On the computation of zeroes of $J_n(z)-iJ_{n+1}(z)=0$
Author:
D. A. MacDonald
Journal:
Quart. Appl. Math. 55 (1997), 623-633
MSC:
Primary 33C10; Secondary 65H10
DOI:
https://doi.org/10.1090/qam/1486539
MathSciNet review:
MR1486539
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: The roots of the equation \[ J_n^2(z) + J_{n + 1}^2(z) = 0\], in which $n$ is a positive integer or zero, are of interest to the specialist in wave reflection from multi-sloped beaches [1]. This note shows how to obtain accurate roots of the equation when $n$ is not large.
- Srinivas Tadepalli and Costas Emmanuel Synolakis, Roots of $J_\gamma (z)\pm iJ_{\gamma +1}(z)=0$ and the evaluation of integrals with cylindrical function kernels, Quart. Appl. Math. 52 (1994), no. 1, 103–112. MR 1262322, DOI https://doi.org/10.1090/qam/1262322
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- D. A. Macdonald, The roots of $J_0(z)-iJ_1(z)=0$, Quart. Appl. Math. 47 (1989), no. 2, 375–378. MR 998110, DOI https://doi.org/10.1090/S0033-569X-1989-0998110-X
M. Renardy, Problems and Solutions, Ed. M. Klamkin, Siam Review, vol. 31, 1989, pp. 126–127
S. Tadepalli and C. E. Synolakis, Roots of ${J_\gamma }\left ( z \right ) \pm i{J_{\gamma + 1}}\left ( z \right ) = 0$ and the evaluation of integrals with cylindrical function kernals, Quart. Appl. Math. LII, 103–111 (1994)
G. N. Watson, Theory of Bessel Functions, Cambridge University Press, 1944
D. A. MacDonald, The roots of ${J_0}\left ( z \right ) - i{J_1}\left ( z \right )$, Quart. Appl. Math. XLVII, 375–378 (1989)
M. Renardy, Problems and Solutions, Ed. M. Klamkin, Siam Review, vol. 31, 1989, pp. 126–127
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC:
33C10,
65H10
Retrieve articles in all journals
with MSC:
33C10,
65H10
Additional Information
Article copyright:
© Copyright 1997
American Mathematical Society