Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Variational problems on flows of diffeomorphisms for image matching


Authors: Paul Dupuis, Ulf Grenander and Michael I. Miller
Journal: Quart. Appl. Math. 56 (1998), 587-600
MSC: Primary 49J20; Secondary 58E25
DOI: https://doi.org/10.1090/qam/1632326
MathSciNet review: MR1632326
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper studies a variational formulation of the image matching problem. We consider a scenario in which a canonical representative image $T$ is to be carried via a smooth change of variable into an image that is intended to provide a good fit to the observed data. The images are all defined on an open bounded set $G \subset {R^3}$. The changes of variable are determined as solutions of the nonlinear Eulerian transport equation \[ \frac {{d\eta \left ( s; x \right )}}{{ds}} = v\left ( \eta \left ( s; x \right ),s \right ), \qquad \eta \left ( \tau ; x \right ) = x, \qquad \left ( 0.1 \right )\] with the location $\eta \left ( 0; x \right )$ in the canonical image carried to the location $x$ in the deformed image. The variational problem then takes the form \[ \arg \min \limits _v {\kern -0.1pt} \left [ {{{\left \| v \right \|}^2} + \int _G {{{\left | {T o \eta \left ( {0; x} \right ) - D\left ( x \right )} \right |}^2}dx} } \right ], \qquad \left ( {0.2} \right )\] where $\left \| v \right \|$ is an appropriate norm on the velocity field $v( \cdot , \cdot )$, and the second term attempts to enforce fidelity to the data.


References [Enhancements On Off] (What's this?)

    Y. Amit, U. Grenander, and M. Piccioni, Structural image restoration through deformable templates. J. American Statistical Association 86 (414), 376–387 (June 1991)
  • V. I. Arnol′d, Ordinary differential equations, The M.I.T. Press, Cambridge, Mass.-London, 1973. Translated from the Russian and edited by Richard A. Silverman. MR 0361233
  • R. Bajcsy and S. Kovacic, Multiresolution Elastic Matching, Computer Vision, Graphics, and Image Processing 46, pp. 1–21, 1989
  • Gary Edward Christensen, Deformable shape models for anatomy, ProQuest LLC, Ann Arbor, MI, 1994. Thesis (D.Sc.)–Washington University in St. Louis. MR 2691771
  • G. E. Christensen, R. D. Rabbitt, and M. I. Miller, Deformable templates using large deformation kinematics, IEEE Transactions on Image Processing, 5(10), 1996, pp. 1435–1447. G. E. Christensen, R. D. Rabbitt, and M. I. Miller, A deformable neuroanatomy textbook based on viscous fluid mechanics, In Jerry Prince and Thordur Runolfsson, editors, Proceedings of the Twenty-Seventh Annual Conference on Information Sciences and Systems, pp. 211–216, Baltimore, Maryland, March 24-26, 1993. Department of Electrical Engineering, The Johns Hopkins University. G. E. Christensen, R. D. Rabbitt, and M. I. Miller, 3D brain mapping using a deformable neuroanatomy, Physics in Medicine and Biology 39, 609–618 (1994) R. Dann, J. Hoford, S. Kovacic, M. Reivich, and R. Bajcsy, Evaluation of Elastic Matching Systems for Anatomic (CT, MR) and Functional (PET) Cerebral Images, Journal of Computer Assisted Tomography 13(4), 603–611 (July/August 1989)
  • O. Zeitouni and A. Dembo, A maximum a posteriori estimator for trajectories of diffusion processes, Stochastics 20 (1987), no. 3, 221–246. MR 878313, DOI https://doi.org/10.1080/17442508708833444
  • O. Zeitouni and A. Dembo, An existence theorem and some properties of maximum a posteriori estimators of trajectories of diffusions, Stochastics 23 (1988), no. 2, 197–218. MR 928355, DOI https://doi.org/10.1080/17442508808833490
  • Ulf Grenander and Michael I. Miller, Representations of knowledge in complex systems, J. Roy. Statist. Soc. Ser. B 56 (1994), no. 4, 549–603. With discussion and a reply by the authors. MR 1293234
  • Omar Bakri Hijab, MINIMUM ENERGY ESTIMATION, ProQuest LLC, Ann Arbor, MI, 1980. Thesis (Ph.D.)–University of California, Berkeley. MR 2631198
  • S. C. Hunter, Mechanics of continuous media, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons Inc.], New York-London-Sydney, 1976. Mathematics & its Applications. MR 0445984
  • Hiroshi Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1990. MR 1070361
  • M. I. Miller, G. E. Christensen, Y. Amit, and U. Grenander, Mathematical textbook of deformable neuroanatomies, Proceedings of the National Academy of Science 90(24) (December 1993)
  • R. E. Mortensen, Maximum-likelihood recursive nonlinear filtering, J. Optim. Theory Appl. 2 (1968), no. 6, 386–394. MR 1551293, DOI https://doi.org/10.1007/BF00925744
  • S. Timoshenko, Theory of Elasticity, McGraw-Hill, New York, 1934 A. Trouvé, Habilitation à diringer les recherches, Technical Report, University Orsay, 1996
  • William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 49J20, 58E25

Retrieve articles in all journals with MSC: 49J20, 58E25


Additional Information

Article copyright: © Copyright 1998 American Mathematical Society