On the solution of the equation $u_t+u^n u_x+H(x,t,u)=0$
Authors:
K. T. Joseph and P. L. Sachdev
Journal:
Quart. Appl. Math. 52 (1994), 519-527
MSC:
Primary 35L65; Secondary 35Q53
DOI:
https://doi.org/10.1090/qam/1292202
MathSciNet review:
MR1292202
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider the equation ${u_t} + {u^n}{u_x} + H\left ( x, t, u \right ) = 0$ and derive a transformation relating it to ${u_t} + {u^n}{u_x} = 0$ . Special cases of the equation appearing in applications are discussed. Initial value problems and asymptotic behaviour of the solution are studied.
C. Bardos, A. Y. Leroux, and J. C. Nedelec, First-order quasilinear equation with boundary condition, Comm. Partial Differential Equations 4, 1017–1037 (1979)
D. G. Crighton, Model equations of nonlinear acoustics, Ann. Rev. Fluid Mech. 11, 11–33 (1979)
D. G. Crighton and J. F. Scott, Asymptotic solutions of model equations in nonlinear acoustics, Philos. Trans. Roy. Soc. London Ser. A 292, 101–134 (1979)
C. M. Dafermos, Regularity and large time behaviour of solutions of conservation law without convexity condition, Proc. Roy. Soc. Edinburgh Sect. A 99, 201–239 (1985)
F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, Self-similar spin-up spin-down in a cylinder of small ratio of height to diameter, J. Fluid Mech. 234, 473–486 (1992)
E. Hopf, The partial differential equation ${u_t} + u{u_x} = \mu {u_{xx}}$ , Comm. Pure Appl. Math. 3, 201–230 (1950)
P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10, 537–566 (1957)
P. Lefloch, Explicit formula for scalar non-linear conservation laws with boundary condition, Math. Methods Appl. Sci. 10, 265–287 (1988)
J. D. Murray, Perturbation effects on the decay of discontinuous solutions of nonlinear first order wave equations, Siam J. Appl. Math. 19, 135–160 (1970)
J. D. Murray, Lectures on nonlinear differential equation models in biology, Oxford Univ. Press, New York, 1977
J. J. C. Nimmo and D. G. Crighton, Geometrical and diffusive effects in non-linear acoustic propagation over long ranges, Philos. Trans. Roy. Soc. London Ser. A 320, 1–35 (1986)
P. L. Sachdev, Nonlinear diffusive waves, Cambridge Univ. Press, Cambridge, 1987
P. L. Sachdev, V. G. Tikekar, and K. R. C. Nair, Evolution and decay of spherical and cylindrical N waves, J. Fluid Mech. 172, 347–371 (1986)
P. L. Sachdev, K. T. Joseph, and K. R. C. Nair, Exact N-wave solutions for the non-planar Burgers equation, Proc. Roy. Soc. London (A), to appear (1994)
C. C. Shih, Attenuation characteristics of nonlinear pressure waves propagating in pipes, Finite Amplitude Wave Effects in Fluids (Bjorno, ed.), IPC Sci. Technol. Press, Guildford, 1974, pp. 81–87
E. H. Wedemeyer, The unsteady flow within a spinning cylinder, J. Fluid Mech. 20, 383–399 (1964)
C. Bardos, A. Y. Leroux, and J. C. Nedelec, First-order quasilinear equation with boundary condition, Comm. Partial Differential Equations 4, 1017–1037 (1979)
D. G. Crighton, Model equations of nonlinear acoustics, Ann. Rev. Fluid Mech. 11, 11–33 (1979)
D. G. Crighton and J. F. Scott, Asymptotic solutions of model equations in nonlinear acoustics, Philos. Trans. Roy. Soc. London Ser. A 292, 101–134 (1979)
C. M. Dafermos, Regularity and large time behaviour of solutions of conservation law without convexity condition, Proc. Roy. Soc. Edinburgh Sect. A 99, 201–239 (1985)
F. V. Dolzhanskii, V. A. Krymov, and D. Yu. Manin, Self-similar spin-up spin-down in a cylinder of small ratio of height to diameter, J. Fluid Mech. 234, 473–486 (1992)
E. Hopf, The partial differential equation ${u_t} + u{u_x} = \mu {u_{xx}}$ , Comm. Pure Appl. Math. 3, 201–230 (1950)
P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10, 537–566 (1957)
P. Lefloch, Explicit formula for scalar non-linear conservation laws with boundary condition, Math. Methods Appl. Sci. 10, 265–287 (1988)
J. D. Murray, Perturbation effects on the decay of discontinuous solutions of nonlinear first order wave equations, Siam J. Appl. Math. 19, 135–160 (1970)
J. D. Murray, Lectures on nonlinear differential equation models in biology, Oxford Univ. Press, New York, 1977
J. J. C. Nimmo and D. G. Crighton, Geometrical and diffusive effects in non-linear acoustic propagation over long ranges, Philos. Trans. Roy. Soc. London Ser. A 320, 1–35 (1986)
P. L. Sachdev, Nonlinear diffusive waves, Cambridge Univ. Press, Cambridge, 1987
P. L. Sachdev, V. G. Tikekar, and K. R. C. Nair, Evolution and decay of spherical and cylindrical N waves, J. Fluid Mech. 172, 347–371 (1986)
P. L. Sachdev, K. T. Joseph, and K. R. C. Nair, Exact N-wave solutions for the non-planar Burgers equation, Proc. Roy. Soc. London (A), to appear (1994)
C. C. Shih, Attenuation characteristics of nonlinear pressure waves propagating in pipes, Finite Amplitude Wave Effects in Fluids (Bjorno, ed.), IPC Sci. Technol. Press, Guildford, 1974, pp. 81–87
E. H. Wedemeyer, The unsteady flow within a spinning cylinder, J. Fluid Mech. 20, 383–399 (1964)
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC:
35L65,
35Q53
Retrieve articles in all journals
with MSC:
35L65,
35Q53
Additional Information
Article copyright:
© Copyright 1994
American Mathematical Society