The Riemann problem for an elastic string with a linear Hooke’s law
Authors:
Harald Hanche-Olsen, Helge Holden and Nils Henrik Risebro
Journal:
Quart. Appl. Math. 60 (2002), 695-705
MSC:
Primary 35L65; Secondary 35L67, 74H45, 74K05
DOI:
https://doi.org/10.1090/qam/1939007
MathSciNet review:
MR1939007
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We solve the Riemann problem for vibrations of an infinite, planar, perfectly elastic string with a linear relation between the string tension and the local stretching, i.e., with a linear Hooke’s law. The motion is governed by a $4 \times 4$ system of conservation laws that is linearly degenerate in all wave families. Conservation of energy leads to ${L^{2}}$ estimates that are used in the analysis.
- Stuart S. Antman, The equations for large vibrations of strings, Amer. Math. Monthly 87 (1980), no. 5, 359–370. MR 567719, DOI https://doi.org/10.2307/2321203
- Stuart S. Antman, Nonlinear problems of elasticity, Applied Mathematical Sciences, vol. 107, Springer-Verlag, New York, 1995. MR 1323857
- C. Carasso, M. Rascle, and D. Serre, Étude d’un modèle hyperbolique en dynamique des câbles, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 4, 573–599 (French, with English summary). MR 826225, DOI https://doi.org/10.1051/m2an/1985190405731
- G. F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math. 3 (1945), 157–165. MR 12351, DOI https://doi.org/10.1090/S0033-569X-1945-12351-4
- J. W. Craggs, Wave motion in plastic-elastic strings, J. Mech. Phys. Solids 2 (1954), 286–295. MR 62629, DOI https://doi.org/10.1016/0022-5096%2854%2990019-8
- N. Cristescu, Spatial motion of elastic-plastic strings, J. Mech. Phys. Solids 9 (1961), 165–178. MR 128172, DOI https://doi.org/10.1016/0022-5096%2861%2990015-1
N. Cristescu. Dynamic Plasticity. North-Holland, Amsterdam, 1967.
- Barbara L. Keyfitz and Herbert C. Kranzer, A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal. 72 (1979/80), no. 3, 219–241. MR 549642, DOI https://doi.org/10.1007/BF00281590
- Ta-Tsien Li, D. Serre, and Hao Zhang, The generalized Riemann problem for the motion of elastic strings, SIAM J. Math. Anal. 23 (1992), no. 5, 1189–1203. MR 1177785, DOI https://doi.org/10.1137/0523067
D. Serre. Un modèle relaxé pour les câbles inextensibles. M2AN Math. Model. Numer. Anal., 25:465–481, 1991.
- Michael Shearer, Elementary wave solutions of the equations describing the motion of an elastic string, SIAM J. Math. Anal. 16 (1985), no. 3, 447–459. MR 783972, DOI https://doi.org/10.1137/0516032
- Michael Shearer, The Riemann problem for the planar motion of an elastic string, J. Differential Equations 61 (1986), no. 2, 149–163. MR 823399, DOI https://doi.org/10.1016/0022-0396%2886%2990116-6
- Blake Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc. 280 (1983), no. 2, 781–795. MR 716850, DOI https://doi.org/10.1090/S0002-9947-1983-0716850-2
H. F. Weinberger. A First Course in Partial Differential Equations. Xerox, Lexington, 1965.
R. Young. Wave interactions in nonlinear elastic strings. University of Massachusetts, 2000.
S. S. Antman. Equations for large vibrations of strings. Amer. Math. Monthly, 87:359–370, 1980.
S. S. Antman. Nonlinear Problems in Elasticity. Springer-Verlag, New York, 1995.
C. Carasso, M. Rascle, and D. Serre. Étude d’un modéle hyperbolique en dynamique des câbles. M2AN Math. Model. Numer. Anal., 19:573–599, 1985.
G. F. Carrier. On the non-linear vibration problem of the elastic string. Quart. J. Appl. Math., 3:157–165, 1945.
J. W. Craggs. Wave motion in plastic-elastic strings. J. Mech. Phys. Solids, 2:286–295, 1954.
N. Cristescu. Spatial motion of elastic-plastic strings. J. Mech. Phys. Solids, 9:165–178, 1961.
N. Cristescu. Dynamic Plasticity. North-Holland, Amsterdam, 1967.
B. L. Keyfitz and H. C. Kranzer. A system of non-strictly hyperbolic conservation laws arising in elasticity theory. Arch. Rat. Mech. Anal., 72:219–241, 1980.
Ta-Tsien Li, D. Serre, and Hao Zhang. The generalized Riemann problem for the motion of elastic strings. SIAM J. Math. Anal., 23:1189–1203, 1992.
D. Serre. Un modèle relaxé pour les câbles inextensibles. M2AN Math. Model. Numer. Anal., 25:465–481, 1991.
M. Shearer. Elementary wave solutions of the equations describing the motion of an elastic string. SIAM J. Math. Anal., 16:447–459, 1985.
M. Shearer. The Riemann problem for the planar motion of an elastic string. J. Diff. Eq., 61:149–163, 1986.
B. Temple. Systems of conservation laws with invariant submanifolds. Trans. Amer. Math. Soc., 280:781–795, 1983.
H. F. Weinberger. A First Course in Partial Differential Equations. Xerox, Lexington, 1965.
R. Young. Wave interactions in nonlinear elastic strings. University of Massachusetts, 2000.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC:
35L65,
35L67,
74H45,
74K05
Retrieve articles in all journals
with MSC:
35L65,
35L67,
74H45,
74K05
Additional Information
Article copyright:
© Copyright 2002
American Mathematical Society