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1. Introduction. The system of equations

u,-vx = 0, vt-a(u)x = 0 (1.1)

is of mixed hyperbolic and elliptic type when a is a monotonically increasing function

except in an interval (a,/?) (see Fig. 1). System (1.1) has been used to describe dy-

namic changes of phase in a van der Waals gas [ 10] and to model elastic deformations

in a rod under tension [2],

Mathematically, changes of phase for Eq. (1.1) are associated with jump discon-

tinuities (shocks) in weak solutions (u,v) of system (1.1), in which u jumps across

the interval (a, /?). There is a continuing problem of how to distinguish the phase

jumps that are physically relevant. Mathematically, one would like to impose an

entropy admissibility condition on all jump discontinuities that selects the physically

relevant shocks, including the correct phase jumps, while giving well-posedness of

the Cauchy problem. For systems of mixed type, it is not known in general what the

appropriate admissibility condition should be, even if the initial data are restricted to

lie entirely in the hyperbolic regions. This is largely due to the presence of noncom-

pressive shocks, which fail to satisfy the classical entropy conditions of the theory

of conservation laws [3, 4] . In the context of (1.1), noncompressive shocks are

phase jumps that are typically nearly stationary (i.e., with nearly zero shock speed).

When the shock speed is exactly zero, the phase jump is referred to as the Maxwell

line. A requirement of an admissibility condition is that the Maxwell line should be

admissible.

This paper is a continuation of the study of the viscosity-capillarity criterion for

shocks, introduced by Slemrod [11], In particular, I discuss solutions of the Rie-

mann initial value problem for (1.1). This is the Cauchy problem with piecewise

constant initial data having a single jump. The main result is that for initial data

near the Maxwell line, the Riemann problem has a solution consisting of two weak

shock or rarefaction waves, separated by a slowly moving phase jump. All the jump

discontinuities are required to satisfy the viscosity-capillarity criterion. Alternative

admissibility criteria for shocks in solutions of the Riemann problem for (1.1) are

discussed in [1, 5, 9],
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Fig. 1. Graph of a and the Maxwell line

Some properties of shocks near the Maxwell line are presented in Sec. 2 and used

in Sec. 3 to prove the main theorem. The crucial property concerns the monotonicity

of a curve representing admissible phase jumps. The monotonicity of this curve

allows an extension of the classical construction of solutions of Riemann problems

[3] to be employed on either side of the elliptic region (where a <u < p). I wish to

thank Marshall Slemrod for helpful discussions and for suggesting that the results of

this paper could be proved from the constructions in [8].

2. Wave curves. A shock wave

»<*,<)= ifrX<S'- (2.1)
I ("2.^2) if X > St, '

with shock speed s, is a weak solution of (1.1) if the Rankine-Hugonoit conditions

are satisfied. It is convenient to write these conditions in the form

s2 - (<r(u2) -<t(ui))/(u2 - Mi), (2.2)

V2 - V\ = -s(u2 - Ml). (2.3)

Throughout this paper, we take a to be monotonically increasing except in an

interval (a, /?), as illustrated in Fig. 1. We say that the shock wave (2.1) is a phase

jump if u\,u2 lie on opposite sides of the interval {a,f}). The Maxwell line is a

particular stationary phase jump, in which U\ = m, u2 = M are related by

rM

a(m) = a{M) and / {o(u) - o(m)} du = 0. (2.4)
J m

Thus, from (2.2), (2.3), we have 5 = 0 and V\ = v2.



DYNAMIC PHASE TRANSITIONS IN A VAN DER WAALS GAS 633

The Maxwell line is rioncompressive in the sense that both families of character-

istics

dx/dt = Xj(u(x,t)), A/(m) = (-iy{cr'(u(x, 0)}1/2. j— 1.2, (2.5)

pass through the shock from both sides. This situation contrasts with a compres-

sive shock, in which one family of characteristics converges on the shock while the

characteristics of the other family pass through the shock. Compressive shocks are

discussed toward the end of this section.

The Maxwell line is an admissible shock according to the viscosity-capillarity cri-

terion introduced by Slemrod [11]. This says that the shock wave (2.1) is admissible

if there is a travelling wave solution (known as a viscous profile)

(m, v)(x, t) = (u, v)((x - st)/e) (2.6)

of the system

u,-vx = 0, v, - a{u)x = evxx -Ae2uxxx, (2.7)

that smooths the shock wave for small e > 0. In (2.7), A is a constant, with 0 < A < \.

The travelling wave must satisfy appropriate boundary conditions:

(u,v)(-oo) = (u\,V\), {u, v)(+oo) = (u2, v2), (u',v')(±oo) = (0,0). (2.8)

A noncompressive shock is referred to as undercompressive if it has a viscous

profile. Undercompressive shocks are discussed in [10] in a different context.

Substituting (2.6) into (2.7) and integrating once, using (2.8), leads to the equation

Au" - -su' + ff(«i) - s2(u - «i), (2.9)

with boundary conditions

U(~00) — U\, U(+(X)) = U2, u'(±oo) - 0. (2.10)

We say that u\ —► u2 is a connection with speed 5 if the boundary value problem (2.9),

(2.10) has a solution. From (2.2), we see that s = 0 if and only if o(u\) = a(u2).

Integrating (2.9) with 5 = 0 along a solution leads to (2.4). Thus, m —» M and M —* m

are the only connections with speed zero. The shock wave (2.1) is admissible if and

only if u\ —► u2 is a connection with speed 5 given by (2.2) and V\, v2 are related by

(2.3).
In discussing solutions of (2.9), it is convenient to refer to the phase plane of

ordered pairs (u,u'). We say a connection u\ —> u2 is a saddle-saddle connection

if the phase plane equilibria («i,0), («2,0) are both saddle points. The stationary

connections m —► M and M —► m are saddle-saddle connections. The following

result is a restatement of Lemma 3.2 and Theorem 3.4 of [8].

Theorem 2.1. Let a be a C2 function, with a, /?, m, and M defined as above. There

exist <5i > 0 and C1 functions s, u2 defined on [m - 8\, m] such that

(a) u2{m) - M, s(m) = 0,

(b) U\ —» u2(u\) is a saddle-saddle connection with speed s(u\) >0,

(c) u2 and s are strictly monotonically increasing and decreasing, respectively.

Correspondingly, there exist <52 > 0 and strictly monotonic C1 functions s, u2

defined on [M, M + S2] with u2{M) = m, s(M) = 0, such that U\ -* u2{u\) is a
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saddle-saddle connection. In particular, m —* M is a saddle-saddle connection, and

it is embedded in a one-parameter family of saddle-saddle connections obtained by

combining U2 and «2-

Corollary 2.2. There exist e > 0 and continuous functions 5*, u\, defined on

[m-e,m + e] such that u\(m) = M, u\ is strictly increasing, and if \u\ — m\ < e, then

u 1 —► ul(ui) is a saddle-saddle connection with speed s - s*(ut), which is positive

for u\ < m and negative for u\ > m.

Proof. From Theorem 2.1, let £1 > 0 be defined by M + <52]) = [m,m + £\\,

and let Uj. [m, m + £1] —♦ R be the inverse of Uj. Then U2 is continuous and strictly

monotonic, and ui{M) = m. Now set e = min(<51,ei) and define

„ (U2{u\) iim-£<u\<m,
U,') \U\)   I   / \ T ^ ^

z \ U2\U\) if m<U\<m + £.

Since U\ —> «2(Mi) is a connection with speed -s{u\), when m < u\ < m + e, define

s(u 1) if m - e < u\ < m,
s*(u1) = ,

\-s(u 1) if m < Ui < m + e.

Then u\ —> u*2(u\) is a saddle-saddle connection with speed s*(u\) as required, for

each u\ e [m - e, m + e].

Next, I show that all weak shocks satisfying the Lax admissibility condition are

also admissible according to the viscosity-capillarity criterion. It should be noted that

not all strong Lax admissible shocks satisfy the viscosity-capillarity criterion [7], On

the other hand, if a has just a single inflection point, then all Lax admissible shocks

satisfy condition (E) of Liu [4] (see also [12]). The shock wave (2.1) (satisfying the

Rankine-Hugoniot conditions (2.2), (2.3)) is Lax admissible if

Xj(u2) < s < Xj(u 1) for j = 1 or for j = 2. (2.11)

If (2.11) holds, we say the shock is a ./-shock, and write (U2,v2) e Sj(u 1, «i). Now,

for k = 1,2, the critical point u — u^, u' — 0 of (2.8) has eigenvalues

H± = ^ j-s±yj4Ao'{uk) + {\ - 4A)s21. (2.12)

Since 0 < 1 - 4A < 1, we conclude the following from (2.11), (2.12). For a 1-shock,

H±(u\) > 0 and H-(u2) < 0 < fi+{u2), so that (u, u') = (u\, 0) is an unstable node and

(u, u') = («2,0) is a saddle point for Eq. (2.8). Similarly, a 2-shock involves a saddle

point at («i,0) and a stable node at (W2.O). In either case, if u\, u2 are sufficiently

close, then there is a trajectory joining the critical point (wi,0) to the critical point

(«2.0). This trajectory, {(u{£), u'{£)): |^| < 00}, corresponds to a viscous profile (2.6),

with £ = (x - st)/e, and v(£) given in terms of m(£) by

v{u) = V\— s(u - Ml).

The set Sj{u\,V\), j = 1 or 2, representing Lax admissible y'-shocks is (near (mi, v,))

an arc having (u\,V\) as an end point. It is straightforward to check the following
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description of the shock curves Sj(ui,Ui) in a neighborhood N of {u\,v\).

N nS\(u\,V\) = {(u,v) e N:v = —s(u -U\) + V\,

S2 = (<J(U i) - 0(U2))/(U\ - U2),S < 0, U < M)},

N ftS2(u\ ,v i) = {(u,v) e N:v = -s{u - U\) + vx,

S2 = - 0{U2))/(U\ - u2),s > 0, u > Ui},

if U\ < a, and there are similar formulas when u\ > /?.

We shall also need rarefaction curves through These consist of interme-

diate states (u,v) = (u(x/t),v(x/t)) in a rarefaction wave fan. If we fix (ui.Vi) as

the state on the left of the wave, so that x/t increases, then u and v are related by

V = V\ ± / c(z)dz,
J U\

with x = =fc(u)t, respectively. Here,

c(u) = \fa'(u)

is the characteristic wave speed. Since x/t increases through the fan, the range of

values of u in (2.12) is restricted. The set of possible states (u,v) on the right of a

rarefaction fan is given by two rarefaction curves Rj(u\,V\), j = 1,2, which have a

C2 connection with the corresponding shock curves Sj(ui, «i) at (;U\, V\). (See [3] for

details.) We have

~~j~ = c(u) onR\(ui,V\), CJu=~c(u^ onR2(u\,Vi).

The weak wave curves Wj(u\,V\), j — 1,2, for a given {u\,v\) consist of states

{ui.Vi) to which (ui, i>i) may be joined by a weak shock or rarefaction wave. Thus

Wj(Uj,Vj) = (Rj{u\,V\) uSj(ui,v,)) n N,

for some neighborhood N of («i,Vi). It is easy to check directly that dv/du > 0 on

W\(u\,V\), and dv/du < 0 on W2(u\,Vi), if u\ &[a, p]. If (u,v) G Wj(u\,V\), then

we say that (U\,V\) is joined to (u,v) by a weak j-wave.

3. Solution of the Riemann problem. In this section we consider Riemann problems

with initial data near the Maxwell line. The existence of solutions is described by

the following theorem, whose proof uses the constructions of Sec. 2.

Theorem 3.1. Let vq g R be fixed. There exist neighborhoods N of (m,vo) and N'

of {M,vo) such that if (ul.vl) e N and (ur,vr) € N', then the Riemann problem

consisting of equations (1.1), with initial data

(»,»)(*.(3.D\{uR,vR) if jc > 0, v '

has a solution consisting of a weak 1-wave, a phase jump, and a weak 2-wave, sepa-

rated in the (x, r)-plane by constant values of (u, v).

Proof. Let u*2(m - e) = M - yi, u*2(m + e) = M + y2. Consider (uL,vL) with

|ul - m\ < e, and let T = W{ui,vi) n {{ul,vl): \uL - m\< e}. Now let

r = {(u2,v2):u2 = u2(u\), v2 = v{ -s(u2 - ux),(ux,vx) e T}.
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Finally, define D(ul,vl) to be the union of the sets W2(U2, v2) with (m2, v2) € P. For

each (ur,vr) e D(ul,Vl) we have constructed a solution of the Riemann problem

(3.1), involving the combination of waves specified in the theorem.

For (Ul,Vl) = (m,vo), the set D(ul,Vl) is a neighborhood of (M,vo). Since

D(ul,Vl) depends continuously on (ul.vl), by construction, we can choose a neigh-

borhood N of (m,vo) such that the set

Pi D(ul,vl)
(uL,vL)eN

contains a neighborhood N' of (M,v0). Then for each (uL,vL) e N, (ur,Vr) e N',

the Riemann problem has a solution as claimed in the theorem.
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