EXISTENCE OF CLASSICAL SOLUTIONS
FOR SINGULAR PARABOLIC PROBLEMS

By
C. Y. CHAN and BENEDICT M. WONG
University of Southwestern Louisiana

Abstract. Let \(Lu = u_{xx} + bu_x/x - u_t \) with \(b \) a constant less than 1. Its Green's function corresponding to first boundary conditions is constructed by eigenfunction expansion. With this, a representation formula is established to obtain existence of a classical solution for the linear first initial-boundary value problem. Uniqueness of a solution follows from the strong maximum principle. Properties of Green's function and of the solution are also investigated.

1. Introduction. Let

\[
 L = \frac{\partial^2}{\partial x^2} + \frac{b}{x} \frac{\partial}{\partial x} - \frac{\partial}{\partial t}.
\]

We are interested in studying existence and uniqueness of classical solutions for linear initial-boundary value problems involving \(L \). This operator arises in many situations, such as degenerate elliptic-parabolic operators (cf. Brezis, Rosenkrantz, and Singer with an appendix by Lax [2]), stochastic processes (cf. Lamperti [14]), and phase change processes (cf. Solomon [18]). When \(b = 0 \), it is the heat operator. For further discussions of the study and the significance of \(L \), we refer to Chan and Chen [5, 6], Chan and Cobb [7], Chan and Kaper [8], and the references cited there.

Without loss of generality and for simplicity, we take the spatial interval to be \([0, 1]\). Let \(b \) (< 1) and \(\Gamma \) (> 0) be constants, \(\Omega_\Gamma = (0, 1) \times (0, \Gamma) \), \(Q_\Gamma = (0, 1) \times (0, \Gamma) \), \(\tilde{Q}_\Gamma = (0, 1) \times [0, \Gamma] \), and \(\overline{Q}_\Gamma \) denote the closure of \(Q_\Gamma \). We study the linear singular problem,

\[
 Lu = -\Psi(x, t) \quad \text{in } Q_\Gamma,
\]

\[
 u(x, 0) = g(x) \quad \text{for } 0 < x < 1, \quad u(0, t) = 0 = u(1, t) \quad \text{for } 0 < t \leq \Gamma.
\]

More general linear problems with \(b \) a real constant were investigated by Alexiades [1]. Hence, an existence result for the above problem can be deduced from his work [1, Sec. 11]. For \(b < 1 \), he assumed that \(x^{b-1}\Psi(x, t) \) is in \(C(\overline{Q}_\Gamma) \); we note that if the solution \(u \) were known, the function \(x^{b-1}[1-u(x, t)]^{-1} \) would be discontinuous at \(x = 0 \), and thus would not satisfy his assumption in the case \(b < 1 \). Hence, his
(linear) result cannot be used through methods of successive approximations to study semilinear singular problems of the type,

\[v_{xx} - v_t = - (1 - v)^{-1} \text{ in } \Omega_T, \]

\[v(x, 0) = g(x) \quad \text{for } 0 \leq x \leq 1, \quad v(0, t) = 0 = v(1, t) \quad \text{for } 0 < t < T \leq \infty. \]

This problem with \(g(x) \equiv 0 \) was studied by Kawarada [12], through which he introduced the concept of quenching. Since then, many scientists have studied quenching problems (cf. Chan [4]).

In Sec. 2, we construct explicitly Green's function corresponding to the problem (1.1) and (1.2). Under appropriate conditions on \(g(x) \) and \(\Psi(x, t) \) (without assuming \(x^{b-1} \Psi(x, t) \) is in \(C(\overline{Q}_T) \)), we prove existence of a unique classical solution by establishing its representation formula. We also establish properties of Green's function and of the solution. In Sec. 3, we extend existence of a unique classical solution to nonhomogeneous boundary conditions.

2. Linear problem. Using separation of variables on the homogeneous problem corresponding to the problem (1.1) and (1.2), we obtain the singular Sturm-Liouville problem,

\[(x^b X')' + \lambda x^b X = 0, \quad X(0) = 0 = X(1), \]

where \(\lambda \) is an eigenvalue. Let \(\nu = (1 - b)/2 \). Since \(\nu > 0 \), it follows from McLachlan [15, pp. 26 and 116] that the eigenvalues \(\lambda \) are positive and satisfy the equation \(J_{\nu}(\lambda^{1/2}) = 0 \), where \(J_{\nu}(z) \) is the Bessel function of the first kind of order \(\nu \). For \(z > 0 \), \(J_{\nu}(z) \) has infinitely many countable zeros; hence, there are infinitely many countable eigenvalues \(\lambda_n \), which can be arranged as \(\lambda_1 < \lambda_2 < \lambda_3 < \cdots \) with \(\lambda_n \to \infty \) as \(n \to \infty \) (cf. Watson [19, pp. 490–492]). The corresponding eigenfunctions,

\[\phi_n(x) = 2^{1/2} x^{\nu} J_{\nu}(\lambda_n^{1/2} x)/(|J_{\nu+1}(\lambda_n^{1/2})|), \]

form an orthonormal set with weight function \(x^b \) (cf. McLachlan [15, pp. 102–104]).

In the sequel, we let \(k_j \) \((j = 1, 2, 3, \ldots, 8)\) denote appropriate constants. For simplicity, we introduce the following notations:

\[E_n(y) \equiv \exp(-\lambda_n y), \]

\[I_n(h) \equiv \int_0^1 x^b h(x) \phi_n(x) dx. \]

If instead of \(h(x) \), we have \(h(x, t) \), then we use the notation \(I_n(h)(t) \). Similarly, let

\[I(h) \equiv \int_0^1 x^{b/2} h(x) dx, \]

\[I^2(h) \equiv \int_0^1 x^b h^2(x) dx, \]

and define \(I(h)(t) \) and \(I^2(h)(t) \) accordingly.

For convenience, we state the following results.
Lemma 1.
(a) \(|\phi_n(x)| \leq k_1 x^{-b/2} \) for \(x \) in \((0, 1]\).
(b) \(|\phi_n(x)| \leq k_2 x^{1/4} \) for \(x \) in \([0, 1]\).
(c) If \(I^2(h_1)(t) \leq k_3 \) for \(t \) in \([0, \Gamma_1]\), then for \(t \) in \([0, \Gamma_1]\),
\[
\sum_{n=1}^{\infty} [I_n(h_1)(t)]^2 \leq I^2(h_1)(t).
\]
(d) \(|\phi_n'(x)| \leq k_4 x^{1/2} \) for \(x \) in \([x_0, 1]\) where \(x_0 > 0 \) and \(k_4 \) depends on \(x_0 \).
(e) If \(I(h_2) \) exists (and is absolutely convergent in case the integral is improper), and if \(h_2(x) \) is continuous and of bounded variation on \([x_1, x_2]\), where \(0 < x_1 < x_2 < 1 \), then \(\sum_{n=1}^{\infty} I_n(h_2) \phi_n(x) \) converges uniformly to \(h_2(x) \) on \((x_1 + \varepsilon, x_2 - \varepsilon)\) where \(\varepsilon \) is any positive number.

For the proofs of Lemma 1(a), (b), (d), and (e), we refer to Lemma 1(i) and (ii), (2.15), and Lemma 3 of Chan and Wong [9]. Lemma 1(c) follows directly from the Bessel inequality (cf. Weinberger [20, p. 73]).

Let us construct Green's function \(G(x, t; \xi, \tau) \) corresponding to the problem (1.1) and (1.2). It is determined by the following system: for \(x \) and \(\xi \) in \((0, 1]\), and \(t \) and \(\tau \) in \((-\infty, \infty)\),
\[
LG(x, t; \xi, \tau) = -\delta(x - \xi)\delta(t - \tau),
\]
\[
G(x, t; \xi, \tau) = 0, \quad t < \tau,
\]
\[
G(0, t; \xi, \tau) = 0 = G(1, t; \xi, \tau),
\]
where \(\delta(x) \) is the Dirac delta function. By the eigenfunction expansion,
\[
G(x, t; \xi, \tau) = \sum_{n=1}^{\infty} a_n(t) \phi_n(x).
\]
Since
\[
\phi_n''(x) + \frac{b}{x} \phi_n'(x) + \lambda_n \phi_n(x) = 0,
\]
it follows that
\[
\sum_{n=1}^{\infty} [a'_n(t) + \lambda_n a_n(t)] \phi_n(x) = \delta(x - \xi)\delta(t - \tau).
\]
Multiplying both sides by \(x^b \phi_n(x) \), and integrating from 0 to 1 with respect to \(x \), we obtain
\[
\frac{d}{dt} \{\exp(\lambda_n t) a_n(t)\} = \xi^b \phi_n(\xi) [\exp(\lambda_n t)] \delta(t - \tau).
\]
By integrating from \(\tau^- \) to \(t \),
\[
[\exp(\lambda_n t)] a_n(t) - [\exp(\lambda_n \tau^-)] a_n(\tau^-) = \xi^b \phi_n(\xi) \exp(\lambda_n \tau).
\]
Since \(G(x, t; \xi, \tau) = 0 \) for \(t < \tau \), it follows that \(a_n(\tau^-) = 0 \) for all \(n \). Thus,
\[
a_n(t) = \xi^b \phi_n(\xi) E_n(t - \tau),
\]
and hence
\[G(x, t; \xi, \tau) = \sum_{n=1}^{\infty} \xi^n \phi_n(\xi)\phi_n(x)E_n(t - \tau). \]

Let \(D = \{(x, t; \xi, \tau) : x \text{ and } \xi \text{ are in } (0, 1), \text{ and } t > \tau \} \). By Lemma 1(b) and the fact that \(O(\lambda_n) = O(n^2) \) for large \(n \) (cf. Watson [19, p. 506]), it follows that the series in (2.1) converges in \(D \). Hence, \(G(x, t; \xi, \tau) \) exists.

A function \(u \) is said to be a classical solution of the problem (1.1) and (1.2) if

(a) \(u \) is in \(C(\overline{Q}_\Gamma) \),
(b) \(u_x, u_{xx}, \) and \(u_t \) are in \(C(Q_\Gamma) \),
(c) \(u \) satisfies (1.1) and (1.2).

Throughout this paper, by a solution of the problem (1.1) and (1.2), we refer to its classical solution.

Let \(\Psi(x, t) \) be defined in \(Q^- \). We need the following conditions:

(A) \(I^2(\Psi)(t) \leq k_5 \) for \(t \) in \([0, \Gamma]\),
(B) \(I(\|\Psi\|)(t) \leq k_6 \) a.e. for \(t \) in \([0, \Gamma]\).

Theorem 2. The problem (1.1) and (1.2) has at most one solution. Suppose \(\Psi(x, t) \) is in \(C(\overline{Q}_\Gamma) \), absolutely continuous on the interval \(0 \leq t \leq \Gamma \) for each \(x \) in \((0, 1)\), and of bounded variation with respect to \(x \) on every given closed subinterval of \((0, 1)\). If Conditions (A) and (B) hold, then the problem (1.1) and (1.2) with \(g \equiv 0 \) has a unique solution \(u \) given by
\[u(x, t) = \int_0^t \int_0^1 G(x, t; \xi, \tau)\Psi(\xi, \tau) \, d\xi \, d\tau. \]

Proof. Uniqueness of a solution follows from the strong maximum principle (cf. Protter and Weinberger [16, pp. 168–170]).

From (2.1) and (2.2),
\[u(x, t) = \int_0^t \int_0^1 \sum_{n=1}^{\infty} \xi^n \phi_n(\xi)\phi_n(x)E_n(t - \tau)\Psi(\xi, \tau) \, d\xi \, d\tau. \]

By Lemma 1(a) and (b), we have for \(x \) in \([0, 1]\) and \(\xi \) in \((0, 1)\),
\[|\xi^n \phi_n(\xi)\phi_n(x)\Psi(\xi, \tau)| \leq k_1 k_2 \lambda_n^{1/4} \xi^{b/2} |\Psi(\xi, \tau)|. \]

For any fixed \((x, t)\) in \(\overline{Q}_\Gamma \), let
\[G_m(\xi, \tau) = \begin{cases} \sum_{n=1}^{m} \xi^n \phi_n(\xi)\phi_n(x)E_n(t - \tau) & \text{for } t - \tau > 0, \\ 0, & \text{otherwise.} \end{cases} \]

Then, \(G_m(\xi, \tau)\Psi(\xi, \tau) \) converges to \(G(x, t; \xi, \tau)\Psi(\xi, \tau) \) a.e. on \(\overline{Q}_\Gamma \). From (2.3),
\[|G_m(\xi, \tau)\Psi(\xi, \tau)| \leq \rho(\xi, \tau) \]
for all positive integers \(m \) where
\[\rho(\xi, \tau) = \begin{cases} k_1 k_2 \xi^{b/2} |\Psi(\xi, \tau)| \sum_{n=1}^{\infty} \lambda_n^{1/4} E_n(t - \tau) & \text{for } t - \tau > 0, \\ 0, & \text{otherwise.} \end{cases} \]
Let \(\rho_m(\xi, \tau) \) be the \(m \)th partial sum of \(\rho(\xi, \tau) \). Then, \(\{\rho_m\} \) is a sequence of nonnegative measurable functions that converge monotonically to \(\rho \) on \(\overline{Q}_T \), and \(\rho_m \leq \rho \) for all positive integers \(m \). By the Monotone Convergence Theorem and the Fubini Theorem (cf. Royden [17, pp. 84 and 269]),

\[
\int_{Q_T} \rho(\xi, \tau) \, d\xi \, d\tau = \lim_{m \to \infty} \int_0^T \int_0^1 \rho_m(\xi, \tau) \, d\xi \, d\tau
\]

\[
= \lim_{m \to \infty} k_1k_2 \sum_{n=1}^m \left[\int_0^1 I(|\Psi|)(\tau)\lambda_n^{1/4} E_n(t-\tau) \, d\tau \right].
\]

By the Schwarz inequality and Condition (A),

\[
\int_{Q_T} \rho(\xi, \tau) \, d\xi \, d\tau \leq k_1k_2k_5^{1/2} \lim_{m \to \infty} \sum_{n=1}^m \lambda_n^{-3/4}.
\]

Since \(O(\lambda_n) = O(n^2) \) for large \(n \), it follows that \(\sum_{n=1}^m \lambda_n^{-3/4} \) converges. Hence, \(\rho(\xi, \tau) \) is integrable, and for each fixed \((x, t) \) in \(\overline{Q}_T \), the integral in (2.2) exists. By the Lebesgue Convergence Theorem (cf. Royden [17, p. 88]) and the Fubini Theorem,

\[
u(x, t) = \sum_{n=1}^\infty \int_0^t I_n(\Psi)(\tau) E_n(t-\tau) \, d\tau \phi_n(x).
\]

By Lemma 1(c) and Condition (A),

\[
\left| \int_0^t I_n(\Psi)(\tau) E_n(t-\tau) \, d\tau \right| \leq k_5^{1/2}\lambda_n^{-1}.
\]

It follows from Lemma 1(b) that the series representing \(u(x, t) \) converges absolutely and uniformly on \(\overline{Q}_T \). Thus, \(u(x, t) \) is in \(C(\overline{Q}_T) \), and hence \(u(x, t) \) satisfies the homogeneous initial and boundary conditions.

Next, we would like to show the differentiability of the solution \(u(x, t) \). Let

\[
S_m(x, t) = \sum_{n=1}^m \int_0^t I_n(\Psi)(\tau) E_n(t-\tau) \, d\tau \phi_n(x)
\]

\[
= \sum_{n=1}^m \int_0^1 \xi^b \phi_n(\xi) \left[\int_0^t \Psi(\xi, \tau) E_n(t-\tau) \, d\tau \right] d\xi \phi_n(x).
\]

Since \(\Psi(\xi, \tau) \) is absolutely continuous on the interval \(0 \leq \tau \leq \Gamma \) for each \(\xi \) in \((0, 1) \), it follows from integration by parts with respect to \(\tau \) (cf. Chae [3, pp. 227–228]) that

\[
S_m(x, t) = \sum_{n=1}^m \lambda_n^{-1} \left[I_n(\Psi)(t) - I_n(\Psi)(0) E_n(t) \right.
\]

\[
- \int_0^1 \xi^b \phi_n(\xi) \int_0^t \Psi(\xi, \tau) E_n(t-\tau) \, d\tau \, d\xi \phi_n(x).
\]
For \(x \) in \([x_0, 1]\) where \(x_0 \) is any positive number in \((0, 1)\), it follows from Lemma 1(d) that for any positive integers \(p \) and \(m \) with \(p > m \),

\[
\left| \frac{\partial S_p}{\partial x} - \frac{\partial S_m}{\partial x} \right| \leq k_4 \sum_{n=m+1}^{p} \lambda_n^{-1/2} |I_n(\Psi)(t)| + k_4 \sum_{n=m+1}^{p} \lambda_n^{-1/2} |I_n(\Psi)(0)|
\]

\[
+ k_4 \sum_{n=m+1}^{p} \lambda_n^{-1/2} \left| \int_{0}^{1} \xi^b \phi_n(\xi) \int_{0}^{t} \Psi_{\tau}(\xi, \tau) E_n(t-\tau) \, d\tau \, d\xi \right|.
\]

(2.5)

From Condition (A) and Lemma 1(c),

\[
\left(\sum_{n=m+1}^{p} |I_n(\Psi)(t)|^2 \right)^{1/2} \leq k_5^{1/2}.
\]

By the Schwarz inequality, the first term on the right-hand side of the inequality (2.5) is bounded by

\[
k_4 k_5^{1/2} \left(\sum_{n=m+1}^{p} \lambda_n^{-1} \right)^{1/2},
\]

which converges to 0 as \(p \) and \(m \) tend to infinity since \(O(\lambda_n) = O(n^2) \) for large \(n \). Similarly, the second term converges to 0 as \(p \) and \(m \) tend to infinity. By Lemma 1(a) and Condition (B),

\[
\left| \int_{0}^{t} I_n(\Psi_{\tau})(\tau) E_n(t-\tau) \, d\tau \right| \leq k_1 \int_{0}^{t} |I(\Psi_{\tau})| E_n(t-\tau) \, d\tau
\]

\[
\leq k_1 k_6 \lambda_n^{-1} [1 - E_n(t)]
\]

\[
\leq k_1 k_6 \lambda_n^{-1}.
\]

(2.6)

It follows from the Tonelli Theorem (cf. Royden [17, p. 270]) that

\[
\xi^b \phi_n(\xi) \Psi_{\tau}(\xi, \tau) E_n(t-\tau)
\]

is integrable on \(\overline{Q}_T \). By the Fubini Theorem,

\[
\left| \int_{0}^{1} \xi^b \phi_n(\xi) \int_{0}^{t} \Psi_{\tau}(\xi, \tau) E_n(t-\tau) \, d\tau \, d\xi \right| = \left| \int_{0}^{t} I_n(\Psi_{\tau})(\tau) E_n(t-\tau) \, d\tau \right|
\]

\[
\leq k_1 k_6 \lambda_n^{-1}.
\]

Thus, the third term on the right-hand side of (2.5) is bounded by

\[
k_1 k_4 k_6 \sum_{n=m+1}^{p} \lambda_n^{-3/2},
\]

which converges to 0 as \(p \) and \(m \) tend to infinity. Therefore on \([x_0, 1] \times [0, \Gamma]\), \(|\partial S_p/\partial x - \partial S_m/\partial x|\) converges to 0 uniformly as \(p \) and \(m \) tend to infinity. Hence, \(\partial S_m/\partial x \) converges uniformly. Since \(x_0 \) (> 0) is arbitrarily chosen and each term in the series representing \(\partial S_m/\partial x \) is continuous, it follows that \(\partial S_m/\partial x \) converges uniformly on every given closed subset of \((0, 1] \times [0, \Gamma]\) to

\[
u_x(x, t) = \sum_{n=1}^{\infty} \int_{0}^{t} I_n(\Psi)(\tau) E_n(t-\tau) \, d\tau \phi_n(x),
\]
and \(u_x(x, t) \) is in \(C(\overline{Q}_\Gamma \setminus P_1) \) where \(P_1 \equiv \{(0, t) : 0 \leq t \leq \Gamma\} \).

Let the \(m \)th partial sum of \(u_x(x, t) \) be denoted by \(S_{xm}(x, t) \). Since

\[\phi_n''(x) + \frac{b}{x} \phi_n'(x) + \lambda_n \phi_n(x) = 0, \]

we have from (2.4) that

\[
\frac{\partial S_{xm}(x, t)}{\partial x} = -\frac{b}{x} S_{xm}(x, t) - \sum_{n=1}^{m} I_n(\Psi)(t)\phi_n(x) \\
+ \sum_{n=1}^{m} I_n(\Psi)(0)E_n(t)\phi_n(x) + \sum_{n=1}^{m} \int_{0}^{t} I_n(\Psi_{\tau})(\tau)E_n(t-\tau)\,d\tau\phi_n(x).
\]

(2.7)

Since \(S_{xm}(x, t) \) converges uniformly on \([x_0, 1] \times [0, \Gamma]\) for arbitrarily fixed \(x_0 > 0 \), we have \((b/x)S_{xm}(x, t)\) converges uniformly there. For each fixed \(t \geq 0 \), it follows from Condition (A) and Lemma 1(e) that the second term on the right-hand side of (2.7) converges uniformly to \(-\Psi(x, t)\) on every given closed subinterval of \((0, 1)\). By Lemma 1(e) and the Abel test (cf. Knopp [13, p. 346]), the third term converges uniformly on every given closed subset of \(Q_\Gamma \); because of the term \(E_n(t) \), it converges absolutely and uniformly on every given closed subset of \([0, 1] \times (0, \Gamma]\). Hence, the third term converges uniformly on every given closed subset of \(\overline{Q}_\Gamma \) where \(P_2 \equiv \{(0, 0)\} \cup \{(1, 0)\} \). From (2.6), the absolute value of the last term is bounded by \(\sum_{n=1}^{m} k_1k_6\lambda_n^{-1}|\phi_n(x)| \), and hence converges absolutely and uniformly on \(\overline{Q}_\Gamma \). Therefore, for each fixed \(t \geq 0 \), \(\partial S_{xm}(x, t)/\partial x \) converges uniformly on every given closed subinterval of \((0, 1)\). Thus from (2.7),

\[
\begin{align*}
 u_{xx}(x, t) &= \sum_{n=1}^{\infty} \int_{0}^{t} I_n(\Psi)(\tau)E_n(t-\tau)\,d\tau\phi_n''(x) \\
 &= -\frac{b}{x} u_x(x, t) - \Psi(x, t) + \sum_{n=1}^{\infty} I_n(\Psi)(0)E_n(t)\phi_n(x) \\
 &\quad + \sum_{n=1}^{\infty} \int_{0}^{t} I_n(\Psi_{\tau})(\tau)E_n(t-\tau)\,d\tau\phi_n(x).
\end{align*}
\]

(2.8)

Since each term on the right-hand side of (2.8) is continuous in \(Q_\Gamma^- \), it follows that \(u_{xx}(x, t) \) is in \(C(Q_\Gamma^-) \).

To show that \(u(x, t) \) is differentiable with respect to \(t \), it follows from the Leibnitz rule on differentiation that

\[
\frac{\partial S_m(x, t)}{\partial t} = \sum_{n=1}^{m} I_n(\Psi)(t)\phi_n(x) - \sum_{n=1}^{m} \lambda_n \int_{0}^{t} I_n(\Psi)(\tau)E_n(t-\tau)\,d\tau\phi_n(x).
\]
By using integration by parts on $\int_0^t \Psi(\xi, \tau) E_n(t - \tau) d\tau$ of the last term, we have

$$\frac{\partial S_m(x, t)}{\partial t} = \sum_{n=1}^m I_n(\Psi)(0) E_n(t) \phi_n(x) + \sum_{n=1}^m \int_0^t I_n(\Psi(\tau))(t) E_n(t - \tau) d\tau \phi_n(x),$$

which are equal to the last two terms on the right-hand side of (2.7). Thus, $\frac{\partial S_m(x, t)}{\partial t}$ converges uniformly on every given closed subset of $Q_\Gamma \setminus P_2$. Hence,

$$u_t(x, t) = \sum_{n=1}^\infty I_n(\Psi)(0) E_n(t) \phi_n(x) + \sum_{n=1}^\infty \int_0^t I_n(\Psi(\tau))(t) E_n(t - \tau) d\tau \phi_n(x); \quad (2.9)$$

that is,

$$u_t(x, t) = \int_0^t G(x, t; \xi, 0) \Psi(\xi, 0) d\xi + \int_0^t \int_0^t G(x, t; \xi, \tau) \Psi(\xi, \tau) d\xi d\tau. \quad (2.10)$$

Also, we have $u_t(x, t)$ is in $C(Q_\Gamma \setminus P_2)$.

From (2.8) and (2.9), we have

$$Lu(x, t) = -\Psi(x, t) \quad \text{in} \quad Q_\Gamma^-.$$
Proof. (a) By Lemma 1(b),
\[\sum_{n=1}^{\infty} |\xi^b \phi_n(\xi) \phi_n(x) E_n(t - \tau)| \leq \xi^b k_2^2 \sum_{n=1}^{\infty} \lambda_n^{1/2} E_n(t - \tau). \]
Since \(O(\lambda_n) = O(n^2) \) for large \(n \), \(\sum_{n=1}^{\infty} \lambda_n^{1/2} E_n(t - \tau) \) converges uniformly for \(t - \tau \geq \varepsilon \) where \(\varepsilon \) is any positive number. Hence, \(G(x, t; \xi, \tau) \) is continuous for \(t - \tau \geq \varepsilon \). Since \(\varepsilon \) is arbitrarily chosen, our assertion follows.

(b) From Lemma 6 of Chan and Wong [10], the \(m \)th derivative of \(\phi_n(x) \) satisfies the inequality,
\[|\phi_n^{(m)}(x)| \leq K_m \lambda_n^{m/2} x^{\nu-m} |J_{\nu+1}(\lambda_n^{1/2})|, \quad n = 1, 2, 3, \ldots, \]
where \(K_m \) is a constant depending on \(m \). From Lemma 1(a),
\[\sum_{n=1}^{\infty} |\xi^b \phi_n(\xi) \phi_n^{(m)}(x) E_n(t - \tau)| \leq k_1 K_m \xi^{b/2} x^{\nu-m} \sum_{n=1}^{\infty} \lambda_n^{m/2} E_n(t - \tau) / |J_{\nu+1}(\lambda_n^{1/2})|. \]
It follows from (2.10) of Chan and Wong [9], and \(O(\lambda_n) = O(n^2) \) for large \(n \) that
\[\sum_{n=1}^{\infty} \lambda_n^{m/2} E_n(t - \tau) / |J_{\nu+1}(\lambda_n^{1/2})| \]
converges uniformly for \(t - \tau \geq \varepsilon \), and hence \(\partial^m G / \partial x^m \) is continuous for \(t - \tau > 0 \) since \(\varepsilon \) is arbitrarily chosen. Now,
\[\frac{\partial^m}{\partial t^m} E_n(t - \tau) = (-1)^m \lambda_n^m E_n(t - \tau). \]
An argument similar to the above shows that \(\partial^m G / \partial t^m \) is continuous for \(t - \tau > 0 \).
Since \(m \) is any positive integer, our assertion follows.

(c) Suppose \(G(x, t; \xi, \tau) < 0 \) at some point \((x_1, t_1; \xi_1, \tau_1) \) in \(D_1 \). Since \(G(x, t; \xi, \tau) \) is continuous in \(D_1 \), we may assume \(\tau_1 > 0 \). Hence, there exists a positive number \(\varepsilon \) such that \(G(x, t; \xi, \tau) < 0 \) in the set
\[W_0 = (x_1 - \varepsilon, x_1 + \varepsilon) \times (t_1 - \varepsilon, t_1 + \varepsilon) \times (\xi_1 - \varepsilon, \xi_1 + \varepsilon) \times (\tau_1 - \varepsilon, \tau_1 + \varepsilon) \]
contained in \(D_1 \). Let
\[W_1 = (\xi_1 - \varepsilon, \xi_1 + \varepsilon) \times (\tau_1 - \varepsilon, \tau_1 + \varepsilon), \]
\[W_2 = \left(\frac{\xi_1 - \varepsilon}{2}, \frac{\xi_1 + \varepsilon}{2} \right) \times \left(\frac{\tau_1 - \varepsilon}{2}, \frac{\tau_1 + \varepsilon}{2} \right). \]
There exists (cf. Dunford and Schwartz [11, pp. 1640–1641]) a function \(h_3(x, t) \) in \(C^\infty(\mathbb{R}^2) \) such that \(h_3 \equiv 1 \) on \(W_2 \), \(h_3 \equiv 0 \) outside \(W_1 \), and \(0 \leq h_3 \leq 1 \) in \(W_1 \setminus W_2 \). It is clear that \(h_3(x, t) \) satisfies the conditions for \(\Psi \) in Theorem 2. Hence, the solution of the problem,
\[Lw(x, t) = -h_3(x, t) \quad \text{in} \quad Q_\alpha, \quad t_1 < \alpha, \]
with \(w \) satisfying zero initial and boundary conditions, is given by
\[w(x, t) = \int_{t_1 - \varepsilon}^{\tau_1 + \varepsilon} \int_{\xi_1 - \varepsilon}^{\xi_1 + \varepsilon} G(x, t; \xi, \tau) h_3(\xi, \tau) \, d\xi \, d\tau. \]
Since \(G(x, t; \xi, \tau) < 0 \) in \(W_0 \), \(h_3(\xi, \tau) \geq 0 \) in \(W_1 \), and \(h_3 = 1 \) on \(\overline{W}_2 \), it follows that
\[
w(x, t) < 0 \quad \text{for } (x, t) \in (x_1 - \epsilon, x_1 + \epsilon) \times (t_1 - \epsilon, t_1 + \epsilon).
\]
On the other hand, \(h_3(x, t) \geq 0 \) in \(Q_\alpha \) implies \(w(x, t) \geq 0 \) by the weak maximum principle. We have a contradiction. Therefore, \(G(x, t; \xi, \tau) \geq 0 \) in \(D_1 \).

Suppose \(G(x, t; \xi, \tau) = 0 \) at some point \((x_2, t_2; \xi_2, \tau_2)\) in \(D_1 \). Then by the strong maximum principle,
\[
G(x, t; \xi_2, \tau_2) = 0 \quad \text{in } D_1 \cap \{(x, t; \xi_2, \tau_2): 0 < x < 1, \ t < t_2\}.
\]
On the other hand,
\[
G(\xi_2, t_2; \xi_2, \tau_2) = \sum_{n=1}^{\infty} \xi_2^b \phi_n^2(\xi_2) E_n(t_2 - \tau_2),
\]
which is positive. This contradiction implies \(G > 0 \) in \(D_1 \).

We would like to establish some properties of the solution \(u(x, t) \). Let
\[
el = \frac{\partial^2}{\partial x^2} + \frac{b}{x} \frac{\partial}{\partial x}.
\]

Theorem 5. Under the hypotheses of Theorem 3, if \(I^2(g) \) exists, then the solution \(u(x, t) \) of the problem (1.1) and (1.2) has the following properties:

(a) \(u_x \) is in \(C(\overline{Q}_\Gamma \setminus P_1) \), \(u_{xx} \) is in \(C(Q_\Gamma^-) \), and \(u_t \) is in \(C(\overline{Q}_\Gamma \setminus P_2) \);

(b) \(u(x, t) \) is absolutely continuous on the interval \(0 \leq t \leq \Gamma \) for each \(x \) in \([0, 1]\); furthermore, \(I^2(u)(t) \leq k_7 \) and \(I^2(u_t)(t) \leq k_8 \) for \(t \) in \([0, \Gamma]\);

(c) \(I^2(\ell u)(t) < \infty \) for \(t \) in \([0, \Gamma]\).

Proof. (a) This property follows from the hypotheses on \(\Psi(x, t) \) and \(g(x) \), and a proof as in that of Theorem 2 (with \(\Psi \) replaced by \(\Psi + Lg \)).

(b) It follows from Theorem 5(a) and \(u(0, t) = 0 = u(1, t) \) that \(u(x, t) \) is absolutely continuous on the interval \(0 \leq t \leq \Gamma \) for each \(x \) in \([0, 1]\).

By the Schwarz inequality,
\[
I^2(u)(t) = I^2(u - g)(t) + I^2(g) + 2 \int_0^1 x^b \left[u(x, t) - g(x)\right]g(x) \, dx \tag{2.12}
\]
\[
\leq I^2(u - g)(t) + I^2(g) + 2 [I^2(u - g)(t)]^{1/2} [I^2(g)]^{1/2}.
\]
From (2.11),
\[
u(x, t) = \sum_{n=1}^{\infty} \int_0^t I_n(\Psi + Lg)(\tau) E_n(t - \tau) \, d\tau \phi_n(x) + g(x).
\]
From the proof of Theorem 2 (on \(u \) with \(\Psi \) replaced by \(\Psi + Lg \)), the above series (on the right-hand side) representing \(u(x, t) - g(x) \) is absolutely and uniformly convergent on \(\overline{Q}_\Gamma \). By Lemma 1(a) and (c), this is also true for the series representing \(x^{b/2}[u(x, t) - g(x)] \). Hence, the series representing \(x^b[u(x, t) - g(x)]^2 \) is also absolutely and uniformly convergent on \(\overline{Q}_\Gamma \) (cf. Knopp [13, pp. 146 and 337]). Since
\{\phi_n(x)\} is an orthonormal set with weight function \(x^b\), it follows that
\[
I^2(u - g)(t) = \sum_{n=1}^{\infty} \left[\int_0^t I_n(\Psi + Lg)(\tau)E_n(t - \tau) d\tau \right]^2.
\]

By Lemma 1(c),
\[
I^2(u - g)(t) \leq \left[\sup_{0 \leq \tau \leq \Gamma} I^2(\Psi + Lg)(\tau) \right] \sum_{n=1}^{\infty} \left[\int_0^t E_n(t - \tau) d\tau \right]^2
\]
\[
\leq \left[\sup_{0 \leq \tau \leq \Gamma} I^2(\Psi + Lg)(\tau) \right] \sum_{n=1}^{\infty} \lambda_n^{-2}.
\]

From (2.12),
\[
I^2(u)(t) \leq \left[\sup_{0 \leq \tau \leq \Gamma} I^2(\Psi + Lg)(\tau) \right] \sum_{n=1}^{\infty} \lambda_n^{-2} + I^2(g)
\]
\[
+ 2 \left[\left(\sum_{n=1}^{\infty} \lambda_n^{-2} \right)^{1/2} \right]^2 \left[I^2(g) \right]^{1/2}.
\]

It follows from the hypotheses on \(\Psi\) and \(Lg\) that
\[
\sup_{0 \leq \tau \leq \Gamma} I^2(\Psi + Lg)(\tau) < \infty.
\]

Because \(O(\lambda_n) = O(n^2)\) for large \(n\), we have from (2.13) that \(I^2(u)(t) \leq k_7\) for \(t\) in \([0, \Gamma]\).

By (2.9) (with \(\Psi(x, t)\) replaced by \(\Psi(x, t) + Lg(x)\)),
\[
u_t(x, t) = \sum_{n=1}^{\infty} I_n(\Psi + Lg)(0)E_n(t)\phi_n(x) + \sum_{n=1}^{\infty} \int_0^t I_n(\Psi_\tau)(\tau)E_n(t - \tau) d\tau \phi_n(x).
\]

Let \(t_0\) in \((0, \Gamma]\) be fixed. By Lemma 1(a) and (c), the right-hand side of (2.14) multiplied by \(x^{b/2}\) converges absolutely and uniformly on \([0, 1]\) to \(x^{b/2}u_t(x, t_0)\).

Hence, the series representing \(x^b u_t^2(x, t_0)\) is absolutely and uniformly convergent on \([0, 1]\). Integrating this series representing \(x^b u_t^2(x, t_0)\) with respect to \(x\) and using the orthonormality of the sequence \{\phi_n(x)\} with weight function \(x^b\), we have
\[
I^2(u_t)(t_0) = \sum_{n=1}^{\infty} \left[I_n(\Psi + Lg)(0)E_n(t_0) \right]^2
\]
\[
+ \sum_{n=1}^{\infty} \left[\int_0^{t_0} I_n(\Psi_\tau)(\tau)E_n(t_0 - \tau) d\tau \right]^2
\]
\[
+ 2 \sum_{n=1}^{\infty} \left[\int_0^{t_0} I_n(\Psi_\tau)(\tau)E_n(t_0 - \tau) d\tau \right] \left[I_n(\Psi + Lg)(0)E_n(t_0) \right].
\]

From Lemma 1(c) and \(E_n(t_0) \leq 1\) for all positive integers \(n\), the first term on the right-hand side is bounded by \(I^2(\Psi + Lg)(0)\). From Lemma 1(a) and Condition (B),
the second term is bounded by
\[k_1 k_6 \sum_{n=1}^{\infty} \left[\int_0^{t_0} E_n(t_0 - \tau) d\tau \right]^2 \leq k_1 k_6 \sum_{n=1}^{\infty} \lambda_n^{-2}. \]

By using the Schwarz inequality on the third term, we obtain
\[I^2(u_t)(t_0) \leq I^2(\Psi + Lg)(0) + k_1 k_6 \sum_{n=1}^{\infty} \lambda_n^{-2} + 2[I^2(\Psi + Lg)(0)]^{1/2} \left[k_1 k_6 \sum_{n=1}^{\infty} \lambda_n^{-2} \right]^{1/2}. \]

We note that the right-hand side is independent of \(t_0 \). Hence, \(I^2(u_t)(t) \) is bounded on \((0, \Gamma]\). As for \(I^2(u_t)(0) \), it follows from Lemma 1(e) that for \(x \) in \((0, 1)\),
\[u_t(x, 0) = \sum_{n=1}^{\infty} I_n(\Psi + Lg)(0) \phi_n(x) = \Psi(x, 0) + Lg(x), \]
from which,
\[I^2(u_t)(0) = I^2(\Psi + Lg)(0). \]

Thus, \(I^2(u_t)(t) \leq k_8 \) on \([0, \Gamma]\) for some constant \(k_8 \).

(c) Since \(\ell u = u_t - \Psi \), it follows from the Schwarz inequality that
\[I^2(\ell u)(t) = I^2(u_t - \Psi)(t) = I^2(u_t)(t) + I^2(\Psi)(t) - 2 \int_0^1 x^b u_t(x, t) \Psi(x, t) dx \leq I^2(u_t)(t) + I^2(\Psi)(t) + 2[I^2(u_t)(t)I^2(\Psi)(t)]^{1/2}. \]

Then from Theorem 5(b) and Condition (A), \(I^2(\ell u)(t) < \infty \) on \([0, \Gamma]\).

3. Nonhomogeneous boundary conditions. In this section, we assume \(|b| < 1 \); we also assume as in Sec. 2 that \(g(x) \), \(Lg(x) \), and \(\Psi(x, t) \) satisfy the hypotheses of Theorem 3, except that \(g(0) = 0 = g(1) \). Let us consider the linear problem, (1.1), subject to
\[u(x, 0) = g(x) \text{ for } 0 \leq x \leq 1, \]
\[u(0, t) = r_1(t) \text{ and } u(1, t) = r_2(t) \text{ for } 0 < t \leq \Gamma < \infty, \]
where \(r_1(t) \) and \(r_2(t) \) are in \(C^2[0, \infty) \) such that \(r_1(0) = g(0) \) and \(r_2(0) = g(1) \).

Theorem 6. The problem (1.1) and (3.1) has a unique solution.

Proof. Let us consider the problem,
\[Lw(x, t) = -[\Psi(x, t) + Ls(x, t)] \text{ in } Q_\Gamma, \]
\[w(x, 0) = g(x) - s(x, 0) \text{ for } 0 \leq x \leq 1, \quad w(0, t) = 0 = w(1, t) \text{ for } 0 < t \leq \Gamma, \]
where
\[s(x, t) = (1 - x^{2\nu})r_1(t) + x^{2\nu} r_2(t). \]
It follows from the assumptions on \(\Psi(x, t) \), \(g(x) \), \(r_1(t) \), and \(r_2(t) \) that \(\Psi(x, t) + Ls(x, t) \) and \(g(x) - s(x, 0) \) satisfy the conditions for \(\Psi(x, t) \) and \(g(x) \), respectively, in Theorem 3. Hence, \(w(x, t) \) exists and is unique. It follows that \(u \) given by \(u = w + s \) is the unique solution of the problem (1.1) and (3.1).

We note that the solution \(u \) in Theorem 6 has the properties stated in Theorem 5.

REFERENCES