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1. Introduction. We describe two methods, relevant to the study of Saint-Venant's

principle, for the derivation of decay estimates in a linear isotropic homogeneous

elastic nonprismatic cylinder loaded by prescribed end displacements and with fixed

curved lateral surface. The results and associated calculations are expressed in terms

of integrals taken over plane cross sections of the cylinder rather than averages over

partial volumes as in many previous discussions. (See, for example, Toupin [25],

Oleinik and Yosifian [23], and Fichera [6, 7]; other references to this and related is-

sues may be found in the comprehensive survey by Horgan and Knowles [15].) A no-

table exception is the investigation by Biollay [1] who examines the three-dimensional

semi-infinite prismatic beam with lateral sides held fixed and data specified over the

base of the cylinder. (We also mention in this respect the study by Knowles [19] of

the semi-infinite plane strip with lateral sides stress-free.) An exponentially decreas-

ing decay rate is obtained which, of course, is a common feature of most studies of

Saint-Venant's principle and whose underlying explanation is contained in the papers

by Kirchgassner and Scheurle [17] and by Ladeveze [20],

The estimate, however, of Biollay also involves an amplitude function whose mag-

nitude is related to the decay factor. The methods presented here do not suffer this

defect and indeed the straightforward calculations together with the applicability to

nonprismatic cylinders are seen as some of the advantages. The first method re-

duces the problem to a nonautonomous second-order differential inequality for the

mean-square cross-sectional integral of the displacement and proves in part that this

measure is a convex function of axial distance. (A similar technique has been used

by Flavin and Knops [9, 10] in related two-dimensional problems.) Immediate crit-

icisms of the method are that it is valid only for a restricted range of the elastic

moduli and near the upper limit of this range produces a decay rate inferior to that

given by Biollay. These deficiencies are absent from the second approach which relies

upon a first-order differential inequality for a cross-sectional integral involving the
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displacement and its gradient. Both methods described yield estimates of decaying

exponential type although more precisely when the cylinder is of semi-infinite length,

the results state that either the measure grows faster than some function of axial

distance, typically a growing exponential, or it decays faster than another function

of axial distance, typically a decaying exponential.

In Sec. 2, we set down the basic equations and boundary conditions governing the

solution to the problem under consideration. Section 3 contains the derivation and

discussion of the second-order differential inequality which is valid for a cylinder of

both finite and semi-infinite length. Since the comparison theorem reduces the analy-

sis to the study of the associated differential equation whose theory is well known, we

content ourselves with a brief indication of possible results, particularly emphasizing

those yielding decay estimates. For the semi-infinite cylinder, such estimates are valid

under various conditions on the asymptotic behaviour, including those imposed by

Knops and Payne [18] and Galdi, Knops, and Rionero [11] in their discussions of

the analogous nonlinear problem for the prismatic cylinder by means of weighted-

energy arguments. These authors also derived mean-square cross-sectional estimates

of exponentially decaying type.

Section 4 is devoted to the treatment of the first-order differential inequality for the

cross-sectional measure involving the displacement and its gradient. This measure

forms part of the work done by the external forces acting over the ends of the cylinder

and the estimates obtained are again valid for the finite and semi-infinite cylinder. We

also show how the estimate may be utilized to yield a second bound for the measure

introduced in Sec. 3, which accordingly is not subject to either of the criticisms

already noted. Finally, in this section, we briefly indicate how the method may be

extended to a corresponding problem in linear elastodynamics.

In the concluding section, we discuss the axisymmetric problem and introduce

a third mean-square measure, involving displacement gradients, which is shown to

satisfy a second-order differential inequality similar to that already considered in Sec.

3. However, the advantage of this third measure is that it may be further employed

to derive pointwise decay estimates for the displacement components which are valid

up to the boundary.

Throughout the paper we adopt the comma notation for partial differentiation and

also the summation convention with Latin symbols ranging over the values 1, 2, 3,

while Greek symbols take the values 1, 2.

2. Notation, basic equations, and assumptions. We consider a nonprismatic cylin-

der B with plane ends and select a rectangular system of coordinates such that one

end of the cylinder lies in the {x\ .^-coordinate plane and contains the origin. We

suppose that the length of the cylinder is L and that D(x3) c R2 represents the

bounded cross section at distance X3 from the plane end. We distinguish between fi-

nite and infinite values of L and thus separately discuss cylinders that are respectively

of finite and semi-infinite length. The boundary dD of each cross section is assumed

sufficiently smooth to admit application of the divergence theorem in the plane of

the cross section. The cylinder is occupied by a homogeneous isotropic compressible

linear elastic material maintained in equilibrium by specified displacements over the



CONSTRAINED ELASTIC CYLINDER OF VARIABLE CROSS SECTION 327

plane ends with the lateral sides of the cylinder held fixed at zero displacement. No

body-force acts.

We assume the existence of a sufficiently smooth displacement vector u{x) satis-

fying the following well-known conditions of our problem:

Mijj "t" QUjJi = 0) x G B, (2.1)

Uj(x) = 0, xg8D(x 3), x3€[0,L], (2.2)

Ui{x) = gi{x), xeD{ 0), (2.3)

Ui(x) = hi(x), xgD(L). (2.4)

Here, Uj{x) are the components of the displacement with respect to the given cartesian

axes, gj(x\,xj) and hi{x\,x2) are specified functions, and a is a constant which in

terms of the Lame constants X and n is given by

a = (X + n)/p. (2.5)

For a positive-definite strain-energy, a lies in the range 1/3 < a < oo. However, we

suppose only that the Lame constants are such that

q > 0. (2.6)

Let us also recall the following subsidiary result required in the subsequent calcu-

lations. Let A(.X3) denote the first eigenvalue in the two-dimensional clamped mem-

brane problem for the cross section D{x$). That is, X is the first eigenvalue corre-

sponding to the boundary value problem for the function v(xi,x2):

vtpp + Xv - 0, x e D(x3), (2.7)

v = 0, xe dD{x3). (2.8)

We require the variational characterization of X contained in the well-known inequal-

ity

X(x3) <p2 dxx dx2 < / <pj(pfdxxdx2, (2.9)
JD(Xi) JD(x3)

where <p(x 1,^2) is an arbitrary Dirichlet integrable function vanishing on dD. A

lower bound for ^(*3) is provided by the Faber-Krahn estimate

A(x3)>7ijo/A(xj), (2.10)

where A(xj) is the area of D(x3) and jo is the smallest positive zero of the Bessel

function Jo(y). Frequently we assume that

0 < Xm < A(x3), Vx3, (2.11)

where Xm is constant, although in several instances we are able to relax this condition.

3. A second-order differential inequality and related estimates. In this section we

discuss decay estimates for the displacement vector measured by an L2-norm over a

plane cross section of the cylinder. As already mentioned in the Introduction, the

method employed restricts the range of elastic moduli, but for those values of the

moduli in the range of validity, the method leads to especially simple estimates with a
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natural form for the amplitude. We first derive a second-order differential inequality

and then after integration derive several estimates and related properties. We deal

with cylinders of both finite and semi-infinite length, the distinction appearing, of

course, only in the integration of the differential inequality and not in its derivation.

The next section describes an alternative approach valid for all physically acceptable

elastic moduli, but which is comparatively less direct.

3a. The differential inequality. Let us consider the function F(x3) defined by

F{x3)= / (upup + au]) dx\ dx2, (3.1)
JD(x 3)

where a is a positive constant to be chosen later. We wish to establish a differential

inequality of the form

F"(x3) > k2(xs)F(x3) (3.2)

whose integration will lead to the desired estimates for F(x3). Here, and throughout,

differentiation with respect to the variable X3 is denoted by a superposed prime. Obvi-

ously, (3.2) implies that F(x3) is convex on the interval of validity, and this property

enables several elementary conclusions to be established regarding the evolutionary

behaviour of F. (See Sec. 3b.)

Successive differentiation of (3.1) yields

F'(x}) = 2 (upUp 3 + auiuij) dx\ dx2, (3.3)
JD(x 3)

and

F"(x3) = 2/ {UpjUpj + au]J)dxldx1 + 2 (ufiuPtii +au3u3>i3) dx{ dx2.
JDlXi) ' JD(Xy)

F"(x3) = 2 [
J D(x 3)

(3.4)
The differential equation (2.1) is used to replace the second derivatives appearing in

the second integral of (3.4), and then an integration by parts leads to

aa a 1 , ,
|"/?, 3"/?,3 + (! + asjui.PuP.i + (TTa)"3^"3J

+ 2/ au\ 3 + aup pUu + aup pu7r/ \ dx\ dx2 (3.5)
JD(x3) L '

+ 2 upaup:, dx 1 dx2.
J D

An equality of type (3.2) is clearly violated whenever F"(x3) fails to be positive-

definite. However, as can be readily seen from (3.5), the positive-definiteness of the

quadratic integrand on the right imposes a restriction on the choice of the coefficients

a and a. Indeed, the last integral in (3.5) may be replaced using the relations

/ up yUp:,dx\dx2> / upr,uyp dx\ dx2 = / up _pu7,y dx\ dx2, (3.6)
J D(x 3) J D(x,) J D(x 3)

and then standard conditions show that for positive-definiteness to hold it is necessary

and sufficient for a and a to satisfy

a2 4( 1 + a)
-JT, ;<a<——5— (3.7)
4( 1 + a) a2
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which in turn restricts a to satisfy

a2 <4(1+a) (3.8)

or, equivalently,

0 < a < 2(1 + V2) = 4.828. (3.9)

In terms of Poisson's ratio, v, condition (3.9) becomes

v < 0.396. (3.10)

In order to establish inequality (3.2) subject to (3.7), we apply the arithmetic-

geometric mean inequality to the second and fifth terms on the right of (3.5) to

obtain:

F"ix']2 (2_ (?S))LMU>'U°"'X"'X1

+(^{2~z)L)u>->u>-'dx'dx2

+ (2a-ac2) 3 dx\ dx2 (3.11)
JDUXy)

+ |q^2-^+c3|^ u^pUyj dx\ dx2

+ (2 — C3) / Up yUp,ydX\ dx2,
J D(xi)'D(x 3)

where c\, c2, and C3 are positive constants and the relations (3.6) have been used. We

now set

C\ = 2( 1 + a)/aa, c2 = 2a/a, C3 = — a ^2 — < 2. (3.12)

With this choice, which implies c2 < \ and is consistent with (3.7), the inequality

(3.11) becomes

F"(x*) ^ +«) -a2«] / ui,/lu3,p dxx dx2
2(1 +a) Jd(x})

+ Ir U(1 +a) - — 1 f up,yup,ydxldx2 (3.13)
1 L a J JD(x3)

>m2 Uj pUj p dx\ dx2, (3.14)
JD(x,)

where

/ 1 .1
4(1 + a)m2 = min ( jQ)2[4(1 + a) ~ \

a2"1

a

Alternatively, we may equate the coefficients of the integrals in (3.13), so that

(3.15)

m2 = + a) - a2a], (3.16)
2(1 + a)z
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where a is given by

-i- n\n 4- rvi r / 

(3.17)
2(1 + a) (2 + q)

a = —   — \J[\ + q2/{2(2 + a)}2] — 1

In either case, a must satisfy (3.8).

An appeal to inequality (2.9) then leads at once to

F"(x3)>m2X(x3)F(x3), (3.18)

which is clearly of the desired form (3.2).

We note that the eigenvalue A(jt3) may be replaced by the lower bound given by the

Faber-Krahn inequality (2.10). In particular, when the cross sections of the cylinder

possess the same area but not necessarily the same shape or orientation, the coefficient

of F(x3) in the resultant inequality reduces to a constant. Let us further observe that

the coefficients of the integrals in (3.13), and therefore the respective values of m in

(3.14), tend to zero as the modulus a tends to the maximum permitted by the range

of validity (3.7) or (3.8).

3b. Behaviour of F(x3). Decay estimates. This subsection discusses the integration

of the differential inequality (3.18) with the aim of establishing upper and lower

bounds on the function F(x3) leading to a description of its evolutionary behaviour.

Such properties, of course, may be derived from the standard comparison theorem

(see, for example, [24]) combined with the well-known theory for the corresponding

equation obtained from (3.18) when the inequality is replaced by equality. (See,

for example, [5], [13], [14].) Nevertheless, we prefer to present what is perhaps a

more direct treatment yielding estimates that are either apparently new or not readily

available in the literature. We begin, however, by listing properties of F(x3) that

easily follow from its convexity with respect to the variable X3 inherent in inequality

(3.18).

Proposition 3.1. The function F(xj) satisfying (3.18) on the finite interval (0,L)

possesses the following properties:

(i) F{x{) cannot achieve a maximum on (0, L);

(ii) F(x3) is nonoscillatory on [0,L];

(iii) F(0) = F(L) = 0 implies that F(x3) = 0, x3 e [0, L];

(iv) F'(0) = 0 implies either (a) F(x3) = F(0), X3 G [0,L], or (b) F'(x3) > 0,

*3 e (0, L];

(v) F'{0) > 0 implies F'(x3) > 0, X3 G [0,L];

(vi) F(L) < F(0) implies F'(0) < 0, *3 e [0, L];

(vii) the function F(x3) has at most one extremum on [0,L] or is identically

constant.

Similar properties hold on (0,oo) provided suitable asymptotic behaviour is im-

posed on F(x3) for large values of its argument.

Further evolutionary properties depend upon consideration of a second inequality

derived from (3.18) according to the following lemma.

Lemma 3.1. Let 0(xi) be a differentiate function, satisfying the inequality

mX(x3)( 1 - 02(x3)) + (0(x3)>/A(^))' > 0. (3.19)
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Then F(x3) satisfies

^-jexp^-2m^ P(r\)dt^j exp j dr^ | > 0, (3.20)

where

fi(x3) = esMxl); (3.21)

on introducing the new variable

<?{xi) = J^ ^exp i^-m P{r\)dr^j dx, (3.22)

inequality (3.20) becomes

^2 exp (m J p(t])dr^j> 0. (3.23)

Proof. It is easily shown from (3.18) and (3.19) that F{x3) satisfies the inequality

~ me(xi)VHxlfj + > 0, (3.24)

which on rewriting leads immediately to (3.20) and hence (3.23).

Lemma 3.1, which is valid for the cylinder of either finite or semi-infinite length,

shows that the exponentially weighted function F(x3) is convex with respect to the

variable a. We obtain our results by variously exploiting this property for selected

values of the function 0(*3). The reader will be able to establish further conclusions

by means of the same general approach. We discuss in detail the case of the cylin-

der of finite length to illustrate the method, and then briefly indicate modifications

required for the extension to the semi-infinite case. We conclude the subsection with

some additional results.

Our first set of results on (0,L) is based on the inequality

( fX} \ i 5x (exP (2m/n^('/)^'7))

+ exp (m f1^) 1 (3.25)
V X} /I (fo (exP(2mfo P^)drl)) dx) I

which follows immediately from the convexity of F(xj) as given by (3.23). Note

that (3.25) is exact at both *3 = 0, *3 = L. Furthermore, when the displacement is

specified zero on X3 = L, inequality (3.25) may be simplified to yield

F{x3) < F(0)exp (^-m J P(rj)dr^J , x3e[0,L]. (3.26)

In order to render either (3.25) or (3.26) precise, special choices depending on the

behaviour of A(*3) must be taken for 6{xi) and hence (3(xs). For example, we may

establish the following properties.
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Proposition 3.2. Let

0 < km = minA(x3). (3.27)
[0 ,£,]

Then, for X3 e [0 ,L],

F(x3) < [F(0) sinh m\[X^{L - X3) + F(L) sinh x3fflvt]/ sinhLwy^. (3.28)

Proof. Set 6(x3) = \/Am/A(x3) in (3.25).
Assumption (3.27) includes the case of monotonically increasing (decreasing) A(x3)

with A(0) > 0 (resp. A(L) > 0). The last condition is removed in the next result.

Proposition 3.3. Let A'(x3) > 0 U'(x3) < 0). Then F(x3) on [0,L] satisfies (3.25)

with jS(x3) = v/A(x3)(-v/A(x3)).

Proof. Set d(x3) = 1(-1).

It is possible to derive an estimate when A(X3) violates assumption (3.27) and is

not monotonic. We have

Proposition 3.4. Let
• A'(x3)

y - mm
[o,i] 2A3/2(x3) "

Then F(x^) on [0,L] satisfies (3.25) with d(xi) = (7 + \Jy2 + 4m2)/(2m).

When F(L) = 0, the inequalities contained in Proposition (3.2)-(3.4) simplify to

(3.26) with the respective values of P(xi).

We next integrate (3.23), first over (0,^3) and then over (x3,L), to obtain

^(*3) < F(L) exp ̂ 'm J P{t])dr]^ - [F'(0) + mp(0)F(0)]

x exp J /l(r])dr^J exp ̂ 2m J /i{t])drj^j dx.
(3.29)

We immediately conclude from (3.29) that when F'(0) > 0 then

F{Xi) > [F'(0) + m/?(0)F(0)]exp (-m J P{rj)dr^j J exp ̂ 2 m J p(r])dr^j dx.

(3.30)
On the other hand, when F(L) = 0 we must have F'(0) < 0, as already noted in

Proposition 3.1(vi). In these circumstances, we may establish

Proposition 3.5. Suppose that A(X3) is nonincreasing so that A'(x3) < 0, X3 e [0,L],

Then with F(L) = 0 there holds

F{x3) < [m^W)F(0) - F'(0)](L -x3)exp (-m J*' . (3.31)

Proof. Set 0(x3) = -1, so that /?(x3) = -^/Mx3] in (3.29).
Clearly, similar upper bounds may be derived from (3.29) using the choices of

0(^3) corresponding to the different conditions on A(x3) stated in Propositions (3.2)-

(3.4).
We now turn our attention to the semi-infinite interval and first derive a necessary

condition for the function f(x3) to become unbounded for large values of X3.



CONSTRAINED ELASTIC CYLINDER OF VARIABLE CROSS SECTION 333

Proposition 3.6. Suppose that

lim = ,3.32)
*3-00 f}(XT,)

Then

lim F(x3) = 0 (3.33)
X3—>00

unless

F'(0) + mi!(0)F(0)<0. (3.34)

Proof. By a Taylor series expansion, we obtain from (3.23) the inequality

F(x3) > exp m p{r])di^j

x [F(0){F'(0) + m^(0)F(0)}] J ^exp2m J P(t])dt^j dz
(3.35)

from which the result follows on application of l'Hopital's theorem.

By imposing conditions on the asymptotic behaviour of F(x3) we may prove that

F(x3) must actually decay. These results are analogues of Propositions 3.2-3.4, and

hence are easily derived. We therefore content ourselves with the statement and

proof of only one such result which, it will be noticed, is akin to a Phragmen-

Lindelof principle, reminiscent of several results previously obtained in the study of

Saint-Venant's principle. Maz'ya and Plamenevskii [22] establish a similar result for

solutions that are separable obtaining the decay rate Am/(a + 1)1/2 which is faster

than that given by (3.38). However, our result holds for all solutions and not only

for those in the class considered in [22].

Proposition 3.7. Let

0 < Xm = inf A(x3) (3.36)
[0,oo]

and

lim F(x^) exp(-mV%^*3) = 0. (3.37)
Xy—>00

Then

F{Xi) < F(0)e\p(-m\/J^txi), X3€[0,oo). (3.38)

Proof. We use inequality (3.25) together with d(xi) = sJ{XmIX{x{)).

By imposing conditions on the asymptotic behaviour of both F{x{) and its deriva-

tive it is possible to obtain additional decay estimates based on the following inequal-

ity:

F{x2) < F{0) exp m P^dr^j + [F'{L) + mp(L)F(L)]

( fL \ fX} ( r \ ^3'39^xexpl-m J p(rj)drjj J exp y2m J p(t])dr]J d r,

which is a consequence of integrating (3.23) first over (*3, L) and then over (0,x3).

As an example of results of this type, we have the next two propositions.
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Proposition 3.8. Suppose A(.*3) is nondecreasing so that X'(x3) > 0 on [0,oo) and

lim [F'(Xi) + m\/I{Xi)F(Xi)]exp (-m [ ^(ti)dtj\ = 0, (3.40)
*3^°° V Jo J

F{xt,) < F(0)exp f (3.41)

Proof. Set 6{Xi) - 1 and use (3.29).

Proposition 3.9. Suppose that ^(*3) satisfies the condition

A'(*3)
1 < 7 < inf

x3e[0,oo)
+ 1 + f *(s3) y

\ 4mV/2(x-i) J (3.42)
4wA3/2(x3) \

where y is constant, and let F(x3) possess the asymptotic behaviour

hmJ^F'ix^) + y^/I{Xi)F(Xi)]exp (^-my J = 0. (3.43)

Then

F(x3) < F(0)exp i^y™ j VMsfidq) ■ (3-44)

Proof. Set 6{x3) = y and use (3.39).

We conclude this section with some remarks.

Remark 3.1. Inequality (3.18) clearly also holds on cylinders of infinite length,

which immediately enables us to establish an analogue of Liouville's theorem.

Proposition 3.10. Assume that (3.18) holds on (-00,00). Then either the displace-

ment as measured by F(x3) is unbounded as X3 —► +00 or X3 —> -00, or the displace-

ment is identically zero.

The proof of the Proposition, included here for completeness, is an easy applica-

tion of the properties of a convex function. The same approach has been employed

in a more general context by, for example, Brezis and Goldstein [4], Levine [21], and

Goldstein and Lubin [12].

Proof. We suppose that F'(x3) ^ 0 at some fixed point X3 = t. Then, by (3.18),

F"(x-i) > 0, X3 € (-00,00), and hence F(x3) is a nonnegative, nonconstant convex

function on (-00,00) and is therefore unbounded. On the other hand, when F(x3)

is everywhere bounded, we must have F'(x3) = 0, for all x3. Thus, F"(x3) = 0, for

all x-s and so by (3.18), we have F(x3) = 0 on (-00,00). The proposition is therefore

proved.

A similar result involving the strain (Uij + Ujj) has been discussed by Kinderlehrer

[16].
Remark 3.2. It is possible to derive a modification of inequality (3.18) which

produces improved rates of decay. We return to (3.11) and set

Ci = (2-S)(l+a)/(aa), c2 = (2-S)a/a, c3 =-a (2 - < 2,
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where 0 < d < 2. Then instead of (3.18) we obtain

F"(xi)>d (ua 3Ua j + au] 3) dx\ dx2 + m2^.(Xi)F(x^), (3.45)
JD(X 3)

where
a2 2(1 + a)(2 — S)

2(1 + a) (2 - S) <d< a2

and

m2 = min ^ ^ — [2(2 - <J)(1 + a) - aa2], [2(1 + a) - a2/(a(2 - <5))]

or, alternatively, on equating the coefficients of the last two integrals in (3.13),

m'= (2 - <J)(1 +a)2^2 aa^

where a is now given by

(2 - <J)(1 + a){2 + a)

1 + { (2 - S)(2 + a) } 1

An application of Schwarz's inequality (3.67) then yields

FF" ~^(F')2 > m1X{xi)F2

which, on setting P(x3) = Fe(x3), e = 1 - S/4 > 0, as S < 2, leads to

P"(x3) > em2^{x^)P{x-i).

We thus recover an inequality of the same form as (3.18) and all the previous argu-

ments are immediately applicable. For example, the analogue of (3.38) becomes

F{x3) < F(0)exp(-X3iriy/(Am/e)), x3€[0,oo),

which, since e < 1, represents an improved decay rate. Note that now, however, the

range of a is determined additionally by choice of S and is always included in that

for d = 0.

Remark 3.3. While the basic inequality (3.18) has been established only for a

limited range of elastic moduli, nevertheless the various estimates that have been

derived are valid for all x3 > 0. The decay estimates hold arbitrarily close to the

base load region and are not invalidated within some boundary layer.

Remark 3.4. It is also worth emphasizing that the rate of decay in most other

available estimates deteriorates as the incompressibility limit is approached. This

may thus be a further factor contributing to the limitation on the moduli apparently

essential to the present approach.

Remark 3.5. The Faber-Krahn inequality (2.10) may be used to replace ^(^3)

by A~\xi) in the basic inequality (3.18). Then Propositions (3.2)—(3.9) continue to

hold but with conditions on A(X3) replaced by appropriate conditions on A(x3).
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4. A first-order differential inequality and related estimates. We now describe a

second method for discussing the behaviour of the solution to the boundary value

problem (2.1)—(2.4). Unlike the approach considered in the previous section, the

arguments used, while in passing involve volume integrals, do not restrict the elastic

moduli. Nor is it essential to require any a priori asymptotic decay assumption of

the solution in the case of a semi-infinite cylinder. Our method yields an alternative

theorem of Phragmen-Lindelof type.

Thus, let us introduce the function

H{x3)= I (w,«;>3 + aujju^dxx dx2, (4.1)
Jd(xj)

which may be rewritten as

rXj+h r

H(x3 + h) = H(x3) + / (UjjUjj + aUijUjj) dxi dx2dt] (4.2)
Jx 3 J £>, ri)

for 0 < h < L - x3. Hence, in particular, when

Uj(xa,L) = 0, or + aUjjSlt3 — 0 at x3-L, (4.3)

we have H(x3) < 0, but in general H(x3) is nondecreasing and its (nonnegative)

derivative is given explicitly by

H'(xi)= (UjjUij+ auijujj)dxldx2. (4.4)
JD(x 3)

Let us note the relationship between the function //(x3) and the corresponding

integral for the work done by external forces across the cross section D(x3), defined

by

K(x3) = / cr(>3«, dx\ dx2-
Jd(x,)

This immediately yields

rX)+hrX)+n r

V(xi + h) - V(xi) + / / OijUij dx\ dx2dr],
Jx 3 JD(n)

But we have

/ a,jUij dxi dx2 = H'(x3) + pL / {UijUjj - UjjUk<k)dx\ dx2
Jdw JD(x3)

= iiH'(x3) + n {UijUij - 2(OijQJij - Ujjukyk) dxx dx2
Jd(x,)

< 2hH'(x3),

where

= j(uij — uj,i)-

Hence, it follows that

V'(x3) < 2fiH'(x3),

and

V(x2 + h)~ V(x3) < 2ju[H(x3 + h) - H(x3)].
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Furthermore, condition (4.3)2 implies that on X3 = L the stress satisfies

&a3 (-L) M^3,a(L) ,

o33(L) = -fiua>a{L),

and these stress components hence vanish only when Ui{xa,L) is constant.

We now wish to compute a bound of the form

|ff(x3)| < n(x3)H'(x3). (4.5)

Once (4.5) is established, it leads immediately to the inequalities

H{x3) < n(x3)H'(x3) (4.6)

and

-H(x3) < n(x3)H'(x3), (4.7)

which, on integration, yield the desired information on the behaviour of the solution

as measured by H(x3). Let us first derive (4.5).

By means of Schwarz's inequality combined with inequality (2.9) we obtain

|//(x3)| < / UtUjdxidx2 Ujt3Ui,3dxidx2)
\Jd(x}) JD(x3) J

( \1/2

+ a I u,u, dx\ dx2 I Ui jUjj dx\ dxi) (4.8)
\Jd(x}) JD(xj) ' J

[ r 1 1/2
<[^3)]-'/2 / u,puipdx\dx2

J D(xj)

if V/2 (r xl/2
/ Ui 3Uj 3 dx\ dx2 I + / UijUjj dx\ dx2

\J D(x3) ' ' J \JD(x})
(4.9)

(C3 + C4)/ uijuijdxldx2
JD(x3)

+ —[ ui 3ui 3dx\ dx2
c3 JD(x,)

(4.10)

>D(x 3)

f
H / UjjUjj dx\ dx2

c4 Jd(xx)>D(x 3)

where in the last line we have used the arithmetic-geometric mean inequality with

positive constants c3,c$. On setting

C4 = ac3 = a(l + a)_l/2,

we find that (4.10) becomes

l#(*3)| < ^(*3)]" l/20 + a)'/2//'(x3), (4.11)
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which is of the required form (4.5) with

«(x3) = ^[(l+a)M(x3)]1/2. (4.12)

We have already seen that under the end-conditions (4.3), we must have H(x3) < 0,

for X3 e [0, L], and in view of the nonnegativeness of H'(x3), it follows that inequality

(4.7) holds. Integration of (4.7) leads to

-H(X}) < - //(0)exp

- - H(0) exp ̂ -/c J Xl/2(t])dr]SSj (4.13)

< -//(0)exp (-co J*' A~l'2{ri)dr^ , (4.14)

where
k = 2(1 + a)-'/2, co = 2(1 + a)~lt2j0nl/2 (4.15)

and we have used (4.12) together with the Faber-Krahn inequality (2.10) for A(x3).

Since H(L) = 0, inequality (4.14) may be rewritten as

E{x$) < E(0) exp J A~l^2(r])dr]Sj (4.16)

where from (4.2),

E{x 3)=/ [ {UijUij + aUijUjj)dxdtj. (4.17)
Jx3 J DM

We next turn to the case of a cylinder of semi-infinite length and impose no as-

sumption on the asymptotic behaviour of the solution as *3 —> 00. It follows as

before that whenever //(x3) becomes positive at some point t\ e [0,oo), then H(x3)

is a positive increasing function forx3 > t\. Indeed, in these circumstances, it follows

from integration of (4.6) that

H(xi) > H(t\) exp J X^2(rj)dt]^j (4.18)

which, on using (4.2), becomes

> H(t 1

where

exp (*/, ^'2^dri (4.19)

I(t\,x3)=f [ (UijUjj + otUj jUj j) dx\ dx2 dtj. (4.20)
Jt, Jdm

We now suppose that

lim [ A.]?2(rj) drj = 00 (4.21)
x,-*oo Ju

so that the left side of (4.18) becomes unbounded as x3 —► 00. More precisely, by

means of I'Hopital's theorem, we obtain from (4.19) the inequality

lim K(x$) exp (-k J 'V2to)</>/) >/t//(f,) (4.22)
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where

K{Xi) = X-l/2{X}) / [UijUij + ocUjjitjj]dx\ dx2.
JD(x})

Hence, on imposing the asymptotic condition

lim K(Xi) exp f-/c J X^2(ri)dt]^j = 0, (4.23)

we see that with (4.21) we are led to a contradiction and accordingly (4.23) and (4.21)

imply that

H(x 3)<0, x3e[0,oo). (4.24)

Finally, on appealing to (4.7), we obtain the estimate

-//(jc3)< -7/(0) exp (-k j\x'2(ri)dr^j (4.25)

or

E{xj) < E(0) exp (-k J Xl/2(rj)dt^j (4.26)

where now, in the definition (4.17) of E(x3), the upper limit extends to infinity. Let

us note that (4.21) and (4.25) imply the boundedness of E{0), which therefore does

not require separate postulation.

We have thus proved the following:

Proposition 4.1. For the semi-infinite cylinder, whose cross sections give rise to

(4.21), the solution measured by H(x3) either violates the asymptotic behaviour in-

dicated by (4.23) or is bounded above by a decaying exponential function of x$ given

by (4.25).

Of course, in each of the previous inequalities, A(x3) may be replaced by its lower

bound (2.10).

In the special case of constant cross-sectional area, we observe that the Propo-

sition shows that H(X}) either grows at least exponentially in *3 or it possesses at

most exponential decay. When the cylinder is a frustrum of a cone so that A(x3) =

no(XT, + y)2, where o,y are positive constants, then H(X}) either grows at least like

l(*3 + y)/y\l/y/™ or decays at most like [y/(x3 + y)]wM™.

Proposition 4.1 is analogous to a Phragmen-Lindelof principle for the present

problem and yields decay estimates similar to those obtained by Maz'ya and

Plamenevskii [22] who, however, use entirely different arguments and adopt a differ-

ent measure for the solution.

The estimate (4.25) is not of practical use until the quantity £(0) is bounded in

terms of the prescribed data u,(xlt,0). For simplicity, we assume the cylinder is

prismatic, and observe that by Dirichlet's principle, we have

£(0)<£(0), (4.27)
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where £(0) is obtained from E(0) by replacing each derivative of the displacement

Ui(x„,x3) by the respective derivatives of the harmonic function hi{xa,x3) satisfying

hi(xa, 0) = Uj(xa, 0),

hi(xa,x3) = 0, x e dD x [0,oo),

lim hj(xa,x3) = 0, x e D.
X}—*00

E{0) < (1 + 3a) rr htjhij dx 1 (4.28)

But

./0 JD(r,)

and, on using Dirichlet's principle again, we obtain

r OO /» rOO r

/ / hijhijdxldx2dt] < / WtjWij dxxdx2dr] (4.29)
./0 ■/£(»/) ^0 -/£)(?/)

where Wj(xa,x3) is any sufficiently smooth function with the same boundary values

as hj. In particular, let us set

Wi(xa,x 3) = w,(xQ,0)e-),JC3, (4.30)

for some positive constant y to be chosen. On inserting (4.30) into (4.29) we find

that

£(0) < (1 +3a) (H Ui,0{xa,O)Ujjj{xa,O) dxi dx2

| J Uj(xa,0)uj{xa, 0) dx\ dx2+

so on selecting the optimal value for y we conclude that

E(0) < (1 + 3a)

(4.31)

uitp(xct,0)uitp(xa,0)dxl dx.

x (^j Uj{xa,0)Ui(xa,0) dx\ dx
1/2 (4.32)

which is the desired estimate involving the data.

A result similar to (4.32) may be established for more general regions by means

of methods presented, for example, by Bramble and Payne [3].

We employ Proposition 4.1 to obtain under appropriate conditions an estimate on

the behaviour of the displacement as measured by the function F(x3) introduced in

Sec. 3. We have

Proposition 4.2. Let the cylinder be of semi-infinite length and let the eigenvalue

A(x3) satisfy

0 < Am = inf A(x3). (4.33)
[0,oo)

We suppose the solution possesses the asymptotic behaviour (4.23). Then the func-

tion F(x3) defined by (3.1) with a = 1 satisfies the inequality

F(x3) < \ ' E( 0) exp (-K J^ y/W) dn\ (4.34)



CONSTRAINED ELASTIC CYLINDER OF VARIABLE CROSS SECTION 341

or, in terms of A(x3) and to defined by (4.15),

^(*3) < 4 ) £(0)exp . (4.35)

Proof. We first show that F(x3) is bounded above by H'{x-$). Thus, with F(x3)

defined by

F{xi)= / UjUj dx\ dx2, (4.36)
JD(x})

it follows from (2.9) that

F(x3) < A_i(x3) / ui<auitadx 1 dx2
Jd(x,)

<X~l(xi) {UijUjj + auuujJ)dxidx2 (4.37)
JD(x 3)

< A-'(x3)(1 +a)H'(x3) (4.38)

where the last two inequalities rely upon the positivity of a and H'(x3) is given by

(4.4).

We next relate F(x3) with H(x3). Now, we conclude from (4.1) that

^(*3) = ~F'{Xi) + a [ ujj w3dx\ dx-i,
1 JD(x-s)

so that by Schwarz's inequality and (2.9) we have

H(x3) < \f\xi) + aA-'/2(x3) ( [ UijUjj dx\dx2\ ( [ m3 f*w3 „ dx\ dxi ]
2 \JD{Xi) J \JD(x>) J

/ UjjUjjdx\dx2 + = / UijUjj dx\ dx,
JD(xi) ' IjDlXi)

< 1f'(x3) + A-1/2(x3)
a2

2c

where the arithmetic-geometric mean inequality has been employed with c > 0. On

taking c = a(l +q)_i/2, it then follows that

H{x,)<X-F'{x,) + ~X-'I2{x,) *(1 +a)1/2 / UjjUjjdx|
J DLu)D(-Vj)

(4.39)+ a(l+a) ^2 / UijUijdx\dxi
J D(xj)

< ^r(x3) + ^(l+a)1/2A-|/2(x3)//'(x3).

where again we have appealed to the positivity of a.
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With the help of (4.38), we may express (4.39) as

0 < ±F'(x3) + ±(1 + a)>/2A->/2(x3)H'(x3) - X-H(x3)

< j(F'(x3) - 2(1 + ar'/2A'/2(x3)F(x3))

+ |(1 + a)l'2rl'2(x3)H'(x3) - l-H(x3)

< ±(/"(x3) - 2(1 + a)-l>2ll'2(x3)F(x3))

+ 1(1 + a)l'2l-l'2(x3)[H'(x3) - 2(1 + a)-l'2Xl'2(x3)H(x3)], (4.40)

since by hypothesis H(x3) is negative and we already know from (4.4) that H'(x3) is

nonnegative. Finally, on recalling (4.33), we may write (4.40) in the form

0 < exp ^—2(1 + a) x'2 s/A(ri)dtjJ F{x3)j

+ 4( 1 + a)"2rJ1/2 [exp (-2( 1 + a)~ '/2 £ dq) H(x3) ,

and then integrate the last inequality over [X3,00) to obtain

F(x3) < -4(1+ a)l'2l~l/2H(x3), (4.41)

where the terms at infinity vanish by virtue of (4.36), (4.23), (4.25). The result now

follows on using (4.26).

We observe that replacement of the asymptotic condition (4.23) by the stronger

requirement that

lim F(x3) = 0,
x3—»oo

enables a shorter proof to be given of Proposition 4.2. Thus, on using (4.17), we

have

F(x3) < 2 / / UjUl>3 dx\ dx2 dt]
\Jxi J D(rj)

r 00 r r OO r 00

/ / Ui,aUj<adxi dxzdt] / Ujt3Ujt3 dx\ dx2 dtj
Jx 1 J Din) Jx 1 JD(n)

1/2

>x, JD(n)

< 2rmxtl
Jx, JD(ti) Jx} JD(ri)

< 2rl'2E{x3),

and the result again follows from (4.26).

It is possible to derive decay estimates for F(x3) without requiring X(x3) to satisfy

condition (4.33). However, A(x3) must have restricted asymptotic behaviour and be

monotonically decreasing. When k(x3) is monotonically increasing, the argument of

Proposition 4.2 remains applicable provided A(0) > 0, since in this case we have

A(0) < A(x3).

The proof of the decay estimate is based on the following lemmas, the first of

which does not require monotonicity.
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Lemma 4.3. Let us suppose that (4.21) and (4.23) hold together with

lim j/l-1/2(jt3)exp (^~K J kl/2(r])dt]^j j = 0. (4.42)

Then, as —► oo,

(i) H'(x3) = O (l,/2(x3) exp £ Xl'2(ri) drij ) , (4.43)

(ii) F(x3) = O ̂ A1/2(x3)exp [~K Jq ^1/2(>/)^>?^ > (4.44)

(iii) lim F(x3) = 0, (4.45)
X)—>00

where H'(x3) and F(x3) are given by (4.4) and (4.36) respectively.

Proof. We have seen that (4.21) and (4.23) imply inequality (4.26) which by

FHopital's theorem in turn implies

lim j/c^A-1''2^)//'^) exp s kl'\r,)dr,^<E(0),

and hence (4.43) is established. The relation (4.44) now follows on appeal to (4.37),

and then (4.45) is immediate on noting (4.42).

Lemma 4.4. Let us suppose that (4.21), (4.23), and (4.42) hold and that additionally

X(xi) satisfies

(i) A'(x3) for X3 > Z > 0, where Z is constant, (4.46)

(ii) lim jx]+£ exp J dt^J — 0 for any e > 0 . (4.47)

Then the function P(x3), defined by

P(x3)=[°°[ k-WWH'Wdn, (4-48)
Jx3 JD(tl)

satisfies the inequality

P(Xi) < kE(0) J exp ̂ -k J Xl/2(t])drj^j dx (4.49)

for xj > Z, and consequently decays for sufficiently large x3.

Proof. Inequality (4.25), which is valid by virtue of (4.21) and (4.23), implies that

H(X3) —► 0 as X3 —► 00. Hence, an integration by parts in (4.48) enables us to write

P(X3) = -k-l'2(x3)H(xy) - f° [ [rl'2]'H(T,) dX\ dx2 drj, (4.50)
Jx 3 JD^)

from which (4.49) follows on using (4.26) and a further integration by parts. Con-

dition (4.47) is sufficient to guarantee decay of P(x3).

A decay estimate for F(x3) may now be easily established. We have
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Proposition 4.5. Under the conditions of Lemma 4.4 it follows that

F(xt) < 2kE(0) J exp J dr]^J dx, x^>Z. (4.51)

Proof. We have from (4.45) and Schwarz's inequality that

F(X})= -2 / u,ul-n dx\ dx2dt]
Jx J J D(t])

[I 1/2rOO r rOC r

/ / X~xl2Uidx\ dx2 dt] / / k{l2UjUi dx\ dx2 drj
Jx 3 JD(t]) Jx 3 JD(tj)

<P(X 3),

where the last inequality follows on using (2.9). On combining with (4.49) we arrive

at (4.51).

As a simple illustration of these results, we consider the circular cone given by

{x2 + x\)x!2 — 0X}, where /? is a positive constant. Then A(jc3) = jlP~2x^2 and so

(4.21) is satisfied while (4.42) and (4.47) require /? < joK. Then (4.51) reduces to

F(Xi) < 2kE(0)P[kJo - p]-ix?Kk~X)rX,

valid for x3 > 0.

Remark 4.1. The previous analysis can be easily modified to treat an analogous

dynamical problem in which the plane end x^ = 0 of the cylinder is subjected to a

displacement of the form gi(x„)e'Q' where Q is real and t denotes time.

The steady state displacement field Ui{xa,xi), apart from the exponential time

factor e'^', is easily seen to satisfy the system

uiJj + aujji + (p£l21 n)u, = 0, xeB, (4.52)

with

Uj(x„,0) = gi(x„), x<teD( 0), (4.53)

Uj(x„,x-$) - 0, * e (dD(xi), X3 € (0, L)) U D(L), (4.54)

where p is the constant density and n the rigidity modulus. A more detailed discus-

sion of such a dynamical system, including damping effects, is given by Flavin and

Knops [8].

On defining H(x3) as in (4.1) it can easily be shown that

H(X}) = H{0)+[ [ [uijUij + auuUjj-{pQ2/fi)UiUi]dxidx2dri. (4.55)
Jo J D(ti)

We suppose that the excitation frequency Q satisfies

1 -/?Q2(/a(jc3))-' > 0, (4.56)

or

1 -/>Q2(M»r' >0, (4.57)

and then, on noting from (2.9) that

/ UjUj dx\ dx2 < A '(x3) / (UjjUjj + aUjjUjj
JD(x 3) J D(X))

)dx\dx2, (4.58)
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we see that the second term on the left in (4.55) is positive-definite. Furthermore,

provided (4.56) holds, it follows that

[ [ (UijUjj + aUjjUjj) dx\ dx2drj
JO J D(r})

< [1 - pCl2{^lm)-1r' [ [ (UijUij + aUijUjj - p£l2n~lUiUi)dx\ dx2drj.
0 (4-59)

A repetition of the previous analysis, utilizing (4.52) and subject to (4.56) or (4.57),

then leads to the estimate

E(x{) < E(0)exp |-o)J*3 [l - /?Q^(??) ^~'/2(>/)^} (4.60)

where the Faber-Krahn inequality (2.10) has been used and once again E(xi) =

-H(x3). The estimate (4.60) continues to be valid for a semi-infinite cylinder pro-

vided that the condition stipulating the vanishing of m,(xq,x3) at = L is replaced

by an asymptotic condition corresponding to (4.23)

It is clear that the upper bound for Q implied by (4.56) is a lower bound for

the "cut-off' frequency. Explicit upper bounds for E(0) may be derived along lines

already discussed using a modified version of Dirichlet's principle.

5. The axisymmetric problem. In this final section, we consider the axisymmetric

form of the boundary value problem discussed in Sees. 3 and 4 and obtain decay

estimates for a different cross-sectional mean-square measure involving only deriva-

tives of the displacements. The reason for restricting attention to axisymmetry is that

the appropriate Sobolev embedding inequalities enable pointwise estimates to be de-

rived for the displacement which are valid up to the boundary. A similar approach

has been adopted by Flavin and Knops [9] for the corresponding two-dimensional

problem.

We consider a homogeneous isotropic compressible elastic material occupying a

region of revolution R. It is assumed that R is either hollow or solid and that it

has plane annular circular ends S0 and Sl, separated by a distance L. We introduce

cylindrical polar coordinates (r,8, z) with origin 0 in the end So and such that the

z-axis coincides with the axis of symmetry of the body. We suppose that R is given

by

R = {(r,6, z): r\(z) < r < r2(z), 0 < 6 < 2n, 0 < z < L},

so that when R is hollow we have r\{z) > 0, while when R is solid we put rx(z) =

0. The functions ry(z), y = 1,2, describing the shape of the curved boundary are

assumed to be twice continuously differentiable. Further restrictions are imposed

later.

We suppose, as before, that the body is deformed by specified displacements on

the plane ends So, Sl, and that on the lateral surfaces the displacement is zero. On

denoting the radial and axial components of the displacement by u(r, z) and w(r, z)

respectively, we further suppose that, for the solid body, we have

u{r,z) = 0(r), u>r(r,z) = 0(r) as r —► 0 (5.1)
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where a subscript indicates partial differentiation.

We recall that the axisymmetric forms of the equilibrium equations (2.1) when

expressed in cylindrical polar coordinates become

(1 + a)[r~1 (ru)r]r + uzz + awrz = 0, (5.2)

ar~'(ru)rz + r~\rwr)r + (1 + a)wzz - 0, (5.3)

where a, given by (2.5), is assumed positive. We are again neglecting body-force and

assuming the existence of a classical solution.

We now mention a lemma which plays a central role in the analysis.

Lemma 5.1. Let p{r,z) € C3(R) and let p(r,z) vanish on the lateral surface of R.

Then the function P(z), defined by

P{z)= / rp2dr, (5.4)
Jr,(z)

where the integral is over the straight line in a semi-meridianal cross section, satisfies

P\z) — if rprp'rdr+ [r2plr']r*[zz J, (5.5)
J r\

P"(z) = 2 f (rp[2 - (rpr)rp") dr - [p}{rr" - r,2)]r$y (5.6)
Jr,(z)

Here, a superposed prime indicates partial differentiation with respect to the

variable z.

The proof of the lemma follows immediately from the elementary identities:

d , , x x dg. . dg .
5-,(r(r).z) = _(,,z) + _r,

d crrr2(-z~) , ^
-T- / (p{r,z)dr— / <p\r,z)dr + [(p{r,z)r\z)]?[zz].
az JrAz) Jr,(z)

(5.7)

'ri(z) Jn(z)

We now consider the behaviour of the function Q(z) defined by

Q(z) = f (r~{[(ru)r]2+ brw})dr, (5.8)
Jr,(z)

where b is a positive constant to be chosen later. An application of Lemma 5.1

together with some easy manipulations yields

Q"(z) = 2 f {r-{[(ru)'r]2 - [r~\ru)r]rru" + b[rw[2 - {rwr)rw"]} dr - [A(r, z)]^g

(5.9)
where

A(r, z) = u2(rr" + r'2) + bw2(rr" - r'2), (5.10)

and henceforth the limits of integration are implied.

An appeal to (5.2), (5.3), then reduces (5.9) to

Q"(z) = 2 J{r-i[(ru)'r]2dr + (1 + a)r([r~l (ru)r]r)2

+ ar[r~{ (ru)r]rw'r + brw'2 (5-11)

+ (1 +a)-^br-\[{rwr)r)2 + a(rwr)r(ru)'r)} dr - [A{r,z)]r^y
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Successive use of the arithmetic-geometric mean inequality then gives

Q"(z) > (2 - ba(\ + a)~lc^x) J r~l[(ru)'r]2 dr + (2b - ac^x) J rw'r2 dr

+ (2(1 + a) -ac6) J r([r~\ru)r]r)2 dr (5.12)

+ (1 +a)-\2-ac5)b J r~[[(rwr)r]2 dr - [A{r, z)]rr

for arbitrary positive constants c5,c6. Let us set

f2(z)
J'i(z)

c5 = ±ab(l + a)~l, C6 = J£- (5-13)

Then the right side of (5.12) is positive-definite in the integral terms provided

a2 ,4(1 + a) ...
—i r < b < v , ' (5.14)
4(1+q) a2 v '

and hence

0 < a < 2(1 + V2), (5.15)

which is the restriction previously derived in (3.23).

As in Sec. 3, we wish to show that Q(z) satisfies a differential inequality of the

type (3.2), but to achieve this we must first dispose of the term A(r, z) appearing in

(5.12). Accordingly, we suppose that the lateral surfaces are such that for the solid

body

[r22(z)]"< 0, (5.16)

while for the hollow body

[r22(z)]"<0, [logr,(z)]">0. (5.17)

Restrictions on the shape of the lateral surface are to be expected since portions

resembling re-entrant angles must be excluded. At such angles, the displacement

gradients are likely to be singular. These last two conditions, together with (5.1) and

(5.14), then show that

Q"(z)>0. (5.18)

Hence, Q(z) is convex and so we may note in passing the bound,

Q(z) < Q(0) + [Q(L) - Q(0)]z/L. (5.19)

However, to derive a stronger differential inequality of type (3.2), we require the

following two inequalities which are immediate consequences of the standard varia-

tional inequalities.

Lemma 5.2. The displacement components u{r,z), w(r,z) satisfy

h j r~x[(ru)r]2 dr < J{[r~\ru)r]r}2r dr, (5.20)

ki J rw] dr < J r~l[(rwr)r]2 dr, (5.21)



348 J. N. FLAVIN, R. J. KNOPS, AND L. E. PAYNE

where in (5.20) A] (z) is the lowest positive root of the equation which in the hollow

region is given by

/i(A1/2r1(z))y1(A|/2r2(z))-/,(A1/2r2(z))y1(AI/2/-I(z)) = 0 (5.22)

and in the solid region is

/i(A1/2r2(z)) = 0; (5.23)

while in (5.21), A2(z) is the lowest positive root of the equation which for the hollow

region is given by

Jo(li/2rl(z)W2r2(z))-J0(Xl'2r2(z))Y0(ll<2ri(z)) = 0 (5.24)

and in the solid region is given by

/0(A'/2r2(z)) = 0. (5.25)

Here, Jn, Y„ denote the nth-order Bessel functions of the first and second kind.

We then have

Proposition 5.1. The function Q(z), defined by (5.8) on the smooth solution to the

boundary value problem (5.2), (5.3) subject to (5.1), zero lateral displacement, elastic

moduli in the range (5.15), and the region whose lateral boundaries are governed by

(5.16), (5.17), satisfies the inequality

Q"(z) > m2 k(z)Q(z) (5.26)

where m2 is given by either (3.15) or (3.16), with b defined by (3.17), and

A(z) = min(A](z), A2(z)). (5.27)

Proof. Inequality (5.26) easily follows from (5.12) on using Lemma 5.2, with

oth a ,, . _,

Cs = 2(1 + a)' °6=2b" ( }

The choice (5.28) reduces the right side of (5.12) to a quadratic form similar to that

on the right side of (3.13) which immediately leads to the stated values of m2.

We may now discuss (5.26) along the lines of Sec. 3(b) and obtain decay estimates

similar to those derived before. Thus, for example, when the displacement at z = L

is specified to be zero, we recover an estimate analogous to (3.26). However, the

principal aim of this section is to derive pointwise estimates for the displacement

components. We require the inequalities contained in the next lemma (cf. [2]).

Lemma 5.3. (i) Suppose f(r) e CQ(ri,r2), where rh r2 are constants satisfying 0 <

< r2. Then

f2(£) < log(£/'i)log('2/fl f2 (df V dr
J [Q)- log(r2/n) 1 \dr) U '

and

r2 _ _ r2N

J [Q) - 2(r2 - r2)Z2 Jri
dr,
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where r{ < £ < r2 and £ is independent of r.

(ii) Suppose / e Cl(0,r2), where f(r2) = 0. Then for<^ independent of r, we have

£'(%)'*• (5-29)

and

dr.

where 0 < £ < r2.

Pointwise bounds for u,w which reflect position and which are valid up to the

boundary for both the hollow and solid region, follow upon using Lemma 5.3 in

conjunction with, say, the estimate analogous to (3.26), and the readily verifiable

inequalities

(ruj + r~xu2)dr < Q(z),f<
b J rwj dr < Q(z).

In the case of the solid cylinder, however, the relevant bound for w degenerates on

the axis of symmetry in accordance with (5.29).
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