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Abstract. This paper discusses the finite time blow-up of the amplitude of accel-
eration waves in the case of heat propagation in one-dimensional rigid and elastic
bodies. In both cases dissipation is not strong enough to preserve the smoothness of
the solutions whose initial data is far from equilibrium.

1. Introduction. Under suitable assumptions on the constitutive relations, the
equations of isothermal nonlinear elasticity are of hyperbolic type. This fact can
lead to the formation of shocks; that is, the velocity and deformation gradient be-
come discontinuous, and for smooth data the Cauchy problem does not have a global
smooth solution (Lax [9]). This strong effect of elastic nonlinearity is due to the
fact that there is no dissipation. Many kinds of dissipation, e.g., Dafermos [5], will
produce stabilizing phenomena. Such a stabilizing role is played, for example, by
heat diffusion. This can be detected by investigating the evolution of the amplitude
of acceleration waves along characteristics. Coleman and Gurtin [3, 4] first showed,
for inelastic materials with memory, how the amplitude of the waves can approach
infinity in finite time.

For a one-dimensional thermoelastic material with heat flux given by Fourier's law,
the amplitude of the acceleration waves satisfies a Bernoulli equation, which stays
bounded in time only for small initial data (Dafermos [5]). Indeed, Slemrod in [10]
proved an existence theorem in thermoelasticity for smooth and small initial data,
and Dafermos and Hsiao in [6] showed that, for the large smooth data, solutions of
thermoelasticity develop discontinuities in finite time.

In the present paper, the Fourier law modification due to Kosiriski [8] has been
used and finite speed of heat propagation obtained. The Fourier law for heat flux was
modified in a number of papers, for example, by including the time derivative of the
heat flux accompanied by a thermal relaxation time (Chester [1]). Another approach
is used by Gurtin and Pipkin [7], for rigid conductors, where the constitutive relations
are in the form of functionals over the temperature history. An advantage of the
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current approach is in retaining proportionality between heat flux and a form of
temperature gradient.

Based on the work by Kosinski [8], we examine the concept of a new temperature
scale p, which is related to the absolute temperature $ by the initial value problem

«g = A>, /Je(0,oo).
Instead of the classical proportionality equation for the heat flux q = —kV$, we
assume that

q = dVp, (1.2)
where d, in general, is a function of the deformation F and absolute temperature
$.

Constitutive equations for a nonlinear thermoelastic material, with reference mass
density p0 , form a set of equations for the following quantities: the Helmholtz free
energy ^ , specific entropy ?/, Piola-Kirchhoff stress tensor TK , the heat flux q in
terms of the deformation gradient F , the temperature $ > 0 , temperature gradient
V#, and the new temperature P , where

V = V(F , !?, Vfi),
r, = f)(F,&, Vp) = -d„v{F Vp), (1.3)

Tk = Tk(F,-&, Vp) = pQdFi//(F, $, Vp),

and
q = dVp.

Equations (1.3) and (1.1), together, describe the property of the material and state
the constitutive relations. Equations (1.3) are compatible with the second law of
thermodynamics (there is no dependence of V# in (1.3)j —(1.3)3), which is reduced
to the following inequality describing the internal dissipation:

-PodvfiV-VP,,-^ q-VS>0, (1.4)

where by Eq. (1.1),
vp,< = djv$ + dpfvp.

Using Eqs. (1.4) and (1.2), Kosinski in [8] provides an explicit function / such that
the Maxwell-Vernotte-Cattaneo equation holds:

iq , + q = -kV&. (1.5)

Here t is a thermal relaxation time-valued function. We assume (cf. Kosinski [8])
that the free energy function y is given by

¥{F, d, Vp) = vx(F, &) + j£2(VP)2 , (1.6)

where e2 = k0t0/(p0$0) and t0 and kQ are characteristic material constants rep-
resenting the relaxation time and the thermal conductivity at $0 . The additional
assumption that d = const = kQ is made.
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On using Eqs. (1.1), (1.2), and (1.5), the following results hold (Kosinski [8]):

k = -rk0d6f, \ = -xdj} f, (1.7)
T0/(#, P) = V°8(Vd) + ' (L8)

where
/0(/?) = T0/(V /?).

Motivated by relations (1.7) and (1.8), we will investigate three types of function
f0(P) proposed in [8]:

sf : t(P) = r0 , then &(#, /?) = k0$0&~1, and

/o(/?) =-(/?-/?„); (i-9)

^: t(/?) = t0P$q1 , then /?) = kQP&~1 , and

/0(^) = !?0log(^-1); (1.10)

^ : t(/J) = t0#0/?~' , then £(#, /?) = /c0$q(/?$)_1 , and

2. Derivation and hyperbolicity of the heat equation. If we neglect mechanical
coupling (i.e., assuming the material is rigid) energy balance takes the form (Kosinski
[8])

Pocv® t +-IT-Vp-VP t +k0Ap = p0r. (2.1)
vo

Here cv = $ddr] > 0 is the specific heat at constant volume and cv is a function of
# only, as a result of assumption (1.6) concerning the energy function, and r is the
body heat supply.

The temperature $ can be expressed as a function of ft t and ft using Eqs. (1.1)
and (1.8), particularly,

= #0 exp

thus,

{^(/o(/0-*o/u}; (2-2)

exp (2-3)

Therefore from Eq. (2.1) we obtain a second-order partial differential equation for
P of the form

-C(P , p t)P tt + bvp • V/? , + aAp + H(P ,/?,) = P0d0r. (2.4)
Equation (2.4) is a second-order hyperbolic equation and locally has smooth solutions
(Cimmelli and Kosinski [2]).

Before we explain the coefficients in this equation, let us introduce new indepen-
dent variables

P =w,
(2-5)p = vp,
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which lead us to a quasilinear system replacing Eq. (2.4)

-C{(i, w)w t + bp - Vw + aV ■ p + //(/?, w) = p0$Qr,

P,t = w, (2.6)
p t - = 0.

The coefficients in system (2.6) are

C{fi,w) = p0x0$cv{$),
H{p,w) = p0dcv(d)f0

a = k0130,

^ ~ Vo'
and, by Eq. (2.2),

(2.7)

{!(/„(/?)-t0u;)} . (2.8)& = #(/? , i/;) = $0exp

Note that by Eqs. (2.7)t and (2.7)2

r0H(fi,w) = C(fi,w)f0 (fi)w. (2.9). ̂
This system is hyperbolic, i.e., all eigenvalues are real, and the corresponding set of
five eigenvectors are linearly independent for all orientations of the wave normal n.

Routine calculations lead to the following equation for the eigenvalues A:

A3(C/l2 + Xbp ■ n - a) = 0. (2.10)

These eigenvalues are real if a/c > 0 (i.e., k0&0/{p0z0-&0cv) > 0), and

2 b ( b2 , si a \ 1A| = -2CP'MiF(P'n) +C •

4 (b\ f "V2 <2'n)

A3 = A4 — A^ = 0.

Note that in the limit case, when i0 —> 0 and (&cv) is finite, A, —► -oo and A2 —► oo.
The corresponding five eigenvectors yk are

^j ' 71 = (0, -A, , n),
A2 —' Y2 = (o, -A2, n),
A3 ̂  y3 = (l,0,a3), (2.12)
A4 —- y4 = (1, 0, a4),

A5 y5 = (1, 0, a5),

where
a(. • n = 0, i = 3,4,5.
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If r0 = 0 and {dcv) is finite, then for all cases srf , 38, and ^ (see Eqs. (1.9),
(1.10), and (1.11)), t(/?) = 0, and also the constant in Eq. (1.6), e = 0. As a
consequence, Eq. (2.1) reduces to

p0cv& t + k0A/3 = p0r. (2.13)

Comparing formula (1.5) where t = 0 with Eq. (1.3)4 , we find

V0 = —£-Vd. (2.14)
ko

From the evolution Eq. (1.1) and Eq. (1.8) for r = 0, the following relation holds:

J?%\og^- = f0(P). (2-15)

By Eq. (2.15) we can express /? as a function of $, and using Eq. (2.14), deduce
that

A/? = —-r-V • (kVd) = ~{Vk • Vtf + kM), (2.16)
kQ kQ

where k = k(p, /?(#)).
We can now replace Eq. (2.13) by the following equation in terms of # alone:

dk ■>~kAd = pQr, (2.17)

which is a nonlinear parabolic equation. Thus the case r = 0 reduces to a regular
Fourier law.

3. Amplitude of the acceleration wave (rigid material). In this section we will con-
sider the propagation of the heat waves in a one-dimensional, homogeneous rigid
body. Then system (2.6) takes the form (for r = 0)

-C{P , w)w t + bpw x + ap x + H(P, w) = 0,
P,t~w = 0, (3.1)

Pj~W,x = 0>

where the constants b and a and the functions C(/?, w) and //(/?, w) are given
by Eqs. (2.7).

Our aim is to show that as the amplitude of the acceleration waves evolves, it
blows up in finite time. This contrasts the classical assumption that involves Fourier's
law, when the heat equation is of parabolic type, yielding smooth solutions in rigid
conductors.

The one-dimensional acceleration wave is a smooth curve x = <p(t), with speed
of propagation

s(t) = <p(t), (3.2)
across which , w , and p are continuous functions, but their derivatives are not,
i.e., the jumps of the following derivatives are not zero:

LP(]/0; (3.3)
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but since ft t = w,
[P,t] = 0 (3.4)

and
[w] = [/f] = [P] = 0. (3.5)

Calculating directional derivatives along the wave, defined by
d d d
~dt~~dt+Sdx' ( }

for [/?], [wj], and [p], the following relations hold:

[/*,*] = °> (3-7)
If we use Eqs. (3.3), (3.4), and (3.5) with Eq. (2.3) we can observe that # t and $ x
are discontinuous across the wave, particularly,

[d,/l = ~ T0exp|^-(/0(A) - rQw)} lw,/]'
(3.8)

5

Evaluating system (3.1) across the wave, remembering Eqs. (3.3), (3.4), and (3.5),
we find

-C+[w ,] + bp+[w J + a[p J = 0,
[/>,,]-K J = 0,

where C+ = C(/?+ , w+) and w+ , /?+ , p+ are the values of w , /?, p for x = (p{t).
(Note that w , /?, and
According to Eq. (3.6)
(Note that w , /?, and p are continuous, i.e., w+ = w , p+ = p , P+ = p .)

lPj = -j[p.'1 = -7[u,.'] = (3.10)

and the following equation for nonzero s results:

C+s2 + bp+s - a = 0. (3.11)

Next we assume that the wave is propagating into a material that is in a state of rest,
that is,

ji(x, t) = P+ = const > 0,

p(x, t) = p+ = 0, (3.12)
w(x, t) = w+ — 0

for <p{t) < x. In this case C+ = C(/?+ , 0) and

+ = const = • (3-13)s2 = ±. = const = —^ +
C+ Pozo$ $

Let
a(t) = [w,](t) (3.14)

be the amplitude of the acceleration wave. The amplitude evolves in time along
the acceleration wave x = <p(t) according to a first-order differential equation. In
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order to derive this equation, we differentiate the system (3.1) with respect to t and
evaluate it at the wave

-C+[w J - C+W[w2t] + b[p ,w J + a[p J + H+W[w t) — 0. (3.15)
The symbol " + " means that the functions C and H and their derivatives C w and
H w are evaluated at w+ - 0, /?+ - const.

Using the relation

,] = [w tt] - s[w J - s2[w xx] (3.16)

and the constant speed of propagation (3.13), together with Eq. (3.10), we can rewrite
Eq. (3.15) first as

-C+[w J - C+Jwf + b[p t][w J + a[p J + H+W[w t\ = 0 (3.17)
and then as the following differential equation for a:

d 1 I b 1 2 , K,
-rtt =  x i — C > a H t-dt 2C ■"'/ 2C

a. (3.18)

Equation (3.18) can be simplified into a form suitable for discussion. To do so we
recall formula (3.13) for the speed s, notation (2.7), relations (1.7)2, (1.8), (2.8),
and (2.9) and then calculate that

t H+ - C+ f+ -To .7« Jn.flo ,w Jo+ '

r+ _ r+ a+ _ -lsir+ $+^ ,w L .i?17, to a c ,du ■u0

(3.19)

where by Eq. (2.8)

i?+ = ??0exp j^-/0(/?)j > t+ = t(/?+), (3.20)

and
"Q =

,w

Combining Eqs. (3.19) and (3.20) with Eq. (3.18) gives

-j-a — «Tna2 H  —a = 0 . (3.21)dt 0 m t0

Here n and m do not depend on tn and

+ (3'22)

Also (see Eqs. (1.9), (1.10), and (1.11))
1 in case srf ,

m
2 ~ P+/$0 incased, (3.23)

&0/P+ in case &.
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Equation (3.21) is of Bernoulli type, which, for m > 0, has the property that the
solution a(t) blows up to +oo or -oo in finite time tx , if the initial condition
a0 = a(0) satisfies the inequality

tiT0aQ H < 0 (3.24)
mt

and
o

mnan rn
= m rn log —1 ""0 2 , •mna0r0 - 1

It is easy to verify that tx is a decreasing function of t0 for fixed a0 . The magnitude
of the relaxing time t0 in Eq. (3.21) governs which effects dominate in the behaviour
of a(t). Small rQ plays a stabilizing role and prevents a(t) from breaking up, while
large t0 asserts that the time tx is short.

Let us note two limit cases: first as r0 —> oo, and the second as r0 —> 0. If
Tq —► oo, then 5 —► 0 and tx —* 0, and then disturbances do not propagate; a(t)
blows up instantly. If rQ -> 0, then s2 —► oo, /, -»• oc, and a(t) —► 0 as /
which is the case corresponding to the Fourier law.

From Eq. (3.24) it follows, in the case Ssf , for example, that

2
nToao > •

oo,

t,0

The relaxation time is of order 10 10 for most materials; hence, the last inequality
20will be satisfied for a0 being of order 10 , which means that in most situations of

physical interest blow-up will not occur. A similar observation is true for the cases
£8 and S?.

4. Thermoelastic material. In this section we will consider a one-dimensional ther-
moelastic material whose mechanical and thermal properties are described by the
constitutive equations (1.3) with d = k() and Eqs. (1.1) together with Eqs. (1.7)-
(1.11). If v and v (or v t) denote the particle velocity and the acceleration, then
with vanishing body force and heat supply, the balance laws for linear momentum
and energy reduce to

pvt-TK = 0 (4.1)

and
Po(e + {v2),,-(vTK-4),x = 0- (4-2)

Here e is the interval energy and e = y + r]t) . The compatibility condition is

Ft-yx = 0, (4.3)
the constitutive equation for q (cf. Eq. (1.2)) is

= (4-4)

and the evolution equation for /? is (1.1), with /(#,/?) given by (1.8). We can now
write the basic system of equations for the one-dimensional thermoelastic body in
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the form
v,t - tf(f ' P' w)F x + B(F, p, w)w x - G(F, p, w, p) = 0,

F,t~V,x = 0'
fiit-w = 0, (4.5)

-C(F, p, w)w t + D(F, [}, w)v x + bpw x + ap x + H(F, ft, w) = 0,

P.,~W,x = °-

The unknown functions are (v , F, ft, w , p), where (cf. Eq. (2.5)) w = ft t,
p = p x, and

Tf(F , p, w) = Tf(F , d) = dFFy/^F, &),
T„(F, p , w) = T6(F, = dF^(F , ,

B(F, p,w)=r/&Td(F,d),
vo

C(F, p,w) = p0TQ6cv(F, &),
cv(F, ??) = &d#rj = -dd^^F, #), (4.6)

D{F , p , w) — -p0d0dT&(F,f>),

G{F , p , w , p) = ^-Td{F, #)/0 fi(P)p,uo
H{F, p , w) = p0$cv(F , $)fQ /j(P)w ,

a = ko\'

6 = Vo'
and

i? = &(fi, w) = $0 exp <j -^-(/0(jff) -

Note that Eqs. (4.6) imply
tqg = Bf0 pP,
t0H = Cf0 pW ,

b=-^-2d, (4-7)
Po%

cv F = d.

Similarly, as for the rigid conductor, we will consider the one-dimensional accel-
eration wave x = (p{t), across which each of the functions (v , F, p, w, p) are
continuous, i.e.,

[v] = [F] = [p] = [w] = [p] = 0, (4.8)
but the derivatives are not, namely,

K,]/0, [F,]# 0, [/>.,]/0, (4.9)
except for the derivative P ,, [P ,] = 0 by Eq. (4.5)4.
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There are two amplitudes,

<*(*) = [«>,,](*) and «5(0 = [ui,](0- (4-!0)

Evaluating the system (4.5) across the wave (assuming that the coefficients are con-
tinuous), and since by Eqs. (3.6) and (4.8)

[F,] = -±«J, [pt] = -L, (4.11)

[^1=^ r • s
we find

{s2 - Tp)5 - B+sa = 0,

-D+sS + (a - C+s2 - bp+s)a - 0.
The nonzero speeds of the wave satisfy the equation

(4.12)

-C+s4 -bp+s3 + (a + TpC+ - B+D+)s2 + Tpbp+s-aTp = 0. (4.13)

As previously, we assume that the fastest wave is moving into the body that has been
in a state of rest, i.e., for <p(t) < x

f}{x , t) = P+ = const, F(x, t) = F+ = const,

p(x, t) — p+= 0, v(x,t) = v+ = 0, (4.14)

w(x, t) = w+ - 0.

In this simplified case, the first wave has a constant speed of propagation s, such
that

{s2 - Tp)(a-C+s2) = B+D+s2 <0 (4.15)

and
1/2

2 15' ~ 2 4 + r;-^V-4^
C+ F C+ C+

. (4.16)

We are assuming that Tp > 0 and Cy > 0.
For t0 / 0, Eq. (4.12) gives the relation between the amplitudes 8 and a :

c B+s. a - C+5?8 = —= !—q = x -a. (4.17)
s2 - t; d sx

Next we derive the equation that describes the behaviour of the amplitude a or 8
along the wave with speed 5, . As was done in the case of the rigid conductor, we
differentiate each equation in system (4.5) with respect to t and then take the jump
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across the wave. To do so, first we recall assumptions (4.8) and (4.9) and relations
(4.11); then (cf. Eq. (3.16))

±* . 2
' dt

d 2
 rv -U

' dt
also

1 d

+ J;
(4.18)

s^ta
(4.19)

Since all the coefficients are continuous across the wave, this introduces some sim-
plifications (after Eq. (4.6)):

b+f ~ tf =2B+f, t()H+=C+L\,,F Fw ,F' L0 ,uj J 0

G\ = G% = H+,f = 0> ToG+,P = 5+/o+„- (4.20)

After some lengthy but simple calculations we obtain coupled equations for <5 and
a:

4ya, <5) + (,? - T+f)[F J - sxB+\p J = 0,
^2(q, 5) - sxD+[F J + (a- C+s])[p tx] = 0,

where we introduced the notation

xVl{a,d) = 2^-8-—^-a+\T't S2 --B+a2 + ^B+FSa+ -B (4.22)
1 dt S, dt F F ,w s2 ,F Tq

^<« ■*) - ~ 4- V + - C;„ j a2

1 + +
+ -{C,F-D,W)Z<* + C fa.

al 'o

For each of the three cases of function fQ{P), Eqs. (1.9), (1.10), and (1.11)

(4.23)

B $ „ K
= ~TT T»' (4*24)

T0

and

""" '-cZ. (4.24)  Pq^o^o +
To k+ v''o

The coefficients in Eq. (4.21) accompanying [F xt\ and \p xt] must satisfy Eq.
(4.15); as a consequence we have that and *F2 are proportional,

'F1(a,«y)=<fV2(a,J), (4.25)
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where
« s,B+

stD+ a-C+s]'
This fact together with relation (4.17) leads us to a single equation for 5 , again of
Bernoulli type,

+ MS2 + NS = 0, (4.26)
where the coefficients and JV are given by

1
2{aT'J - C+s,

a-C^r; + WO- M,:.) (4.27)
■" a - C 5,

+ 3 D+B>,
a - C i, j

2 2 q + / op-h \ ^

^  MJJ±L>0. (4.28)(arf+ - C+^)(a - C+sf) 2k+
The solution of Eq. (4.26) blows up in finite time if .#<5(0) + yV < 0 .

Finally, we would like to investigate some limits concerning the speed of prop-
agation s, as a solution of Eq. (4.13). One is for t0 —> 0, which corresponds to
the case of thermoelastic materials with the Fourier law of heat propagation, and the
second one, which is hypothetical, for t0 —► oo. To do so, let us express explicitly
the dependence of the coefficients in Eq. (4.13) on tq in the following way:

P(t0) = -It0s4 - rm0s} 4- {a + (nl + d)zQ)s2 + nmrQs - an = 0, (4.29)

where I, a, d, m, n are positive constants independent on r0, and from Eqs.
(4.6) and (4.7)

/= PQd+Cy,

m = k0p+,

n = T+f , (4.30)
d = p0($+T+)2,

a = k0dQ.

For t0 -> 0, we have P(0) = as2 - an = 0 and s2 = = Tf+, and Eq. (4.26) for
the amplitude 8 takes the form derived by Dafermos [5]

+ + 0. ,4.31)
dt 25q3 2k y '

If Tq —* oo, then from Eq. (4.29),

s(-ls3 - ins2 + {nl + d)s + nm) = 0 (4.32)

and 5 = 0, or else 5 is a nonzero root of the above polynomial. Since we made
assumptions (4.14), the fastest nonzero speed can be obtained with m = 0, that is,

-Is2 + (nl + d) = 0
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and
2 _ 2 _ , ^ _ T+ , ^+(^)2 ,A

s -soo-n + j-TF + —— . (4.33)
v

It is easy to calculate

Proposition 1. If the fastest acceleration wave is moving into a body that has been
2

properties:
in a state of rest (4.14), then its speed sf given by Eq. (4.16), has the following

lim5? = 5l' (4-34)
Tq^OO 00

lim sf - oo , (4.35)
To~*0 1

s2{>s20, (4.36)

s^sl, (4.37)
Sj is a decreasing function of t0 . (4.38)

As a first approach to discussing the second wave, which generally propagates into
a disturbed state with speed s2 in the positive direction, we assume that the first

s -wave
,s -waveo

s -wave
oo

.s 1 -wave

Figure 1

S
00

S
O

Figure 2
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wave did not change the values of F, v , /?, w , p far from equilibrium. As a
consequence, the speed s2 can be approximated by (cf. Eq. (4.16)) the formula

1/2'
2 1*2 = 2 ^ + B+D+C+ F c +

a_ + _4<
c++ F c+ c+ (4.39)

Proposition 2. If the second wave propagates into a state close to equilibrium and
is again given by Eq. (4.39), then

lim s? = 0, (4.40)
T0—OO

lim s22 = s02 = r; , (4.41)

s22 < s20 , (4.42)

*2 < *oo ' (4-43)

s2 is a decreasing function of t0 . (4.44)

The analysis performed so far allows us to sketch (Fig. 1) in the phase plane the
following representation of the wave fronts for positive and s2.

Here, s2 is the speed of the slower wave propagated into the disturbed region.
However, in terms of tq , regarded as a variable we can sketch the graph of s, and
s2 as functions of t0 (Fig. 2).

It follows from both figures and the propositions that, in the limit of vanishing
tq , the larger characteristic speed 5j goes to infinity, while the smaller one s, tends
to the classical thermoelastic wave speed sQ obtained by Dafermos [5] and by others.
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