(iv) a L'[0,00) {m > 0),

(v) a<£Lx [0,00) when m ^ 0,

a £ Lx [0,00) and b £ Lx [0,00) when m = 0.

Observe that in part (i) when ra/0, nothing extra is necessary.

For our sufficient conditions we will use the assumptions

and <b) r^uDdx<°°' {,j)
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where the functions Aa and Ab are defined by the formulas

Aa{x) = [ a(s)ds and Ab(x) = [ b(s)ds. (1.8)
J 0 Jo

Roughly, the necessary conditions a £ L'(0, oo) and b £ L'(0, oo) will be replaced

by (1.7)(a) and (1.7)(b), respectively, but see the note after Theorem 1.2 in this

regard. (Clearly (1.7)(a), (b) imply, respectively, a L'(0,oo) and b <£ L'(0, oo)). If

a(t) — t~x log9 t, q > 1 (large t) or if a(t) = t~p, 0 < p < 1, then (1.7)(a) is satisfied.

Theorem 1.2. Assume that the conditions (1.2)—(1.5) are satisfied.

(i) Let C\ > 0 be fixed.

(a) If m ± 0 then (1.6)(i) holds.

(b) If m = 0, then (1.7)(b) implies (1.6)(i).

(ii) Let C\ = 0 be fixed.

(a) If m 0, then (1.7)(a) implies (1.6)(ii) holds.

(b) If m = 0 and (1.7)(a) and (b) are satisfied, then (1.6)(ii) holds.

(iii) Let Cj ̂  0 be fixed. If (1.7)(a) holds then (1.6)(iii)

holds.

(iv) Let C2 = 0 be fixed.

(a) If m ± 0, then (1.7)(a) implies (1.6)(iv).

(b) If m = 0, assume (1.7) (a) and (b) are satisfied.

Then (1.6)(iv) holds.

(v) (a) If m ± 0 then (1.7)(a) implies (1.6)(v).

(b) If m = 0, assume (1.7) (a) and (b) are satisfied.

Then (1.6)(v) holds.

Note that in (ii) (a) and (b) we assume that (1.7) (a) holds even though Theorem 1.1

(ii) does not require that a & L'[0,oo) and in (iv)(b) we assume that (1.7)(b) holds

even though Theorem 1.1 (iv) does not require that b & L'(0, oo).

The problem (1.1) has been studied in the situation where m - q — 0 (so that A(t)

reduces to +Ci) by [4] and [6]. In [4], assuming a satisfies (1.5), it is shown

that for the solution u — u(t, c\) to satisfy

rOOf
/ sup \u(t, Ci)| dt < oo, (1.9)

J 0 0<ci < 1

it is necessary that a £ L'[0,oo). In [6] it is shown that for a satisfying (1.5) and

(1.7)(a), (1.9) holds and in [4] a growth condition at oo similar to (1.7)(a) is used.

Note that <z(0+) < oo is not assumed in [4] and [6],

The form of the function A in (1.2)—(1.5) arises in the study of transverse vibra-

tions in a viscoelastic plate and for longitudinal and bending waves in a viscoelastic

rod (see [4] and [1, pp. 109-112]). For example, with m — p = 1/2, q — 1, iia(z)
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is the complex modulus of shear and ixb{x) is the complex modulus of compression

for transverse vibrations in a viscoelastic plate. The tool used is the solution U\ of

the problem (similar to (1.1), C\, c2 fixed)

Mi(0 [ A{t - x)ux(x) dx — 0, «a(0) = 1, A > 1, t > 0.
Jo

For results on the question, "When is /0°°sup^, \ux{t)\dt < oo?", with applications

to viscoelasticity, see [3], [5], and when A(x) — a(x) + C\ (c\ fixed) see [2],

Two Proofs. We begin with the proof of Theorem 1.1. By [3], we have

u(x,C\,c2) =   J   (2.1)
IX + A(X, C\,C2)

and u(x,c\,c2) is a continuous function in {Imr < 0}. The argument of [7, pp.

323-324] as arranged in [3] shows that

W(T,C1,C2) € L'fO.oo), c\,c2>0. (2.2)

Also, from [7], a and b are differentiable for r > 0 and we have the inequalities

1

2\f2
Aa(x ') < |a(r)| < 4Aa(x '), t > 0,

2y/2
Since a(oo) = b(oo) = 0, we have

1 Ab{x ') < |£(t)| < 4Ab{x '), t > 0.
(2.3)

lim . , . tt~\ ~ °°- (2-4)
x^oo Aa(x) + Ab(x)

It follows from this and from (2.1) and (2.2) that

1
u{t,c\,c2) dt = lim u(x,c\,c2) = lim -

/Jo *■—o+ t—o+ iz + A(r, C\, C2)

pb{x) + qd{x) - ix~* {pc2 + qc{)
— lim

r—0+ (a(x) - ix~lci){b(x) + ma(x) - /t_1(c2 + mc\))

If we denote [|/|| = /0°° f{t)dt for / = a or / = b and if q/\\b\\ and p/\\a\\ are

understood to be zero when b g Ll(0,00), respectively a & Ll(0,00), we use (2.3)

and (2.4) to obtain

/J 0
u(t, C\, C2) dt — 0, if Ci / 0, c2 / 0,

0, if C\ ± 0, c2 = 0, m ± 0,

q/\\b\\, if C\ ̂  0, c2 = 0, m = 0,

p/\\a\\, if C\ =0, c2 / 0,

J>|[ft|| + g|^ll if o, c2 = 0, a.beL', P-5)

p/\\a\\, if C\ = 0, c2 = 0, b Ll, a e L\

0, if C\ = 0, c2 = 0, b € Ll, a Ll, m / 0,

q/\\b\\, if c\ = 0, c2 = 0, be L[, a& Ll, m = 0,

0, if Ci = 0, c2 = 0, a £ Ll, b £ Ll,
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where L1 = L'(0, oo). Since (2.5) implies that

J.u(t, ci,c2) - u(t, C\,G)\dt > lim \u(x,c\,c2) - u(t,C\,0)\
T->0+

r OO rOC

/ w(i, c\, c2) dt - / u(t,ci,0)dt
Jo Jo

= \0-q/\\b\\\>0,

when ci,c2 ^ 0, w = 0, we see that a necessary condition for (1.6)(i) to hold when

m = 0 is that b £ L'(0, oo). This proves Theorem 1.1 (i). This procedure is also used

to prove parts (ii)-(v) of Theorem 1.1.

Next we will prove Theorem 1.2. We start with the representation

*»(«,.<*) = -Im{±^ <>* P'6>

established in [3, (2.23) and 4, (4.32)] (and valid here even though -a'(0+)-Z/(0+) =

oo is allowed), where

Ci ^ (fl(r) - iT~lCi)(b{T) + ma(T) - /t-'(c2 + mcx)) +

P^(t) + ^(t)-/t"1(^2 + ^Ci) (2 7)

^2
s-fT + 'r-

Also, by [3, (1.15)],

\u(t, C\,C2)\ <1, t > 0, (2.8)

so we only need to obtain an upper bound for (2.6) on [L, oo) (for some L > 0) in

order to establish (1.6). In each part of Theorem 1.2, we follow the same procedure

to establish the inequality \u(t,C\,Ci)\ < Mf(t) where the function /, defined in the

last paragraph of the paper satisfies f™ f(t) dt < oo and M is a constant independent

of the parameter (parameters) that is (are) allowed to vary. Let us look at the path

we will take in our proof and point out the terms that will need to be estimated in

each part.

Since Dr(r, ci,c2) = (F\F2/Fi)' + i, we have, by (2.6),

\nu{t,Cx,Ci)\<\T{\ + \T2\, (2.9)

where

and

if,t Jo
irt I F\ F2

D(T, C\,C2)2 dT

i r°°
T2 = - / e,Tt/D(t,c\,c2)1 dr.

1 Jo

By the triangle inequality,

I C dz 1 r e,rt
2 ~ t J0 |D(t, c\,c2)\2 + t Jl/t D(t,cx,c2)2 T

= ^2,1 + T2.2-
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Thus, to obtain an upper bound for \T2\ we will estimate

1 /■'/'
r21 = - f dT (2.io)

t Jo \D(t, Ci, c2)|2

and the right-hand side of the inequality

T22< —I 5 f
2'2- fi I |Z)(l//,c,,c2)|2 Jx,t/:[(

'F\F2\
+1

dz

\D{-[,Ci,c2)\-
(2.11)

where the inequality in (2.11) follows from an integration by parts. The estimates

below in the proofs of the different parts of Theorem 1.2 assure the absolute conver-

gence of the integral as well as the vanishing of the boundary term at oo.

For upper bounds on T\ we write

1 /•!/' j rooi rl/l i r°°

T\ = - +7 / = Tx,i + Tu.
1 Jo 1 J l/t

We will estimate

1^1.11 =

and the right side of

(2.12)

|r,,|< 1
V ^3 JT=t-, D(t-\CX,C1Y

D{x, c\,c2y

(2.13)

dr = B + I,

where the inequality in (2.13) follows by an integration by parts and the estimates be-

low assure the absolute convergence of the integral and the vanishing of the boundary

term at oo.

We will show that |ru| + |r12| + |7"2j| + \T2i2\ < Mf(t) e Ll(L, oo), where M is

independent of the parameter(s) we are allowing to vary. Then (2.8) and (2.9) will

show that the corresponding part of (1.6) holds. To make the needed estimates in

(2.10)—(2.13) we will choose constants e (small) and K (large) and use upper bounds

on the functions F/7)(t), i = 1,2, 3, j = 0,1,2 (defined in (2.7)) for r in the intervals

[0, e], [e, K], and [K, oo]. We will also need lower bounds for the functions F,(t),

i - 1,2,3, and D(t,c\,c2) for 0 < t < e and for the functions F3{t), D(t,c\,c2) on

[e, K] and [K, oo].
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We will use the following lower bounds (which follow easily from (2.7)) in each

part of Theorem 1.2:

(i) |Fi| > max{|a(T)|, r_1Ci}, x > 0,

(ii) \F2\ > max{|5(t)|, m\a(x)\, x~x(mc\ + C2)}, x > 0, (2.14)

(iii) |F3| > m&x{p\b(x)\, q\a(x)\, x~x(qc\ + pc2)}, x > 0.

We use the inequalities (see (1.8))

00 > lim = a(0+) > 0 and 00 > lim = 6(0+) > 0,
X jc-»0+ X

and (2.4) to obtain the existence of positive constants M\, 8\, and K\ so that

(i) MxAa{x)>x, M\Ab(x) > x, 0<x<^,

(ii) Aa(x) < M\x, Ab(x) < M\X, K\ < x.

Since the proofs of all the different parts of Theorem 1.2 are so similar, we will

prove (iv)(a) and omit the other proofs. For the rest of the paper we let M be a

constant whose exact value may change each time that it appears.

Proof of Theorem 1.2 (iv)(a).

We will be using the inequalities

r\/x

\a'{x)\ <M sa(s)ds < Mx~l Aa{x~l),

\T (2-16)
\b'{x)\ < M [ sb(s) ds < Mx~lAb(x~x), x > 0,

Jo

and
rl/T

\a"{x)\ <M s2a(s)ds < Mx~2Aa(x~x),

\T (2-17)
\b"{x)\ < M [ s2b(s) ds < Mx~2Ab{x~x), x > 0,

Jo
from [2, (4.2) and (5.3)]. (It is for formula (2.17) that the assumptions that -a' and

-b' are convex are used).

From the definition of F\, F2, and F3, we use (2.3), (2.16), and (2.17) to obtain

M > 0 and e > 0 such that the following hold:

(i) \F\(x)\< M max{Aa(x~x),C\X~x},

|F2(t)| < M max{Ab{x~x), Aa{i~X)-C\X~x},

|F3(t)| < M ma\{Ab{x-x),Aa(x~x),cxx~x},

(ii) |/*Y(t)| < Mx~x max{Aa(x~

|F2(x)\ < Mx~x max{^A(t"

|F3'(t)| < Mx~x max{Ab(x~

(iii) |F,"(t)| < Mx~2 max{Aa(x~

|F2"(t)| < Mx~2 max{^fe(i"

|F3"(t)| < Mx~2 mzx{Ab(x~

< C\ X '},

. Aa(x~l),Cix~1}, (2.18)

, Aa(x~l), C\X~1}, 0 < x < e,

' C\ x~' }>

,Aa{?~l)C\X~X},

, Aa(x~l),CiX~1}, 0 < X < £,
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and
M\F\(t)| > max{yla(T_1), CiT-1},

M\F2{x)\ > max{Ab(x~l), Aa(x~l),Cix~1}, (2.19)

M\Fi{t)\ > max{/l6(T_1), Aa(x~l), C\X~{), 0 < t < e.

Making e smaller, if necessary, we have

F\ F2
\D{x,c\, 0)| > - X

> max{Aa(r X),C\X x}max{Ab{x l),Aa{x 1),t~'} _ ^.20)

M max{Ab(x~x), Aa(?-1), Cii-1}

> — max{Aa(x~l), Cit-1}, 0 < x < e,

where we have used (2.18) and (2.19).

Next we use (2.15)(i) and the definition of F\, F2, and F3 to obtain M > 0 and

K > 0 such that

(i) \Fx{x)\<MAa(x-'), \F2{x)\<M{Ab{x-x) + Aa{x-x)),

\F,{x)\<M{Ab{x-') + Aa{x~x)), K< x,

(ii) \F[{x)\ < Mx~xAa{x~x), \F±{x)\ < Mx~l{Ab{x~l) + Aa{x~1)),

|F3'(t)| < Mx-l(Ab(x~l) + Aa(x~i)), K < x,

(iii) 1/7(1)1 < Mx-2Aa(x~l), \Fi'(t)| < Mr2(4(r') + ^(t-1)),

l-f3"(T)I < Mx~2(Ab(x-x) + Aa{x~x)), K< x,

and

l^3(T)| > ^(O + Aa{x-')), K < x. (2.22)

By (2.21) and (2.22) we also have (make K larger if necessary)

F\ F2

(2.21)

\D(x, c 1,0) > r -
>z_MAa{x x)(Ab{x ') + Aa(x '))

^(t"1) + Aa(x~1)

>\. K< x.

(2.23)

Because the real part of a(x) (Rea(r)) is a continuous function on x > 0 (see [2]),

< |^(;)(t)| < M, e<x <K, for i = 1,2, 3, j = 0, 1,2, (2.24)

and

\D(x, Ci, 0)| > e < x < K, (2.25)

are obviously satisfied.

Because |«(/,ci,c2)| < 1, t > 0, we only need to estimate (2.10)—(2.13) for t > j.

Let t > j. We begin with (2.10). By (2.20) we have

'l/t dx . M fl/l dx . M <M_1 fl" dx ^ M fl" dx ^
21 t J0 \D(x, c,, 0)|2 t J0 A\{r-')-) - 1) - t2
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Now we estimate the boundary term in (2.11). By (2.20), we have

2 1 < M < M

t*\D(l/t,Cl,0)\ ~ t2A\{t) ~ f2"

We write the integral term in (2.11) as

Because
F[F2 F,F{ f1f2f>

F3 F) F}
3

we use (2.18)(i) and (ii), (2.19), and (2.20) to estimate the first integral in (2.26).

Thus, we have

If Mr 1

'2 Jut 40"1) '2 7i/* '2

where the second inequality also uses the fact that x/Aa(x ■') is a bounded function

on 0 < x < e. By (2.24) and (2.25), it follows that

rK < —

~ fi'
By (2.21 )(i), (ii), (2.22), and (2.23), we have

M

1 [*
t2Je

t2

Thus we have shown (see (2.11)) that

„ ^ M\o%et M
T2,i<—~2— + -jf, t> l/e.

Now we move to (2.12). For this estimate we use (2.18)(i), (ii), (2.19), and (2.20)

to obtain
i rl/l

~t Jo
1

|0(T.C,,O)|2

m rl

t Jo

FjF2\'
F$

dx

M fl/t x 1 max{^(T_l),C\x~1} ^

max{^4a (t-1), CiT-1}2

^ M f1'1 x~l , , . .

The assumption (1.7) (a) and the Fubini theorem show that

re T-l fl/x jfOO re -1 /-l/T ,

/ mdt = M -dtdx
J 1/e Jo Aa\X ) Ji/e t

= M f T_llog(eT_1)

Jo

= M f
J i

Aa( T-')

00 log ex
—° . dx < oo.

i/t xAa(x)
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Lastly we will estimate the terms in (2.13). By (2.18)(i), (ii), (2.19), and (2.20)

we see that
M f t \ M

~ I2 (A(7) j ~~ tA{t) ~

and fiit) € L'( 1/e, oo) by (1.7)(a). The term I can be written as

where
{

//

V =
FxF2

F,
+

F\F2\
f3

+

y
F, J

Ei
f3

\D{x, c\, 0)|2 |Z)(t,c,,0)|3 |Z)(t,c,.0)|3

By writing out

and using

V

FxF2\" F"F2 2 F!F'
— J 1 + five more terms,

f3 j f3 f3

FiF2\' _ F[F2
. + two more terms,

13 j 1*3

we can use (2.18)(i)—(iii) and (2.19)-(2.25) to make the required estimates. Thus by

(2.18)-(2.20) we have

re T —2 T~ 2 T 12 re M fc x 2 x 2 x~x ,

t2 Ji/t ~ t2 Ji/t Aa(T-1) + Aa(x-1) + A2(x-1) T

M fe x~2 ,

" t2 L/t Aa{x-i)dx ~ m''i/t
where € L'(l/e, oo) by (1.7)(a). By (2.24) and (2.25) we also have

fe M

Ji,i ~

rK M

t2

Finally, by (2.21)—(2.25) we have

2 fK
t2 Je ~ t2 '

With the estimates on (2.10)—(2.13) made above, we also recall that

\nu(t,C\, 0)| < |Ti| + 1721 < l^i il + + 72,i + F22.

Thus we have

\u(t,cu0)\<M (^^ + ^+f(t)+f2{t) + Mt)Sj =f(t), t>l/e,

where / e L'(l/e,oo). With the fact, already mentioned, that |w(f, ci,0)| < 1, t > 0,

the proof that (1.6)(iv) holds is complete.
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