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Abstract. In a nondimensionalized rectangular Cartesian coordinate system

(x,, x2) let x2 = £y±(Xj) denote the upper and lower surfaces of a hole where

|Xj | < 1 and e is a small parameter. As e tends to zero, the hole degenerates into a

crack of length 2. The functions Y± , together with their derivatives, are continuous

and For e not equal to zero, the hole is called a regularly (singularly)

perturbed crack if T|(±l) = 1^(±1) (F|(±l) / (± 1)). Regular perturbation

procedures are applied to obtain the stress intensity factors existing at the tips of

regularly perturbed cracks. It is shown that the second term of a two-term expansion

is not always of the order of e. The notch-tip singularity associated with a singularly

perturbed crack is obtained by the method of matched asymptotic expansions.

Introduction. Let (x] , x2) be a dimensionless rectangular Cartesian coordinate

system. The upper and lower surfaces of a hole may be conveniently defined by

x2 = eY±{x{) (|x,|<l), (1.1)

where

r+(*!)-!"_(*,) >0 (1.2)

and e is a small parameter. As e tends to zero, the hole degenerates into a crack of

length 2. It is for this reason that the hole is referred to as a perturbed crack.

The hole is called a regularly perturbed crack if

r;(±i)-y:(±i) = o, (1.3)

which ensures the existence of cusps at xx = ±1 . For such cases the associated

stress intensity factors are of prime importance. Holes with cuspidal points have

been treated as stress raisers by many researchers (Westman [14], Panasyuk and

Berezhnitskii [9], Berezhnitskii and Sadivskii [1, 2], and Wu [15, 16]). For the case

where the cusp is formed by curved boundaries, the well-known crack-tip analysis

(Williams [13]) must be modified (Ting [11]), and the addition of logarithmic terms

is very often encountered.

A curvilinear crack is simply defined by Y± = Y. Other than the case of a

circular-arc crack (Muskhelishvili [8]), exact solutions to curvilinear crack problems
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are practically nonexistent. Perturbation methods have been applied in analyzing

slightly curved and kinked cracks (Goldstein and Salganik [6]; Cotterell and Rice

[4]). In terms of the representation (1.1), e is the perturbation parameter and the

results given in the references were accurate to the order of e. Such a first-order

perturbation solution has been found to be unsatisfactory for many symmetry and

loading conditions. Second- and higher-order perturbation solutions are systemati-

cally introduced in this paper.

The perturbation procedure used for analyzing a regularly perturbed crack is a

regular one in that all asymptotic expressions are uniformally valid throughout the

region of interest. For the case of singularly perturbed cracks, which are defined by

y;(±i)/y:(±i), (1.4)

the singularities at xx = ± 1 are of the notch type, which is fundamentally different

from a cusp. Singular perturbation methods are applied to such singularly perturbed

cracks in this paper. It is shown that the "strength" of the notch-tip singularity can

be explicitly determined. Similar analysis has been successfully performed by us on

stress concentration problems (Wu [17]).

2. Complex variable formulation. Let a be a length parameter that is to be iden-

tified with a half-crack length and fi the shear modulus. We shall use a and jia

as the length and force scales throughout this paper, so that all quantities are nondi-

mensionalized relative to these parameters.

We consider plane elasticity problems in the dimensionless (Xj, x2)-plane and

shall use a complex formulation in terms of the dimensionless complex variable

z = x( + ix2 . The dimensionless displacements ua(xl, x2) and stresses ?ap(xx, x2)

may be written in terms of two complex functions W(z) and w{z), viz.

2(«j + iu2) = kW(z) - zW'(z) - w{z), (2.1)

Tn + T22 = 2 [W'(z)+W'(z)], (2.2)

T22 - /T12 = W'(Z) + W'(Z) + W'(Z) ' (2.3)

iR.tj [t^infi + itfi2nfi\ds = W(z) + zW'(z) + w(z), (2.4)

where R = R{ + iR2 is the resultant force over an arc. In the preceding equations

and throughout this paper prime denotes complex differentiation; W' and w' are

holomorphic functions and

f 3 — 4v plane stress,
k - < (2.5)

I (3 - v)/( \ + is) plane strain,

where v is Poisson's ratio.

For the class of problems to be discussed in this paper it is more convenient to

employ a third holomorphic function f(z) defined by

f(z) = W{z)-zW\z)-w(z). (2.6)
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Using Eq. (2.6) to eliminate w from Eqs. (2.1)-(2.4), we get (England [5])

2(Wj + iu2) = KtV(z) - W(z) + (z- z)W'(z) + f(z), (2.7)

t22 - irn = W'(z) + w'(z) + (z - z)W"(z) - f\z), (2.8)

iR = W(z) + W(z) + (z- z)W'(z) - f{z). (2.9)

The elastic infinite plane is loaded at infinity by constant stresses tq^ = <tq^ , so

that

W\z) = C, -C_1z'2 + --- , (2.10)

w'{z) = c, — c_xz~2 H , (2-11)

f\z) = -c, - (C_, + C_J - C_l)z~2 + ■■■ , (2.12)

2W' - f' — (a22 - ian) - (C_, - C_, + c_j)z-2 H , (2.13)

as z —> oo and

= 4(^11 "t" *^22)' ^1 = 2^22 — "^12 ■ (2-14)

This infinite plane is also assumed to have a single traction-free cavity with its upper

and lower boundaries given by

z = Z±= xx +ieY±{xx) (|x,| < 1) (2.15)

where e is a small dimensionless parameter. As e tends to zero, the cavity tends to

the simple geometry of a linear crack of length 2. It is clear that the functions Y±(x,)

play a significant role in the analysis to follow. Physical considerations require that

F+(x1)-y_(x1)>0. (2.16)

We also assume that Y'± are continuous so that no additional singularities, other

than the ones at jc, = ± 1, are present. With the above conditions in mind we are

led to divide the class of problems into the following categories:

regularly perturbed cracks

<(±l) = l!(±l); (2.17)

singularly perturbed cracks

<(-l)^!(-l) and/or 7^+1) ± ^(+1). (2.18)1

It is clear that the singularities at x, = ±1 for (2.18) are not of the crack-tip type.

The assumed traction-free condition along the cavity boundary may be integrated

once to become the vanishing of R. Substituting Eq. (2.15) into Eq. (2.9), we have

W(Z±) + W(Z±) + ei2Y±(x1)W (Z±) - f(Z±) = 0. (2.19)

The determination of W and / subjected to the loading conditions (2.10), (2.12),

and (2.19) is the underlying mathematical problem to be solved.

1 For cases where the tips are smooth, a different type of boundary-layer solution could be constructed but

is not considered here.
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Let W(z; e) and f(z\ e) be the desired solution. If we formally set e to zero

in all the relevant expressions, then it can easily be seen that all the conditions are

formally satisfied by the well-known crack solution:

fiz ; 0) = f0(z) — [\{an~al2) + i(Jn\z, (2.20)

2W(z; 0) - f(z; 0) = 2fVQ(z) - f0(z) = (a22 - ian){z2 - 1)1/2. (2.21)

This solution is termed the reduced solution or the solution to the reduced problem.

In the case that Y^x,) satisfy Eq. (2.17), the above reduced solution is a uni-

formly valid zeroth-order approximation to the true solution for small but nonzero

£ . A refined solution may therefore be built upon the reduced solution via a regular

perturbation procedure. In the case that Eq. (2.17) is not satisfied, a special notch-

tip expansion of the Williams's type (Williams [13]) must be separately constructed.

The coefficients involved in this expansion are then determined by the principle of

matching (Cole [3]; Van Dyke [12]). A parallel situation dealing with stress and

notch-stress concentrations induced by shallow depressions may be found in a recent

result by Wu [17].

For regularly perturbed cracks, the associated dimensionless stress intensity factors

may be computed from

K. - iK2 = lim 2V2n(z =f 1 )l/2W'{z)e~'a*'2 (2.22)
Z—>zt 1

where af defines the crack-tip orientation and

af = Tan-1(e7j(±l)) = Tan_1(e^(±l)). (2.23)

3. Regularly perturbed cracks. The main objective of this section is to find the

first two nonzero terms of an asymptotic expansion in e for a desired stress intensity

factor, with the first term being the corresponding stress intensity factor associated

with the reduced solution. We shall see that the second term is not always of the

order of e.

In view of Eq. (2.19), the desired expansion for W and / may be expressed in

powers of e as follows:

oo n
e

(3J)
n=0

oo n

/<z;£)~Est/.m- <3-2>
n=0

Substituting Eqs. (3.1), (3.2) into Eq. (2.19), we obtain

r±

P-l (jy \P

p + p jp n\(p-n)\
n=0 v '

< + <-/cT = 0, (3.3)

uyip-tf , ,_J ,p-nw(p-nf
n v ' n

(3.4)
iP-'n/lP-")1 ( i \P~" f{p~nj*-2{p-n){-\y~ W^'"' -(-1 J"'"/; = 0,
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where the last equation applies for p > 1, and

W^~n)± = ^—Wlz) . (3.5)
n dz

z=x,±fO

In deriving the above equations for a general pair of Y± , the interpretation of

W(Z±) needs to be clarified. Take, for example, the case Y+ = Y_ = Y > 0.

We have

W(Z+) = W(xt - ieY),

W(Z_) = {analytic continuation of W(Z+) on a Riemann surface}^ _ieY,

and hence, on letting e —► 0,

W(Z+) = W{:c, - iO) = W'ixJ,

W(Z_) = W(xx + iO) = w+{xl).

Forming the difference and sum of the ± versions of Eq. (3.3), we get

/o+-/o" = 0, (3.6)

(2^0-/0)+ + (2^0-/or = 0, (3.7)

which, together with the conditions at infinity, lead to the solutions (2.20) and (2.21),

i.e.,

/o(z) = ~C\Z = [fan ~ °22) + icTn] z> (3-8)

2W0(z) - f0(z) = {a22 - ion)X{z), X = (z2-l)1/2. (3.9)

For p = 1, Eq. (3.4) yields

W* + iv*-f? + iY_± Wf-W* + 2 W0± + f0 = 0, (3.10)

which, after applying Eqs. (3.8) and (3.9), becomes

2a, ̂ x,

(CT22 CT,l)±(l-xV1/2
(3.11)W* + W? - J? = iY±{x,)

' - - vx

Forming the difference and sum of the ± versions of the above, we obtain

K - fx = i{o22 - <^n^Y+(xi) ~ Y-(xx)] + /2cti277—17171 [y+(xi) + y-(*i)]'
l1-^) (3.12)

(2 Wl - F,)+ + (2 W1 -Flf = i{°22 - ^,)[y+(^i) + r_(*i)]

+a"n- _\i,;[n^)-y^.)]- {3'13)
I i xi)

Anticipating that the second nonzero term for a stress intensity factor is not always

of the order of e, we also develop the appropriate boundary conditions for W2 and

f2. The explicit form of Eq. (3.4) for p = 2 is

w2± + w* - - y2jw^ + - 4- f^]

+ ilYJW1* - W+ 2W{* + /*] = 0.
(3.14)
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Applying Eqs. (3.8) and (3.9) and forming the difference and sum of the ± versions

of (3.14), we arrive at the following Cauchy and Hilbert conditions:

_ 2/(g22 + (Y2 _l y2\

h (1-xf)3/2 ( + j

-i{(Y+ + Y_)[(2w; - //)+ - (2w[ - //)"] + (7+ - r )(X+ + /;-)

+2y+[(2Tr;+ - /,+] - 2Y_[(2W'~ -/") + /']}

(3.15)

(2W2 -// + (2W2 - /2f = -2'|K+^)(y2 _
I * Xj J

-i{(Y+ - Y_)[(iw; - //)+ - (2 w; - //)-]+(y+ + r_x/;++y;-)

+y+[2(2FF'1 -/',) + 2/;+] + r [2(2 W, -/',) + 2f\ ]}.

(3.16)

Curvilinear cracks (Y+ = Y_ ). This is essentially the class of problems considered

by Cotterell and Rice [4], Let us begin by defining

r± = F(x1) = (l-x?)P(x1), (3.17)

where P(xx) is a polynomial, so that the crack configuration is still fairly general.

Substituting Eq. (3.17) into Eqs. (3.12) and (3.13), we have

^-f- = i4ax2xxP(xx)(l-x2x)l/2, (3.18)

{2Wl-fx)+-(2Wl-fl)- = i2{a21-ou){\ - x])P{xx). (3.19)

The solution to Eqs. (3.18), (3.19) may easily be written down by inspection, viz.

fi(z) = 2an[zP(z)(z2 - 1)I/2 - hx(z)), (3.20)

2WX -fx = i{o22 - <7n)[(l - z2)P(z) - (z2 - l)I/2//,(z)], (3.21)

where hx and H] are polynomials chosen so that both fx and 2WX - fx tend to

0(1 jz ) as z tends to infinity. It can easily be checked that the second significant

term in A^, can be at most of the order of e if aX2 = 0. Similarly, the second

significant term in K2 can be at most of the order of e if ax x = a22 = 0. Thus, the

inclusion of the e -terms in the desired expansion is both important and useful.

Substituting all the known relations into Eqs. (3.15) and (3.16), we get

f2 - f~ = /( 1 - x2x)1,2[-4cj22P2 - 8(ct22- axl)f20{X\) - i4ax2f2x(xx)], (3.22)

(2 W2- f2)+ + (2 W2-f2)~ = 4(cr22 - oxl)g20(xx) + H6ax2g2x(xx), (3.23)
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where

f20(x{) = [(1 -*X(x,) -*,//,(*,)]/»(*,), (3.24)

f2l (*,) = (4x2 - l)P2(x,) - 2x1 (1 - *f)/»(x,)/>'(*,), (3.25)

*2o(*i)= -[(l-xf)P(x1)JP'(x1)-2x1P2(x1)](l-xf), (3.26)

Six (*J ) = (1 - x\)p(x\ )h'l 0*1) • (3-27)

The solutions to Eqs. (3.22) and (3.23) are

f2(z) = _2(z2 - 1)1/2[ct22P2(z) + 2(<j22 - an)/20(z) + iai2f2l(z)] + h2(z), (3.28)

2W2 -f2 = 2(cj22 - <Ju)[g20(z) - H20(z)(z2 - 1)1/2]

+ /8ff12[g21(z) - H2l(z)(z2 - 1)1/2]

where h2,H20, and //2I are polynomials chosen so that both f2 and 2W2-f2 tend

to 0(1/z ) as z tends to infinity. This completes the derivation for a three-term

expansion. The determination of the unknown polynomials may be facilitated by the

formulas provided in Appendix A.

The three-term expansion is now substituted into Eq. (2.22) to yield

- iK2 = lim 2V2n(z - \)X,2e~iaJ2 | fF0'(z) + zW[(z) + j£2W2(z) + ■ ■ ■ j

—iar/2 /—
e c y/n [p22 '"^12) ^)<712 '^l(l)(°22 "ll)l

+ I£2{-2(t22F2(1) - 2{a22 - <7n)[H20( 1) + 2/20(l)]

_ '2ct12[/21(1) + 4//21 (1)]} H 

(3.30)
where

a = Tan leY'(l) = efi, P = Y\l). (3.31)

Expanding Eq. (3.30) in terms of e , we finally obtain

Kx _
j- - a22 eal2

2
e |<t22

f -2P(l)

T + plw + (cr22 <7jj) //20(l) + 2/20(l) + ^//,(l)

K2

yl =a'2+£

2
- e <t12

2 C22 + i/j (1 )((T22 ^ij)

n2

^--/?P(l)-/21(l)-4//21(l)

+ • • • ,

(3.32)

(3.33)

+

The circular-arc crack results are used to demonstrate the accuracy of the above

explicit formulas. A circular-arc crack may be conveniently defined by

x2 = eY(xl) = ~(l-x J) (Kiel) (3.34)
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where 2e is the central angle in radians sustained by the circular arc of radius e_l .

It is also noted that the difference between Eq. (3.34) and the exact description for

the circular arc is of the order of e3. Starting from Eq. (3.34) and using Eqs. (3.17),

(3.20), (3.21), (3.24)-(3.33), together with Appendix A, we obtain

^(-*1) = —3 > h\(z) = ~jZ2 + \, Hx = \z,

/20 = i( 2x\-\), /21 = i(4*f-l),

^20 = ^21 =5xi(1-^)' ^3-35)

h2 = 2[(a22 -on) + ;cr12]z3 + \[^on - 3cr22 - /3ct12]z,

^20 = H21=-jZ2+l 0=1,

and

K 2
= a22 ~ S2tTl2 ~ £ [8*^22 2(CT22 CT11)] + " ' ' > (3.36)

K 2
-^= = Cj2 + c [jtT22 2(<T22 — ̂ ll— e ICT12 ' ' ' ' (3.37)

where the last two expressions are identical to the three-term expressions deduced

from the exact solution (Cotterell and Rice [4], Muskhelishvili [8]). The fact that

these asymptotic formulas are accurate to 5% for circular-arc cracks with central

angle less than 80° suggests that the general formulas (3.32) and (3.33) may also be

applied for

e < = 0.698. (3.38)
1 ol)

Moreover, the polynomial formulas provided in Appendix A may be straightfor-

wardly summed, and hence the input polynomial P{xx) of Eq. (3.17) may be of any

degree.

Holes with cusps (F+ — Y > 0). The functions Y± satisfy Eq.(2.17) so that the

singularities at z — ± 1 are still of the crack-tip type. However, it is rather difficult

to treat this class of problems in completely general terms. The following specific

problem is used to illustrate the procedure:

r+(x,) = (\-x\f'2, Y_{XX) = 0. (3.39)

The shape of such a regularly perturbed crack is depicted in Fig. 1(a). Using the

above, we find from Eqs. (3.12) and (3.13) that

/1+-/r = (2^,-/1)++(2^-/1)-

= |(«J22 -ffn)(l -x2)3/2 + i2onxx{ \ -X2).

The following functions will appear in the upcoming solution:

(3.40)

X(z) = (z2- 1)1/2, L(z) = ln[(z - l)/(z + 1)]. (3.41)
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(a)

(b)

(c)

Fig. 1. (a) A regularly perturbed crack with cusps, (b) a singularly

perturbed crack with notch tips, and (c) the magnified notch tip of

(b).

They satisfy the conditions

X+ + X~=0, X+ - X~ = 2/(1 - x\)X/1; (3.42)

L+ + L~ = 21n[(l — jc,)/(1 +x,)], L+ - L~ = 2ni; (3.43)

{XL)+ + (XL)' = -2n(\-x])X/2,

(XL)+ - (XL)~ = i2(l -xf)1/2ln[(l -x,)/(l +*,)].
(3.44)
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Using Eqs. (3.42)-(3.44) and Eq. (3.40), we obtain

fl(z) = - han-an)
, 2 , .3/2 3,3'(z - 1) - z + 2Z

41 (3'45)
z(z - l)ln(z - l)/(z + 1) + 2z2 - - ,

2Wi _fi = <(g22 -gll)[(22 _ 1}3/2jn(z _ j)/(z + {) + 2z(z2 _ 1)1/2]

r /i\ i (3-46),2 ,. / 2 1 \ , 2 ,.1/2
z(z -1)- (z — 2 ) (z -!)

1
~CT12

-Z(712

where homogeneous solutions have been added to ensure the vanishing of f[ and

(2WX - /j)' at infinity (cf. Eqs. (3.20) and (3.21)). It follows from Eqs. (3.45) and

(3.46) and Eq. (2.22) that the <9(e)-term of Kx is zero. The second significant term

of Kx , therefore, is governed by W2 .

Substituting all the known relations into Eqs. (3.15) and (3.16), we get

/2+ - f~ = (2W2 - f2)+ + (2W2 - f2)~

= (cr22 - crn) -^yinj-^ + z^l -x2)26x,(l - x\f

i^xf(l - x]) - i3(2xf - 1)(1 - x2)3/2 J

- i2a22{\ - x\f12

+ a\2 ~ 1K1 -*l)3/2ln}^L + 'W1 ~XlV
1

— i2xx(2xl - l)(l-*1) + /^jf1(l-jc1) + 2(6x, - l)(l-x,) J.

(3.47)
The solutions for W2 and f2 may be obtained from the above by applying Eqs.

(3.42)-(3.44). It may easily be checked that f2(± 1) = 0, and hence the possibility

of a square-root singularity can only come from 2 W2- f2. Moreover, only the two

real terms in the above contribute to the value of K{ (cf. Eq. (2.22)). Concentrating

on this stated fact, we have

(2W2 - f2)+ + (2W2 - f2y
2 2 2 2 1/2

= ((T22 - CTn)6x,(l - x,) + cr|22(6x, - 1)(1 - x ) h 

and

1W2 ~fl = 3(CT22 - CTll)
/i 2\2 < 2 , \'/2 4 9 2 , 9\z(l -z ) -(z - 1) ( 3z - -z +-)

^12 (6z2- l)(z2- 1)3/2 In ——\ + {z2 - l)1/2(12z3- IOz)
z + 1

+ ■

(3.49)
where • • • indicates the contribution of the imaginary terms of Eq. (3.47). Equation
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(2.22) is now used to yield

-> q II

+ •••, (3.50)Kx _ 2

K-^ = cr., - e

9 / x 1(a22 °"i i) + _ °"i2
32 22 7i

K N 1
^(<722 C7ll)+2(T12

^ -"12 - UV22 "11'' 2"12J "* ' (3-51)

which are the stress intensity factors associated with the crack configuration of Fig.

1(a).

4. Singularly perturbed cracks. Singularly perturbed cracks are defined by (cf. Eq.

(2.18))
i^(±i) ¥> r'(±i) (4.1)

and, hence, are not cracks in that the singularities at z — ± 1 are not of the square-

root type. Once again, it is difficult to discuss the class of problems in completely

general terms. The following special choice suffices to illustrate the main difference

between regularly and singularly perturbed cracks:

r+(*,) = ( i-xf), r_(xl) = o, (4.2)

which is depicted in Fig. 1(b). The singularities at z = ±1, therefore, are dictated

by the notch angle 2(n - e). While the notch angle may be approximated by 2n for

small values of e, the mathematical singularities associated with small values of e

are characteristically different from those associated with e = 0. It follows that the

asymptotic series (3.1) and (3.2), developed for Eq. (4.2), cannot be valid for z = ± 1

and therefore are termed an outer expansion.

Beginning with the reduced solution f0, WQ of Eqs. (3.8) and (3.9), we conclude

from Eqs. (3.12) and (3.13) that fx and Wx must satisfy the boundary conditions

/1+-/r = (2FF1-/1)+ + (2^1-/l)-
2 2 1/2 w**'/

= i(a22 - <Tj 1)(1 -xj + /2<t12x,(1 -Xj) .

It follows from the properties (3.42)-(3.44) that

+ an/i(z) = -^(ff22-(7n) (z2 - l) In ——+ 2z
z + 1

I 1 i\1/2 2 , 1z(z - 1) - z + -

2^1 - - 4(^22 - - 1) - z(z2 - !)1/2]

I
 a

71 12
, 2 , > 1/2. Z - 1 2 ,.1/2z(z -1) In t + 2(z -1)v ' z + 1 v '

(4.4)

(4.5)

which, together with Eqs. (3.8) and (3.9), constitute a two-term outer expansion.

The function WQ is square-root singular, and the functions IV[ and /, are both

square-root and logarithmically singular. These are not the correct singular properties

associated with a wedge of wedge angle 2(7z - e). Thus, the two-term expansions are

not valid for 0 < |z ± 1| < 1.

To amplify the true singular character of the solution for 0 < \z - 1| -c 1, a

special inner expansion will be constructed. This expansion employs a dimensionless



540 CHIEN H. WU

boundary-layer complex variable C defined by

y Z " 1 11] / A £\C = —— e . (4.6)

In terms of the polar representation, Fig. 1(c),

c = f J + /£2 = pev,

the region 0 < \z - 1| < 1 is a traction-free elastic wedge of wedge angle 2a —

2(71 - e), i.e.,

—a < i// < a, p > 0. (4.7)

Let us first examine the one-term symmetric and antisymmetric wedge-apex ex-

pansions associated with the above traction-free wedge. We begin by assuming

O(0 = A+c'~\ 4>{0 = B+C or 12(C) = A~Cl~\ </>(C) = B~C'~A (4.8)

where A± and B± are real. The functions Q and <f> play, respectively, the roles of

W and / in the new C-plane. The vanishing of Eq. (2.9) along ^ = ±a leads to

the characteristic equation

Sin 2(1 -A(±))a±(l - A(±)) Sin 2a = 0 (4.9)

and the modal relation

B± = A±[l + Cos2(l - A(±))a ± (1 - A(±))(Cos2a - 1)] (4.10)

where + and - are associated with the symmetric and antisymmetric deformations

respectively.

The roots of Eq. (4.9) have been extensively studied in the literature (Williams

[13]; England [5]; Moffatt and Duffy [7]). We find the summary information of Ting

[10, 11] most complete. Let k = A,, k2, ... be the roots, ordered in such a way that

+ 1 > ReA, > ReA2 > • • • . Using the fact that n — a — s, we may easily deduce

from Eq. (4.9) the following explicit results:

,(+) 1 1 n3 1 1 3 . ,
1 = 2 ~ + = 2 ~ 4?re +"' (symmetnc) =

A(._) = ^ (n - a) 4 = I-i-en  (symmetric),1 2 71 2 71

Thus, the one-term symmetric and antisymmetric modes are

Q(+) = ̂ -A+}

(+) .. .

(4.11)

= -!(»-arc

a(r} = ic1^"'

<p[~] = /|(tt — a)2C'

(4.12)

(4.13)

It is clear from Figs. 1(b), (c) that the desired inner expansion is neither symmetric

nor antisymmetric with respect to the c^-axis.
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The leading terms of the inner expansion must be of the form

^~Q(C;e)~Q0 + ^(e)Q(1+)(C) + 5(e)Q(-)(O + -- - , (4.14)

/ ~ 0(f; e) ~ 2£20 + A{e)^\Q + + ■ ■ ■ (4.15)

where £20 is a constant associated with a rigid body displacement and A(e) and

5(e) are real. The problem is considered to be solved if £20, A(e), and B(e) are

determined. This can only be accomplished by applying the concept of matching

(Cole [3]; Van Dyke [11]).

The outer-expansion variable z and inner-expansion variable C are related by

Eq. (4.6) which consists of a translation, a magnification, and a rotation. It is known

that the complex functions W, w , and / are not completely invariant under such

transformations (Muskhelishrili [7]). For this reason we choose to match the two

displacement fields directly.

For clarity and convenience we write

z = xl + ix2 = x + iy, £ = + i%2 = £ + "7 • (4-16)

Then

2(ux + iuy) = kW{z) - W(z) + (z-z)W'{z) + f(z), (4.17)

2(u( + un) = kQ(Q - £2(C) + (C - C)£2 (0 + m, (4.18)

where [W, f] and [£2, </>] are, respectively, the outer and inner expansions. The

following is a suitable matching variable:

Cc = 77r- <4-19>

It follows from Eqs. (4.19) and (4.6) that

z=l+e1/2C0, C = -V£ • (4"2°)

The required matching is to be conducted for £0 fixed and £ -» 0, i.e.,

{ux + IWy)|z=i+ei/2Co ~ ("{ + iun)e ,e|f=e"{0/eI/2 (4-21)

where the expressions on the two sides are defined by Eqs. (4.17) and (4.18). A

simple substitution shows that to the order of e1''2 the left-hand side of Eq. (4.21) is

dominated by W0(z) and /Q(z), while the right-hand side is not affected by <f>\±].

In fact, Eq. (4.21) is satisfied to the order of e1/2 if

(4-22)

is satisfied to the order of el/2. We have

'oiz=i+£'% - 2I — i . -1/2 r -
K
2 (CT11 a22> + la\2 + sl/4^=(a22-al2Kl0,2 + --- - (4-23)

£2|f=^jo/e|/2 = £20 + [A(e) + , (4.24)
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where the property

e £ = 1 - elne H  (4.25)

Q° ~ 2

has been used in simplifying Eq. (4.24). Finally, we conclude from Eqs. (4.22)-(4.24)

that

K x • 1
(ffl i &22) "^12 '

1 1 (4"26)
-4(e) = e1/2—^=0*22, B(e) = -Ei/2-j=ol2.

The notch-tip singularity at z = 1 is now completely defined to the order of e1^2.

We conclude this paper by emphasizing the simplicity and usefulness of Eqs.

(3.41)-(3.44) in solving Cauchy and Hilbert problems.

Appendix A. Formulas for the unknown polynomials. The unknown polynomials

are typified by the functions hx and H{ of Eqs. (3.20) and (3.21) where P is a

given polynomial. Thus, it suffices to consider the dependence of /z, and Hx on a

single term of P. We begin with the expansion

00

(Z2- 1)'/2 = zJ2b2nZ~2" (1^1 >0 (A-l)
n= 0

where

h =\ h =-± h —-± h - l- h - B 5^0 1 ' u2 2 ' u4 — 8 ' 6 16 ' 8 128

^10 = — 536 ' b2n = ~ ~ n — \)/n\.

For a given one-term polynomial Q(z), the condition

(A.2)

Q(z)(z2 — l)1''2 - q(z) —► 0 as z —+ oo (A.3)

is satisfied by

Q ~ C2NZ ' Q = C2N ^2(N-m)Z > (A.4)
m=0

N+1

Q = (~-2N+lZ ' ^ = C2N+\ ^2 ^2(N-m+l)Z • (^.5)

Similarly, the condition

is satisfied by

2 1 / 2
Q(z) - (z -1) q(z) —► constant as z->• oo (A.6)

Q = C2NZ2N, Q2n+iz2n+l> (A-7)

n=0

Q = C2N+lz2N+l ' 4 = J2(]2nz2n > (A*8)
2N+1 * 2n

n=0
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where

^2 N = ^2N+l '

QlN-\ = ^~*2N '

llN-2 ~ 1^2N = 0'

^2N-3 ~ ^2N-l ~ ®'

^2N—A ~ I^2N-2 ~ 5^2N =

^2N-5 ~ \^2N-i~ \^2N-\ = ^^ ^

^2 ~ 5^4 _ 5^6 "l *" ̂ 2(N~\)^2N =

^1 _ 2^3 ~ 5^5 ^2(N-\)^2N-\ =

<?0 ~ 5^2 ~~ S^4 "+ f ^2N^2N = 0.

and hence all qm's may be straightforwardly determined.
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