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Abstract. The problem of chemical vapor deposition involving reaction kinetics
of any order n at a heated substrate is considered. The deposition process is then
described by a convective diffusion equation, coupled to nonlinear boundary condi-
tions, describing the chemical reaction taking place at the heated substrate, where
the nonlinearity is given in terms of the order n of the reaction kinetics. We de-
rive boundary layer equations and use a combination of perturbation and similarity
methods to find the deposition rate along the susceptor.

1. Introduction. The process of growing a thin film on a heated substrate by chemi-
cal vapor deposition epitaxial technique has evoked great interest. An understanding
of the underlying mechanism of this process is needed.

The problem was investigated by Levich [1], Leveque [2], and Malmuth [3] for the
case of first-order reaction kinetics, which resulted in a linear problem. The authors
presented a solution for reaction kinetics of order n, see [4], Recently, Wilder
[5] solved the case of second-order reaction kinetics. The deposition rate along the
susceptor was worked out and demonstrated for the example of GaAs deposition.
This analytical work experienced great resonances in the field, and further analytical
work is desired.

We are concerned with the process of modeling a reactor that employs two-dimen-
sional multicomponent channel flow with the chemical reaction taking place at the
susceptor (Fig. 1, p. 586). The concentration of the reacting species is assumed to
be small compared to the concentration of the carrier gas. As a result, the variation
of the physical properties of the overall gas due to the chemical reaction can be
neglected.

The governing equations modeling this process are derived from the conservation
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Fig. 1. Chemical vapor deposition apparatus

laws for laminar, incompressible, steady fluid flow and from empirical laws for dif-
fusion of species, since at steady state the incoming flux at the susceptor must be
balanced by the species reaction rate. One obtains a convective diffusion equation
coupled to nonlinear boundary conditions describing the reaction at the heated sub-
strate.

We solve the boundary value problem for arbitrary order n of reaction kinetics.
Under the assumption that the concentration of the reacting species is low, and
the diffusion coefficient in gases is considered independent of the composition, the
governing equations that model this chemical vapor deposition process are

Diffusion Equation (v • V)c = DV2c (1.1)

and
Continuity Equation V • v = 0, (1.2)

where v is the barycentric gas velocity, c the concentration of the reacting species,
and D the diffusion coefficient of the species.

The symmetry of the problem allows us to consider the concentration c and the
velocity vector v to be independent of the z component. Equations (1.1) and (1.2)
are then the equations for two-dimensional flow in a channel and can, therefore, be
written as

Diffusion Equation u ^ + vv^- = D ( | (1.3)
Xdx ?dy ydx2 dy )

dv dv
Continuity Equation —^ + —£ = 0, (1.4)

ox ay
where vr and v., are the x and y components of v. We further neglect turbulentx y
effects so that

vy = 0, (1.5a)

and
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and together with the continuity equation (1.4) we conclude that

vx(x,y) = u(y). (1.5b)

We therefore obtain for the diffusion equation

. dc (d2c d2c\

For the boundary conditions we observe that the apparatus is arranged so that in the
(x, y)-plane where -oo < x < oo and 0 < y < oo, the susceptor is located at y = 0
and x > 0. For x < 0 we assume the velocity profile to be parabolic, see Fig. 1.
The boundary conditions are specified at the reaction surface and in the bulk of the
flow. Since we are considering heterogeneous reactions, the change in concentration
occurs in a thin boundary layer on the reaction surface. We therefore have, for the
condition in the bulk of the flow,

c(0, y) = Coo (L7a)

and
c(x,oo) = c, (1.7b)

where c^ is the bulk concentration of the reacting species. For the boundary con-
dition on the reaction surface, we first recall that, according to Fick's law, there is a
linear relation between the flux of the reacting species and its concentration gradient,
and we obtain for the mass flux to the surface

J=D(^) • (1-8)
Va-V / (x,y)=(x,0)

When the reaction mechanism is not explicitly given, one usually employs an empiri-
cal reaction law in the form of a power law for the reaction rate of the species. Then
steady state implies that the incoming flux at the surface is balanced by the reaction
rate of the species. We, therefore, have for the boundary condition at the susceptor

D(ir\ = k(c(x, 0))", (1.9)dyj (x ,y)=(x, 0)

where k is the rate constant of the reaction, which is independent of the concen-
tration of the reactant and obeys the Arrhenius law k = kQe~(E/RT), with E being
the activation energy and T the absolute temperature. The exponent n denotes the
order of the reaction; it may be an integer or a fraction.

Throughout our investigations we are only interested in the solution to the bound-
ary layer problem. In Sec. 2 we nondimensionalize the boundary value problem (1.6),
(1.7), (1.9) and derive an asymptotic representation for the boundary layer equations.
In Sec. 3 we present similarity solutions to the problem in terms of Kummer's func-
tions, and from these solutions we derive, in Sec. 4, the expression for the deposition
rate.
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2. Boundary layer equations. We first reduce our boundary value problem to a
dimensionless form. We introduce a characteristic length / along which the change
in concentration takes place and a characteristic flow velocity U0 .

We then define the dimensionless coordinates

x* = j (2.1a)

and
y* = j. (2.1b)

For the dimensionless velocity we let

U(y*)= (2.2)

and for the dimensionless concentration

C(x\/) = ^Z). (2.3)
Coo

Application of Eqs. (2.1)—(2.3) to the boundary value problem (1.6), (1.7), (1.9)
yields the following nondimensional form:

dC I d2C d2Cu{-y>^=e — + — ' (2-4)
dx \dx dy2 J

C(0,/)=1, (2.5a)
C(x*, oo) = 1, (2.5b)

•(£), = (C(x*,0))". (2.5c)
' (x',y')=(x- , 0)

We obtain two dimensionless parameters e and a , which are defined as

_ D v _ 1 1 _ 1 /o a ^
£ i/ ' U0l Sc' Re PeD ( ' a)

and
D 1 (2.6b)

kcn~ll Da'
OO

where Sc denotes the Schmidt number, Re the Reynolds number, PeD the Peclet
number, Da denotes the Damkohler number, and v is the kinematic viscosity. For
gases D/v = 0( 1) so that when the Reynolds number Re » 1 we have 1. The
dimensionless similarity parameter Da measures the reaction velocity compared to
the rate of transfer of particles to the reaction surface. For rapid reactions we can
also assume that Da » 1, i.e., a < 1.

We now derive the boundary layer equations and, upon expanding C(x*, y*) in
an asymptotic series in e, we will find a distinguished limit, relating both parameters.

Let S be the thickness of the boundary layer on the reaction surface, and define
the dimensionless quantity

7 = j- (2.7a)
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Denote the inner variable by

y = C (2.7b)
Within the boundary layer at the reaction surface y* is small, and we expand U(y*)
as

u(y*) = ao + a\y* + aiy*2 + • • • • (2-8)
We assume the reaction surface to be impermeable so that a no-slip condition requires
that aQ = 0. Hence, we obtain

U{y*) = axyy + a2y2y2 + ■■■ . (2.9)

We write C(x*, y*; e) as an asymptotic expansion in terms of functions k, which
depend on e.

C(x* ,y*;e)- C(x* ,yy-s) = C{x* ,y\e)
= C0(x'j) + 2(E)C1(x,,j)) + - .

If we now substitute expansions (2.9) and (2.10) into the governing equation (2.4),
we obtain

„9Cn /Vcn „ fl2C. 1 d2c0 k(e)02c. \ „11X
alyyir4 + --- = £ ——^ + -2—t + at—r+ '" • 111

1 dx \dxi 'qXT- y2 dy2 y2 dy2 J

If we balance the leading-order term, we obtain for the distinguished limit
,1/3

and the problem

with boundary conditions

y = e

dCn d2cn
(Z12>

c0(0,j>)=l, (2.13a)
C0(x*, oo) = 1, (2.13b)

=(C0(x\0))n. (2.13c)
V °y / (x" ,y)=(x* ,0)

If we further introduce
x = —— (2.14)

a\
and

C0(x\y) = C0(a,x, y) = C0(x,y), (2.15)
we can eliminate the constant ax from the problem and obtain

dCn d2Cn
(2-i6)

co(0,j>)=l, (2.17a)



590 B. CASSIS, O. TIKHOMIROV, and B. A. WAGNER

C0(x, oo) = 1, (2.17b)

dyP [ I — (C0(x, 0))" , (2.17c)
(*,*)=(*, 0)

where

P = fFi- (2-18)
Observing the above, under the assumption of rapidly reacting surfaces, i.e., for
a « e1/3 (or p < 1), the concentration of the reactant is the bulk concentration c^
plus a small perturbation, i.e., a perturbation in terms of /?.

Therefore, we expand C0 in y9 as follows:

C0(x ,?;/?) = Cq(x , y) + a>(P)Cg (x,y) + ---. (2.19)
If we apply this expansion to problem (2.16), (2.17) and balance the higher-order
terms, we obtain

co" = p (2.20)
and the problem

r\ /~»0 r\ 2 ^r-,0

yS-^ = 9-3, ("D
OX dy2

plus the correction

C0°(0,j))=l, (2.22a)

Cq(x , oo) — 1, (2.22b)

C0°(x, 0) = 0, (2.22c)

dc' a2c'
y^L = ^L> (2-23)dx dy2

C>,j>) = 0, (2.24a)

C'(x,oo) = 0, (2.24b)

dC,
\~df) =(C0'(x,0))". (2.24c)
V y J (x,y)=(x,0)

Unlike the parameter-free form of problem (2.16)—(2.17c) (see Conclusions), those
two coupled problems do indeed have similarity solutions, which we examine in the
next section.

3. Similarity solution. An analysis of Eq. (2.21) shows the similarity variable to
be of the form

1 = ^7^3, (3.1)

with the constant n = (5)'^ .
Let us define the following functions:

Cq(x , y) = F0(r/), (3.2)
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Cq{x , j>) = , (t]), (3.3)

where F0(rj) and F^rj) denote the similarity solutions of the leading-order problem
and the correction problem, respectively. Then, together with Eqs. (2.19) and (2.22),
the solution can be given as

>3\ i/(3«)
C0(x,y) = F0(r,)+[L\ Fl(r,) + --

= FqW + zr^y^i ('/) + "
(3.4)

From Eq. (3.4) we see that the solution, with /? 1, will be valid for x > 1 and
*l = 0( 1).

Let us now find the similarity solutions F0(rj) and Fi(rj). We apply Eq. (3.2) to
the leading-order problem and obtain

F^\r,) + 3r,2F^r,) = 0, (3.5)

^0(oc) = 1, (3.6a)

F0( 0) = 0. (3.6b)
We easily see this problem has the solution

n p~s* ds -x ri jF(n) J?'"* 3 f
W) ~ roo _s3 ~~ p/lx If0 e ds 1 (3) ■'o

e 5 ds. (3.7)

If we apply Eq. (3.3) to the problem of the next order, Eqs. (2.23) and (2.24), we
arrive, by implementing the result (3.7), at the following problem:

F"{r,) + 3V2F'l(ri)+(^jr,Fl{fi) = 0, (3.8)

lim r)X/nFx{r]) = 0, (3.9a)
rj—*oo 1

F,( oo) = 0, (3.9b)

f|,0) = ("r4)/ ' <39c)

If we make a change of variable t = , and let

l

Eq. (3.8) transforms to Kummer's equation

FArt) = ne *W), (3.10)

tcf,"(t) + (1 - A ) cfi(t) = 0, (3.11)

which has the solution

m = KXM , < ,,) + (3£zlL , *, ,) , (3.,2)



592 B. CASSIS, O. TIKHOMIROV, and B. A. WAGNER

where K{ and K2 are constants to be determined by the boundary conditions. The
functions M(a, b, t) and U(a, b, t) are Kummer's functions.

Equations (3.10) and (3.12), in conjunction with boundary condition (3.9a), yield

A",=0 (3.13)

and, in conjunction with boundary condition (3.9c), yield

l/n

*2 = -^TrUF7TTl ; (3-14)r(4) T(i)

hence, we have for F]

*,<»> - ^ (^) "" (:*£i, 1, . (3.15)

Combining Eq. (3.4) with the similarity solutions (3.7) and (3.15) gives the solution
for the concentration from which we can derive the deposition rate on the reaction
surface; but before that, we will discuss the region of validity of our solution.

Consider the solution for C0(x, y), which has the form

C0(x,rt = r(3,,) + ^j ne ,5,v),
(3.16)

where T(|, t/) is the incomplete Gamma function, i.e., FQ .
An analysis of this result shows that this solution is valid as long as for /? < 1 , we

have (/?3/x)1/(3"' < 1 for rj = 0( 1). In other words, this means that the solution is
valid as long as

a*U°D2 «x. (3.17)
k3c3"~3lOO

There are numerous ways of achieving this, e.g., by varying the length / of the
plate or by varying the effective rate constant kc^x , for example, by varying the
temperature T.

The behaviour of our solution when rj —> 0 has also been analysed. Figures 2 and
3 (see p. 593) show, for the case of n = 1, how the solution blows up near t] = 0
when we increase the order of (/?3/jc)1/(3,,) and that for increasing order of n this
effect becomes much less severe.

The importance of our result is indicated in Fig. 4 (see p. 594), which compares
solutions for the concentration for different n . We see, while the qualitative proper-
ties of the solution remain the same, that there is a considerable quantitative increase
in concentration, which decreases along the similarity curves rj — const. In the next
section we will see the effect on the deposition rate.
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2.5 ■■

Fig. 2. Concentration C0 with n = 1 and /?3/Jc = 0(10 2) to
O(IO')

Fig. 3. Concentration C0 with n = 10 and y?3/x = 0(10 2) to
O(IO')
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Fig. 4. Concentration CQ with n — 1 to n = 10 and >/3/x
0(10~2)

4. Deposition rate. Since the main interest of the application of this analysis lies in
the problem of prediction of deposition for chemical agents such as GaAs or HgCdTe,
we will here solve for the deposition rate. We will derive a representation involving
reaction rates of any order n .

The deposition rate is given by

g=d{¥) ■ (41)
\dyJ (x,y)=(x,0)

To find G, we return to dimensional coordinates. For convenience we also let

9 £><z,/3

and
■/3 Coo /3flVoy/3

m) v 1 )
Then, by Eq. (3.16), we obtain

Dp- =dy
(K\ 1/3 /K\(«+1)/(3») (\\>/n H^i)
\xJ ) \k) 9'/3r(i)

u ( 3"3w 1 , |, tx/) [i - 3Txy2] (4.2)

3n - 1 2tt f 6n - 1 7 :-t xy u —-— , - , xxy3n ' V 3« ' 3
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In order to find the deposition rate at the plate, in the above equation, we let y —► 0.
As a result we have

a = CL1fl)"" 'jOtl 2_n
\x) \x) \kj 35/3r(i)2r(2^i) ^5'

Figure 5 shows the deposition rate for n = 1 , and Fig. 6 (see p. 596) compares the
deposition rates for n = 1, n = 10, and n = 20. We see that the n = 1 curve is the
highest curve, so that, if one would not account for nonlinear effects, the deposition
rate would be overestimated. For the answer to how great this difference is in a
real experiment, one must first investigate an initial parabolic velocity profile. We
calculated the deposition rates (Figs. 5, 6) using the parameters derived in [5],

10.0 G

i.O

0.2 0.4 0.6 0.8 1.0

Fig. 5. Deposition rate for n = 1
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Fig. 6. Comparison of deposition rates for n = 1 , n = 10, and
n = 20.

Conclusions. We have solved the problem of chemical vapor deposition, involving
reaction kinetics of any order n. Our investigations show that a neglect of the
nonlinear effects results in an overestimate of the deposition rate.

The solutions of the convective diffusion equation, coupled to nonlinear boundary
conditions, were found via perturbation and similarity methods. We should also
observe at this point that via the transformation

x = /?3x,

y = py,

and
C0(x, y) = C0(x, p),

the problem (2.16), (2.17) reduces to the parameter-free form

_dV, = d2c0
dx dy2

(x,y)=(x, 0)
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The full solution of problem (2.16), (2.17) requires the numerical solution of the
parameter-free form, since this problem can be shown to have no similarity solutions.
However, as we have seen for rapid reactions, our analysis gives an analytic solution,
which can be presented, for the deposition rates, as an asymptotic expansion in 1 /x .

Finally, note that, if required, the accuracy may also be improved by including
further terms in the asymptotic expansion (2.11).
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