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LINEAR WELLPOSEDNESS OF THE EVOLUTION EQUATION OF A
MIXING STRIP OF TWO FLUIDS WITH INITIALLY SHARP
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Abstract. An illposed sharp interface equation, describing the evolution of two well
separated fluids in a porous medium, is replaced by a linearly wellposed Cauchy problem
for the evolution of a mixing strip described in terms of the level curves of the volume
proportion of one fluid.

1. Introduction. Consider two incompressible fluids F# moving in a porous medium
and satisfying Darcy’s law kv = —Vp + pg, where v(t, 2) is the velocity field, p(t. 2:) the
pressure, p(t,z) the volumic mass = p* in F*, and k(t,r) = k* > 0 is an effective
dynamical viscosity of fluid F*. If they are initially separated by a horizontal interface
and the heavier fluid is above the other, it is an unstable equilibrium. Assuming a sharp
smooth interface for ¢t > 0 leads to an illposed evolution equation [1]. The simplest way
out of this unsatisfactory state of affairs is to assume a mixing strip of size o t with an
essentially vertical microstructure. In such a “coarsc grained™ description. the state of
the system is given by the volume proportion s(t.2) of. say, the heavy fluid, at time ¢
and space z. This model was studied by Otto [2], who proved the stability of the solution
corresponding to an initially flat interface [3]. Our aim in this paper is to show that the
evolution equation for s is linearly wellposed.

2. The smooth interface model. Let us assumec that cach of the two fluids F*
occupies the domain Q;ft and these two domains are separated by a smooth interface T'y:

d - .
RY'=QfuQuly (d=2.3).
To determine the motion of this system of two fluids. we write Darcy’s law for each fluid:
EEvE = —Up* 4+ pfg in QF
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together with the incompressibility condition divv* = 0, and the conditions at the
interface: vt .v = v~ -v and p™ = p~ on I';, where v denotes a unit normal vector
to I';. This of course amounts to writing, in the whole space R?, in the distribution
sense: kv = —Vp + pg and divv = 0, where v is defined as v* on Q;t and similarly
k(t,x) = k%, p(t,x) = p* for x € QF.

Let us now focus on the case d = 2; we shall suppose that I'; is the graph of some
smooth function y = wu(t.x), where from now on z € R denotes a coordinate in the
horizontal direction, y € R is a vertical coordinate increasing upward, and ; = {(z,y) :
y < u(t,z)}.

To obtain the evolution equation satisfied by wu(¢, ) we proceed as follows: The kine-
matic condition (vt —v7)-v =0 gives

u/V1+ui=v v

(we chose v pointing upward), where u¢, u, stand for u/dt, du/0x.
On ©Q; one has divv™ = 0 and curlv™ = 0, so that v- = V¢~. Let us denote
¢~ (t.x) as the boundary value ¢~ (¢, z, u(t, z)), so that

viov=v-Vo~ =F_(u)p, ]

where F_ (u) is an integral operator associated to u.

Thus we get u; = /1 + u2F_(u)[o;].

And now we have to express 7 in terms of u.

For this we exploit the dynamical relation curl(kv — pg) = 0, and after a few cumber-
some calculations [4, 5], we get the integro-differential equation:

"y = (%H+X) (% Jr(nf)_1 (—cuy), (1)

where ¢, a are constants:

p~ —pt k™ —k*

-kt YT e R

and H, X.Y are integral operators. H is the classical Hilbert transform

oy L fly) |
Hf(x)= — pv. /mdy,

and X and Y are integral operators associated to the kernels
u(y) — u(x)
y—x
1 u(y) —u(x) — (y — 2)u'(x)
21 (y—2)? + (u(y) — u(@)? "

c =

X(.r,y) = Y(I~y)*

Y(r.y) =

for u satisfying

//< ’T:j/(y)> da dy < oc:

the kernels X and Y are square integrable and thus define Hilbert-Schmidt operators on
L?(R). Moreover, one can show [4] that for all ¢ such that |¢| < 1, the operator % +CY
is invertible.
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Now one can easily linearize Eq. (1) about 0. We get
us = —cHu,, u(0,2) = up(z)

which, using Fourier transform

a(t, &) = /e‘gmxéu(t,x) dz,

gives
a(t, €) = e~ 2"l (¢).

We see that for ¢ > 0 (i.e., p~ > p*) the Cauchy problem is linearly wellposed, and
illposed for p~ < p*.

Going on this way one can prove that for ¢ > 0 the Cauchy problem for Eq. (1) is
in fact also nonlinearly wellposed in Hadamard’s sense!, for uj in the Sobolev space
H!(R) with small enough norm (see [5]). This kind of result indicates that Eq. (1) may
be considered as a relevant model for the behavior of two fluids initially unmixed if the
lighter fluid is above the heavier one, while in the opposite case (¢ < 0), the relevance of
(1) as a model of this behavior may, at least, be questioned.

Indeed, one can very well neglect this problem of physical relevance and solve the
Cauchy problem with appropriate analytic initial data ug(z), at least locally in time.
But it appears that this analytic solution is an unphysical one (in fact, nonentropic in a
precise sense) as we shall see now.

3. The two-mixed-phases model. The illposedness of the problem is due to the
strong unnatural constraint that the upper heavier fluid and the lower lighter one remain
separated by a smooth interface. If this constraint is removed, one possible alternative
assumption is that the two fluids can mix intimately. The simplest set of equations
modelling the evolution of this system is the following:

At time t and position x € R?, we denote v¥ the velocity of the particles of F*, and
s(t,x) € [0, 1] the volume proportion of the fluid F* in the mixing. The conservation of
F* may be written

s¢ +div(svt) =0
and that of F'~
(1—-s)+div((l—s)v")=0
which together imply the global incompressibility condition
div(svt + (1 —s)v7) =0. (2)
We also write Darcy’s law for each fluid:
ktvE = —Vp + ptg, (3)

where p is the unique pressure of the mixture.
As it is well known, the set of (nonlinear) equations (2), (3) in the unknowns v*, v~ s.
p is of hyperbolic type. Indeed, let us seek solutions which depend only on the “vertical”

1Wellposedness in Hadamard’s sense requires the solution to exist, be unique, and depend contin-
uously on the initial data (the mapping up — wu(t) should be continuous from C™ or H™ to C° or
L?).
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coordinate z(x = re, +ye, +ze.) with also “vertical” velocities vE = vE(t, z)e., volume
proportion s(t.z). and pressure p(t, z). We assume a constant gravity field g = —ge,,
and write e,. e,. and e for unit vectors in the two horizontal and one vertical directions
of space. We shall suppose also that the mean velocity v, = sv™ + (1 — s)v™ vanishes
for - = £x.

In this simplest case. Eq. (2) vields

D(svT +(1—s)07)=0

from where
sot +(1-s)v” =0

and Eq. (3) vields

Finally one gets the equation
s+ 0:(f(s)) = 0.

where f(s) = ~s(1 — s)/(1 = 3s).y = —(pT = p7)g/kT.3 = (k* —k7)/k™.

Now specializing to the case k* = k™ (equal viscosity) and after a change of time scale
we can take v = —1 (we always suppose p™ > p7), so that f(s) = —s(1 — s); putting
o = 2s — 1 we finally get the classical Burgers equation:

o+ 0-(0%)2) = 0.

As it is well known [6]. if we take for initial data a smooth compactly supported
function og(z). a unique regular solution exists during a finite time. But after that time,
shocks (i.e.. discontinuities in o(z)) will appear, so that to get solutions defined for all
time ¢ > 0 one must consider weak solutions (in the distributions sense). The difficulty
with weak solutions is that they are eventually nonunique. To recover uniqueness of the
solution of the Cauchy problem, one has to add a supplementary condition to distinguish
among all weak solutions the correct (or physical) one. It is Lax’s entropy condition
saying that the characteristic curves must point inward at the shocks. This condition
ensures the uniqueness of a weak solution to the Cauchy problem.

Let us consider the particular case where og(z) =1 for z > 0, = —1 for z < 0, that is
so(z) =1 for z > 0.= 0 for z < 0: the heavier fluid occupies the upper half space z > 0
at time t = 0. Then one can easily see that the Burgers equation has two weak solutions:

e the stationary solution o(t, z) = gy(z) for all £ > 0. and
e the (self similar) solution o (¢, z) = z/t for |z| < t, = +1 for z > t, and = —1 for
< —t.

One casily checks that Lax’s entropy condition is not satisfied for the first solution,
while it is for the second.

Fortunately, Lax’s condition allows us to eliminate the first solution which is physically
doubtful. However, this unphysical solution is the unique analytic solution of the smooth
interface problem (1) corresponding to the Cauchy initial condition ug = 0.
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4. Evolution equation of a mixing strip. We will consider now the following
situation: the two fluids F'*, which have the same viscosity k* = k~ = k, are supposed
to mix only in a region situated between two smooth surfaces z = z,,(t,z,y) and z =
20w (t. 2, y). The heavier fluid F* is supposed to occupy the upper part of space.

As a first step we write in a convenient way the equation governing the evolution of
the strip.

Let us first notice that the system is entirely known if one knows the function s(¢, z, y.2)
inside the strip. Indeed, the mean velocity field v, = sv*™ + (1 — s)v™ is supposed
continuous on R?® and is divergence free. Outside of the strip one has curlvt = 0
(Darcy’s law), and inside

curlv,, = Vs A (v —v7),

with v —v~ = k71(p* — p~)g. Making a change in time scale we may assume k=1 (p* —
p7)lgl =1, so that
curl v, = s;ey — sye;.

If we suppose that s, and s, vanish at infinity, the only possible v,, is given by the
Biot-Savart formula:

1 x —x , , , -
v (x) = o / X=X A (sy(x')er —sx(x')ey)dx’  (x = (z,y, 2)). (4)

Let us now come back to the conservation law in the strip:
8¢ + div(svt) = 0.

Let us replace svt with sv,,, — s(1 — s)e, (using the definition of the mean velocity
together with v — v~ = —e,), which gives

st+ Vs vy —(1—2s)s, =0. (5)

This is a closed equation for s, v, being given by the kernel (4).
Now it will be convenient to reformulate the problem in terms of the isoconcentration
surfaces z = z(t, A, z, y), defined by

sty x,y, 2(t, Az, y)) = A,

where X varies in the interval [0, 1].
Straightforward calculations give the equation satisfied by the function z:

2 + 2,01 + 2yU2 — v + (1 —2X) =0, (6)

where the three components v; of the mean velocity v,,, are given by the following;:
I .
) == [ [y - 0 s
Jo
I ,
vo(\, x,y) = _E/ d)\’/r_“"[z()\,a;,y) —z(N. 2" y))zy (N, 2’ y) da’ dy’
0

1 [t ‘
vs(A, z,y) = . / d)\'/r_d[(a: =2z (N, 2" y) + (y — ¢z (N, 2", )] da’ dy/
0

where 7 = [(z — /)2 + (y — y)? + (z(\, 2, y) — z(N, 2", ¢/))?] /2
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We easily recover the mixing strip solution starting with a horizontal interface. Indeed,
for z, = 2, =0, (6) gives z; = 2X — 1 so that z(t,A\) = (2A — 1)t. Notice that now z =0
is no longer a solution of (6), while the corresponding o = sign(z) was a (nonentropic)
weak solution of the Burgers equation.

5. The linearized equation. We consider now the linearization of our problem,
about the particular solution z(f, A) = (2A — 1)t.

Putting z(t, A\, z.y) = (A= 1)t +((t, A\, x,y), the linearized equation for ¢ (about zero)
is easily obtained: (; = vy. where

')Cz Ny )+ (y—y)GN 2y
vo(A, 2, y) = / / (=2 (g — y')2 + 401 — N2 de'dy’.  (7)

We shall show now that Eq. (7) is wellposed in Hadamard’s sense.
Let us denote G(x,y) = — (22 +y> +1)73/2 4 3(2? 4+ y% + 1) /2, then one readily sees
that the vertical velocity perturbation can be written

z—a y— y/ roor ’ oy
A dz'dy’.
(8)
Now taking the partial Fourier transforin of (8) with respect to the variables (x,y) gives
a6 = / L Geh - v N Y (9)
t\l, —47'(,0 2|/\_/\/|f

for all £ in R2.
To proceed further we need a technical lemma, the proof of which is postponed until
the appendix:
LEMMA. We have G(€) = |€]6(|€]). where 6 is a C! real function on [0, 00), satisfying
V§ < 1,3Cs > 0 such that

10
10N < Cso~2m0IEl (10)

Now we write our evolution equation for ¢ as
Gt A€) = Ifl/ (21X = NElENE(E N, €) dX. .

For any fixed &, (11) is an equation of the form

fr=A®)f,

where A(t) is a bounded lincar operator on L?(0, 1), with the mapping ¢ — A(t) contin-
uous for the strong operator topology. It then follows by classical results [7] that this
equation has a unique strong solution f € C*(R; L%(0,1)) satisfying f(0) = fo € L?(0,1).
Henceforth we shall denote é(z‘ A, &) the solution of (11) depending on the parameter &,
with initial datum Q:(O, NI éo(g). (Notice that the initial state is a sharp interface
between the two fluids; this is why (o does not depend on \.)

To see that (11) is wellposed. we will now get some estimates on i .
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We start from
St N E) = |§|/ ds/ B(2A — N[ [€]s)C(s, N, €) AN,
which gives
; s lfl ¢ * ’ ! Y ’
A€ < (@)1 + ) [ dssuplZlo X0 [ 1062~ X el

Let us denote

1
C(a) = sup / 16(2]A — N |a)| dN

Ael0,1] Jo
and
f(8,6) = sup [{(tA,6)].
A€[0,1]
One has

F(.6) < Gl "“/fss (Iels) ds

from where
1.8 <1G@lew {5 [ clemas).

Using (10), one easily gets

1— e—21r6a
Cla) £ Cs————— foralld <1,

- 2o
so that
Jf-ﬂ' /Ot C(l¢]s)ds < %[Co + Log(1 + 5[¢]t)].

Denote M = C5Cy/8n26. Using 1 + 6|¢[t < (1 + 6t)(1 + |¢]), one gets

(A Q)] < M(L+ 607/ (14 [€)S/*7 1o (),
so that for any £ > ¢* = info<s5<1 C5/87%5, one has

1C(t, 2, €)] < (1)1 + €)1 ()]
This yields the estimate
ISt A ) ars-emrzy < COIoll s (r2)

showing that the linearized Cauchy problem is wellposed on any Sobolev space H®, s € R.

REMARK. In the case d = 2, the constants are more explicit in the above proof. One
easily gets £* =1/2.
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6. Appendix: Proof of the lemma. The function G(x) = — (x> +1)73/2 + 3(x% +
1)=%/2, defined for x € R?, is rotation invariant. Let us write G(£) = 4n2|¢|h(27]€]).
where h(p) = p~! ';’C F)Io(pr)dr. for p > 0. f(r) = —r(12 + 1)73/2 4 3r(r2 + 1)75/2,

and )
1 [T

- el cos 0 do
2 Jo

I()(S)

is the classical Bessel function.
Integrating by parts vields

hip) = / a(a? + p>) 3?1 (0) do.
0

where we introduce the Bessel function Z; = —TI)).
From the above expression for h one can easily deduce that h(p) is a C! function on
[0, 00).

Now let us consider the function F(x) = (x? +1)7°. x € R?, a > 1. We derive the
following estimate for the Fourier transform of F': for all 4. 0 < § < 1. one has
F(€)] < C(8)e2ml.

where C(8) = 7/(a — 1)(1 — §2)2(@= 1),
Indeed, for z = x + iy € C2, we consider the analvtic extension of F in the domain
ly| <1: F(z) = (1 +22?)~°. Using the holomorphy of F we get

F(&) = / (14 (x +iy)?) e 2+ E 4y vy, |y| < 1.
JR?2

For £ # 0, we chose y = —d&/|€]. § < 1. it comes

~

F(g) = em2mléi / (147 — 6% — 2i0x - £/]¢]) 7" ™™ dx,
R‘)

from where the estimate straightforwardly follows.
We deduce that )
IG(&)] < (1= 0%) 72220k

Denoting 6(p) = 4n2h(27p) and M = SUPg<p<1 6(p). we finally get
0(1¢]) < Cso—2molEl

with Cs = max{(1 — §%)7%/2, Me?™}, and the proof is complete.
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