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Abstract. A variation of the intrinsic multiple-scale harmonic balance method is in-

troduced by combining the intrinsic multiple-scale harmonic balance method with the

ideas introduced to modify the method of multiple-scales. The combined method has

the advantage of having the desirable characteristics of both techniques. This is demon-

strated by solving the Duffing equation.

Introduction. The classical harmonic balance technique is a relatively simple method

for investigating nonlinear oscillations. However, it has serious shortcomings and there-

fore is justifiably discarded by some authors [1]. The shortcoming of the classical har-

monic balance method was later eliminated by Atadan and Huseyin to give consistent

results [2, 3]. More recently, a combination of the intrinsic harmonic balancing technique

and the multiple-time-scales (derivative expansion) method was introduced by Huseyin

and Lin [4].

In a separate development, a modification of the derivative expansion method was

presented by Veronis [5]. This was done by replacing the natural frequency of the given

equation by a series representation of frequency.

In this paper, a combination of the intrinsic multiple-scale harmonic balance method

introduced by Huseyin and Lin [4], and the modification of the derivative expansion

method given by Veronis [5] are presented. The two methods [4, 5] are combined in such

a way that the proposed technique has the desirable characteristics of both methods.

Firstly, it is conceptually simple and does not involve secular terms as in the method

presented by Veronis [5] (see, e.g., Eq. (14) in [5]). The absence of secular terms fol-

lows from the intrinsic method of harmonic balancing [2, 3] which is the foundation

of the intrinsic multiple-scale harmonic balancing technique [4] used here. Secondly,

the frequency-parameter relationship obtained is in the form introduced by Veronis [5].

However, this is achieved by introducing a time-warping transformation rather than ex-

panding the natural frequency as in Veronis [5]. For comparison reasons the method is

introduced by solving the Duffing equation as in Veronis [5].
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Derivative expansion method and its modification. First, consider the follow-

ing linear harmonic oscillator with a small damping:

i" + 2£5" + "»" = 0- (l)

The (closed-form) solution of the linear problem (1) can be expressed as

u = \ae-etei^-^i+f) + c.c. (2)

where c.c. indicates complex conjugate. Since the developments in this paper involve

the derivative expansion method, we obtain the solution of the same problem via the

derivative expansion method:

U = \ ae-^e^o(l-e2/2^0)t + C(. (3)

where the number of scales is limited to To, T\. and T2 as in references [5, 6].

In the case of the modified derivative expansion method introduced by Veronis [5],

however, the solution given by (2) is obtained when the time-scales are limited to 7q, rI\,

and T2 as was done to derive (3). Veronis achieves this by replacing u0 in Eq. (1) with

a power series of the form

UJq = U!2 + £f2j + £^5^2 + • • • • (4)

Consider now the Duffing equation

d2
u + WnU = eauA = 0 (5)

dtz

where the odd nonlinearities represent a soft or hard spring depending on the sign of the

coefficient of u3. Solution of the Duffing equation using the derivative expansion method

can be obtained as [6]:

u =\ael^ujt+x't + eaa3 9 21
1 — eaa

32wg
ei3(cjt+x)

2 ' 64

+eW2ok!,'^'+x, + ̂  + - <6>

where the frequency is

u = LOo + eaa2 e2a2a4 lo 3 + • ■ ■ . (7)
8a-»o 256wq

Following Veronis [5], however, the frequency is obtained as

1

uo

where the expression (4) has been substituted into the Duffing equation given by (5).

UJ — UJq i £Oid — I 1 + SdCL ———2 J ~t~ ' * ■ (8)
4 V 32icVi
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A variation of the intrinsic multiple-scale harmonic balance method. In

this section we will introduce a variation of the intrinsic multiple-scale harmonic bal-

ance method presented by Huseyin and Lin [4]. To start the development we seek an

approximate solution to the Duffing equation given by (5) as

which, warping the time via

becomes

u — u(t;s), (9)

t — uj(e)t, (10)

u = it(r; e). (11)

Following (10) and (11), the Duffing equation can be rewritten as

w2(e)A 2u(t-£) + Wqu{t\£) + eau3 = 0 (12)

where A is the derivative operator indicating differentiation with respect to r. Note

that in (12) u0 is not replaced by to{e) as was done by Veronis [5], but the frequency of

solution is brought into the equation explicitly via the transformation (10).

Following the derivative expansion method, the scaled times are written as

Tn = —£nt, 71 = 0,1,2,... (13)
n!

where the coefficient of en is chosen as (1/n!) for reasons that will become clear shortly.

Introducing the time scaling into Eq. (12) and letting fi(e) = uj2(s) results in

fl(£)A2(£)u(T0,Ti,T2,... ;e) +u)$u(to,ti,t2,... ; e) + £Q«3(r0, n, r2,... ;e) =0. (14)

The Taylor expansions of the frequency fi(e') and the derivative operator A(e) are ex-

pressed as
N 1

H(£)=Wo2 + ^£"-fin (15)
71=1

and
\r

A(£) = E£"sa" (16)
71—0

where

An = (17)
OTn

Following (16) one has

A2(e) = Ag + £2A(jAi + £2 [Ao A'2 + A2] + • • • . (18)

It should be pointed out here that, rather than substituting the Taylor series expansion

of the derivative operator into (14) as was done in [4], the perturbation equations are
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generated by differentiating (14) with respect to e. Note that differentiation is the reason

why (1/n!) is introduced in the time scales given by (13).

Following Huseyin [7-9], here the perturbation equations are generated by differen-

tiation. The significance of generating perturbation equations by differentiation is that

the number of perturbation equations need not be decided in advance. The standard

perturbation techniques, however, do not have this advantage because they involve the

substitution of a Taylor series expansion into the given differential equation.

Following this, the solution of Eq. (14) is assumed as

U u(tq , T\ , 7~2, £")

+ M QgN

= £ a(m)(T], t2, ; e)eimT° % '

m= — M

where, in order to compare the results obtained in this paper to those of Veronis [5] and

Nayfeh [6], the number of time scales is limited to tq,ti, and r2 (i.e., n = 0,1,2). The

coefficient aim\ in series (19) is complex and given in the exponential form

0(m)(Ti,r2;e) = d(rn){Tl,T2\e)elm^Tl'T2''e) (20)

with d(m) 6 and </>(m) G £H.

Evaluating (14) at e = 0 results in the zero-order perturbation equation

(Aq + l)uo = 0. (21)

Differentiating (14) with respect to e as many times as required and evaluating at e = 0

yields the hierarchy of remaining perturbation equations, namely,

(Aq + l)ui = — [a;0 "il| A(j + 2Ai]AqWo — ui0 2auy, (22)

(Aq + l)u2 = ~ K ~02Ao + 2A2]A0uq — 2[2ujq 2f2j Aq 4- AijAjUo

— 2[cJq Ao ~t~ 2Ai]Aq«i — 3c^q (23)

From the perturbation Eq. (21) one obtains

(1 - rn2)a0,(m)(Ti,T2) = 0, (24)

which yields

«o,(m)(n,T2) = o for to ^±1. (25)

Following (25) and a0j(_i)(ri,r2) = a^ (+1)(Ti,T2), the solution of (21) can be written as

uo(to,ti,t2) = a0,(+i)(ri,r2)etTo + c.c., (26)

where the superscript "*" indicates the complex conjugate.
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Substituting (26) into the r.h.s. of the first-order perturbation equation given by (22)

results in
+ M

X] (1 - m2)ah(m){Ti^2)elrnT0 = MeiT° + Nel3r° + c.c. (27)

m= — M

where

M — u/0 2^iao,(+i) ~ ^2a0j(+i)Tl — 3aw0 2ao,(+i)ao,(+i)' (28)

— 2 3
^0 a0,(+l)>N — cxlo0 a0c i (29)

and

ao,(+i) - ao,(+i)(ri>r2)- (30)

Coefficients of etmT (to ^ ±1, ±3) and elT, el3r can be obtained from (27) as

ai,(m) = 0 for to ^ ±1, ±3, (31)

2^iao,(+i)(n,T2) - j2a0i(+1)Tl(r1,r2) - 3a^~2ao(+1)(Ti,T2)a^(+1)(Ti,T2) = 0, (32)

and

8a1)(3)(ri,r2) = a^2a^(+1)(r1,t2), (33)

respectively.

Substituting

a0,(+i) = ao,(+i) (Ti i r2) = 5ao(Ti,r2)e^o(Tl''r2) (34)

into (32), and separating real and imaginary parts leads to

^-«o(ti,t2) = 0. (35)
OTi

Assuming that ao(ri,r2) ^ 0,

^-</>o(n,T2) = + |QW(72ao(Ti,r2). (36)

The steady-state solutions of (35) and (36) result in

4

following which (33) and (34) take the form

a0 = a0(r2), (37)

<Po = <Mt2), (38)

fit = | aa^(r2), (39)

ao,(+i) = ao,(+i)(r2) = \ao(T2yMT2\ (40)

ai,(+3) = ai,(+3)(T2) = a^Ci;-2a;i)(T2)ej3^(T2), (41)

where a0,(_m)(r2) = a*(+m)(r2) (to = 1,3).
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Prom the results of the foregoing analysis the second-order perturbation equation (23)

becomes

+ M

(1 - m2)a2.(m)(n,T2)eimT0 = PeiT0 + Qei3T° + Rel'iT° + c.c. (42)

i=-M

where
P — - 6oa0 , i.(_3) + 2a0i(_1)ao!(+1)aij(+1) + «o,(+i)ai,(-3)l

+ 2f2ia1(+1) + f22aoi(+i) — i2a;0ao.(+i)
(43)

r2 ■

The remaining coefficients Q and R are not important for the order of approximation

considered.

For (to = 1) Eq. (42) yields

P = 0. (44)

Substituting (40), (41), (44), and ai,(+i) — 0 into (43), and separating the real and

imaginary parts result in

~a0 = 0, (45)
ot2

9 , -3— 00 —
OTo

3 -2 2 4 !/->
 uj(, a an ih
128 0 0 2

(46)

The steady-state solutions of (45) and (46) lead to

3
ao = constant, = ^UJo2a2at>- (47)

Substituting the derivatives (39) and (47) into (15) and noting that fi(e) = co2(e) lead to

w(e) = y'wg + £^aa?0 + 2ft2ao + ''(48)

which is the same as the frequency amplitude relationship obtained by Veronis (see Eq.

(8)) [5],
For comparison reasons, one can expand (48) into a binomial series and show that it

is in full agreement with the relationship given by Nayfeh [6] (see Eq. (7)).
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