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Abstract. An illposed sharp interface equation, describing the evolution of two well

separated fluids in a porous medium, is replaced by a linearly wellposed Cauchy problem

for the evolution of a mixing strip described in terms of the level curves of the volume

proportion of one fluid.

1. Introduction. Consider two incompressible fluids F^1 moving in a porous medium

and satisfying Darcy's law fcv = — Vp + pg, where v(t,x) is the velocity field, p(t,x) the

pressure, p(t,x) the volumic mass = p in F , and k(t,x) = k > 0 is an effective

dynamical viscosity of fluid F±. If they are initially separated by a horizontal interface

and the heavier fluid is above the other, it is an unstable equilibrium. Assuming a sharp

smooth interface for t > 0 leads to an illposed evolution equation [1]. The simplest way

out of this unsatisfactory state of affairs is to assume a mixing strip of size oc t, with an

essentially vertical microstructure. In such a "coarse grained" description, the state of

the system is given by the volume proportion s(t, x) of, say, the heavy fluid, at time t

and space x. This model was studied by Otto [2], who proved the stability of the solution

corresponding to an initially flat interface [3]. Our aim in this paper is to show that the

evolution equation for s is linearly wellposed.

2. The smooth interface model. Let us assume that each of the two fluids F±

occupies the domain ilf and these two domains are separated by a smooth interface T t:

Rd = U U rt (d = 2,3).

To determine the motion of this system of two fluids, we write Darcy's law for each fluid:

fc±v± = -Vp± + p±g in Slf
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together with the incompressibility condition divv1*1 = 0, and the conditions at the

interface: v+ • v — v~ • v and p+ — p~ on Tt, where v denotes a unit normal vector

to Tf. This of course amounts to writing, in the whole space Rd, in the distribution

sense: kv = — Vp + pg and divv = 0, where v is defined as v1*1 on and similarly

k(t, x) = fc±,p(f, x) = p± for x € Clf.

Let us now focus on the case d = 2; we shall suppose that F; is the graph of some

smooth function y = u(t,x), where from now on x € R denotes a coordinate in the

horizontal direction, y G R is a vertical coordinate increasing upward, and — {(x, y) :

y < u(t,x)}.

To obtain the evolution equation satisfied by u(t, x) we proceed as follows: The kine-

matic condition (v+ — v_) • v = 0 gives

Ut/\] 1 + U2X = V~ • V

(we chose v pointing upward), where ut,ux stand for du/dt,du/dx.

On one has divv" = 0 and curlv" = 0, so that v~ = V0~. Let us denote

ip~(t,x) as the boundary value (j>~(t,x,u(t,x)), so that

V" • v = v • V0" =

where T- (u) is an integral operator associated to u.

Thus we get ut = \Jl + («)[<£"].

And now we have to express <p~ in terms of u.

For this we exploit the dynamical relation curl(fcv — pg) = 0, and after a few cumber-

some calculations [4, 5], we get the integro-differential equation:

u* = + +aY) (-cux), (1)

where c, a are constants:

2 / V 2

Pn k~ - k+

k~ + k+9' a k- + k+ '

and H, X, Y are integral operators. II is the classical Hilbert transform

f(y)
x-y

and X and Y are integral operators associated to the kernels

X U(v) ~ U(X) Tr/
X(a%y) = — —Y(x,y),

y-x

Y(r 7/i = 1 ~ ~ (y -
2?r (y — x)2 + (u(y) — ?/(x))2

for u satisfying

'u'{x) - u'(y) V2
  I dxdy < oo;
x-y )

the kernels X and Y are square integrable and thus define Hilbert-Schmidt operators on

L2(R). Moreover, one can show [4] that for all £ such that |£| < 1, the operator |

is invert ible.

Hf(x) = - p.v. [
7T J

d y,
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Now one can easily linearize Eq. (1) about 0. We get

ut = —cHux, u( 0,x) = u0(x)

which, using Fourier transform

u(t,£) = J e~2nix^u(t,x)dx1

gives

u(t,Z) = e-2"cMtu0(Z).

We see that for c > 0 (i.e., p~ > p+) the Cauchy problem is linearly wellposed, and

illposed for p~ < p+.

Going on this way one can prove that for c > 0 the Cauchy problem for Eq. (1) is

in fact also nonlinearly wellposed in Hadamard's sense1, for u'0 in the Sobolev space

H1(R) with small enough norm (see [5]). This kind of result indicates that Eq. (1) may

be considered as a relevant model for the behavior of two fluids initially unmixed if the

lighter fluid is above the heavier one, while in the opposite case (c < 0), the relevance of

(1) as a model of this behavior may, at least, be questioned.

Indeed, one can very well neglect this problem of physical relevance and solve the

Cauchy problem with appropriate analytic initial data Uq(x), at least locally in time.

But it appears that this analytic solution is an unphysical one (in fact, nonentropic in a

precise sense) as we shall see now.

3. The two-mixed-phases model. The illposedness of the problem is due to the

strong unnatural constraint that the upper heavier fluid and the lower lighter one remain

separated by a smooth interface. If this constraint is removed, one possible alternative

assumption is that the two fluids can mix intimately. The simplest set of equations

modelling the evolution of this system is the following:

At time t. and position x € R3, we denote v* the velocity of the particles of F±, and

s(t,x) 6 [0,1] the volume proportion of the fluid F+ in the mixing. The conservation of

F+ may be written

st + div(sv+) = 0

and that of F~

(1 - s)t + div((l - s)v") = 0

which together imply the global incompressibility condition

div(sv+ + (1 — s)v~) = 0. (2)

We also write Darcy's law for each fluid:

fc±v± = -Vp + p±g, (3)

where p is the unique pressure of the mixture.

As it is well known, the set of (nonlinear) equations (2), (3) in the unknowns v+, v~, s,

p is of hyperbolic type. Indeed, let us seek solutions which depend only on the "vertical"

1Wellposedness in Hadamard's sense requires the solution to exist, be unique, and depend contin-

uously on the initial data (the mapping uq i—> u(t) should be continuous from Cm or Hm to C° or

L").
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coordinate s(x = rex +yey + zez) with also "vertical" velocities v* = v (t, z)ez, volume

proportion s(t,z), and pressure p(t, z). We assume a constant gravity field g = —geZ)

and write e,..ey, and e . for unit vectors in the two horizontal and one vertical directions

of space. We shall suppose also that the mean velocity vm = su+ + (1 — s)v~ vanishes

for 2 = ±oc.

In this simplest case, Eq. (2) yields

<9-(sw+ + (1 — s)v~) = 0

from where

,st>+ + (1 — s)v~ = 0

and Eq. (3) yields

k+v+ - k~v~ = — (p+ — p~)g.

Finally one gets the equation

St + dz(f(s)) = 0.

where f{s) = 7s(l - s)/(l - (3s), j = ~{p+ - p~)g/k+,(3 = (k+ - k~)/k+.

Now specializing to the case k+ = k~ (equal viscosity) and after a change of time scale

we can take 7 = —1 (we always suppose p+ > /?"), so that f(s) = — s(l — s); putting

a = 2s — 1 we finally get the classical Burgers equation:

ft +dz{a2/2) = 0.

As it is well known [6], if we take for initial data a smooth compactly supported

function a()(z), a. unique regular solution exists during a finite time. But after that time,

shocks (i.e.. discontinuities in will appear, so that t.o get solutions defined for all

time t > 0 one must consider weak solutions (in the distributions sense). The difficulty

with weak solutions is that they are eventually nonunique. To recover uniqueness of the

solution of the Cauchy problem, one has to add a supplementary condition to distinguish

among all weak solutions the correct (or physical) one. It is Lax's entropy condition

saying that the characteristic curves must point inward at the shocks. This condition

ensures the uniqueness of a weak solution to the Cauchy problem.

Let us consider the particular case where 0-9(2:) = 1 for 2 > 0, = —1 for 2 < 0, that is

50(2) = 1 for z > 0, = 0 for z < 0: the heavier fluid occupies the upper half space z > 0

at time t = 0. Then one can easily see that the Burgers equation has two weak solutions:

• the stationary solution a(t,z) = <70(2) for all t > 0, and

• the (self similar) solution a(t,z) = z/t for \z\ < t, = +1 for z > t, and = —1 for

z < -t.

One easily checks that Lax's entropy condition is not satisfied for the first solution,

while it is for the second.

Fortunately, Lax's condition allows us to eliminate the first solution which is physically

doubtful. However, this unphysical solution is the unique analytic solution of the smooth

interface problem (1) corresponding to the Cauchy initial condition uq = 0.
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4. Evolution equation of a mixing strip. We will consider now the following

situation: the two fluids , which have the same viscosity k+ = k~ = k, are supposed

to mix only in a region situated between two smooth surfaces z = zup(t,x,y) and z =

ziow{t,x7y). The heavier fluid F+ is supposed to occupy the upper part of space.

As a first step we write in a convenient way the equation governing the evolution of

the strip.

Let us first notice that the system is entirely known if one knows the function s(t, x, y,z)

inside the strip. Indeed, the mean velocity field vm = ,sv+ + (1 — s)v~ is supposed

continuous on R3 and is divergence free. Outside of the strip one has curlv^1 = 0

(Darcy's law), and inside

curlvm = Vs A (v+ — v~),

with v+— v = k {p+ — p~)g. Making a change in time scale we may assume fc (p+ —

p~) |g| = 1, so that

CUrl Vm   SXGy SyGX-

If we suppose that sx and sy vanish at infinity, the only possible vm is given by the

Biot-Savart formula:

1 f x — x'
vm(x) = ^ J |x _ x,|3 A (sy(~x')ex - sx(x')ey) dx' (x = (x, y, z)). (4)

Let us now come back to the conservation law in the strip:

st + div(.sv+) = 0.

Let us replace sv+ with svm — s(l — s)ez (using the definition of the mean velocity

together with v+ — v~ = —ez), which gives

st + Vs • vm - (1 - 2s)sz = 0. (5)

This is a closed equation for s,vm being given by the kernel (4).

Now it will be convenient to reformulate the problem in terms of the isoconcentration

surfaces z = z(t, A, x, y), defined by

s(t,x,y,z(t,\,x,y)) = A,

where A varies in the interval [0,1].

Straightforward calculations give the equation satisfied by the function z:

zt + zxvi + zyv2 — v3 + (1 - 2A) = 0, (6)

where the three components Vi of the mean velocity vm are given by the following:

«i(A,x,y) = -^ J d\' J r~3[z(\,x,y) - z(\',x',y')]zx{\',x',y')dx'dy'

W2(A ,x,y) = J dA' I r~3[z(\,x,y) - z(X', x\ y')\zy{\', x', y') dx' dy'

i(A, x, y) iy dA' J r~3[(x - x')zx{A', x', y') + (y - y')zy{\', x', y')} dx' dy'

where r = {{x — x')2 + (y — y')2 + (z(A, x, y) — z(A', x', y'))2}1^2-
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We easily recover the mixing strip solution starting with a horizontal interface. Indeed,

for zx — zy = 0, (6) gives zt = 2A — 1 so that z(t, A) = (2A — 1)£. Notice that now z = 0

is no longer a solution of (6), while the corresponding a = sign(z) was a (nonentropic)

weak solution of the Burgers equation.

5. The linearized equation. We consider now the linearization of our problem,

about the particular solution z(t, A) = (2A — 1 )t.

Putting z(t, A, x, y) = (2A— l)i + C(t, A, x, y), the linearized equation for ( (about zero)

is easily obtained: Ct — vo, where

M ,, 1 f1 ,\/ [ {x-x')Cx{\\x',y') + {y-y')(y(\\x',y') , ,
»o(A, x, „) ^ dA J [(a. _ + ^ _ 8,)2 + 4(A _ d« ■ <7>

We shall show now that Eq. (7) is wellposed in Hadamard's sense.

Let us denote G(x, y) = — (x2 +y2 + 1)~3/2 + 3(x2 + y2 + 1)_5//2; then one readily sees

that the vertical velocity perturbation can be written

(8)
Now taking the partial Fourier transform of (8) with respect to the variables (x,y) gives

0 = hl! 2|A-A'|tg(2|A " X'm^ A''0 dA' (9)

for all £ in R2.

To proceed further we need a technical lenmia, the proof of which is postponed until

the appendix:

Lemma. We have G(£) = |£|0(|£|), where 0 is a C1 real function on [0. oo), satisfying

V<5 < 1, 3C<5 > 0 such that

ra)i<c/*e-2^«i. (10)

Now we write our evolution equation for ( as

6(i,A,0=~ y1 <9(2|A - A'|i|e|)<(t, A',dA'. (11)

For any fixed £, (11) is an equation of the form

ft = A(t)f,

where A(t) is a bounded linear operator on L2(0,1), with the mapping t i—> A{t) contin-

uous for the strong operator topology. It then follows by classical results [7] that this

equation has a unique strong solution / G C1(R; L2(0,1)) satisfying /(0) = /o G L2(0,1).

Henceforth we shall denote £(i, A,£) the solution of (11) depending on the parameter £,

with initial datum £(0, A,£) = Co(0- (Notice that the initial state is a sharp interface

between the two fluids; this is why Co does not depend on A.)

To see that (11) is wellposed, we will now get some estimates on £.
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We start from

at, a, o = co(o + U /ds [ 9^x - A'i i^is)c(s'A'^)dA''

which gives

lCM,OI<|Co(OI + jr r dssup|C(s,A',£)| / |^(2|A-A'||^)|dA'.
47T Jo A' Jo

Let us denote

C(a) = sup f |0(2|A — A'|o:)| dA'
Ae[o,i] Jo

and

One has

f(t,£)= SUP IC(*,a,OI-
Ae[o,i]

fM<\UO\ + ̂  £ fMC(mds

from where

rid rt
1 S T-< |Co(Olexp|— I C(|£|s)ds|>.

/o

Using (10), one easily gets

Y   g — 2-K&CX.

so that

141

C(a) < d—-—i  for all S < 1,
zndct

j*Cms)ds<-^[C0 + Log(l + 5m}-
47r

Denote M = CsCq/S-k25. Using 1 + S\^\t < (1 + 5t)( 1 + |£|), one gets

IC(t, A, 01 < M( 1 + <tt)c'/8^(l + |£|)c</8^|Co(£)I,

so that for any £ > £* = info<,5<i Cs/8tt26, one has

|CM,£)|<C(t)(l + |£|)%(0|.

This yields the estimate

IIC(*> A, -)IIh«-<(r2) < C(^)IICoIIh-(r2),

showing that the linearized Cauchy problem is wellposed on any Sobolev space Hs, s e R.

Remark. In the case d — 2, the constants are more explicit in the above proof. One

easily gets £* = 1/2.
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6. Appendix: Proof of the lemma. The function G(x) = —(x2 + 1)~3/2 + 3(x2 +

l)-5/2, defined for x G R2, is rotation invariant. Let us write G(£) = 47r2|£|/i(27r|£|).

where h(p) = p~l /0°° f(r)l0(pr) dr, for p > 0, f(r) = -r(r2 + l)-3/2 + 3r(r2 + 1)-5^2,

and 2

Ms) = ~ [ ^ e~iscose dO

2?r./o

is the classical Bessel function.

Integrating by parts yields

n CO

Hp) = / CT2(ct2 +p2)-3/2Xi(cr)dCT,
Jo

where we introduce the Bessel function T\ = — Zq.

From the above expression for h. one can easily deduce that h(p) is a G1 function on

[0, oo).

Now let us consider the function F(x) = (x2 + l)-", x £ R2, a > 1. We derive the

following estimate for the Fourier transform of F: for all 5. 0 < <5 < 1, one has

|F(0I < G(6)e'2nS^f

where C{6) = n/(a — 1)(1 — ̂ 2)2(q_1'.

Indeed, for z = x + iy £ C2, we consider the analytic extension of F in the domain

|y| < 1 : F(z) = (1 + z2)_q. Using the holomorphy of F we get

F(0= I (l + (x + !y)2)-V2,r!(x+!5'l^dx. Vy, |y| < 1.
J R2

For £ ^ 0, we chose y = —<5£/|£|, 6 < 1, it conies

F(C) = e-27r,5l€i [ (1 + x2 - S2 - 2iSx ■ ̂ /|e|)-Qe-27r!X ? dx,

J R2

from where the estimate straightforwardly follows.

We deduce that
|G(£)| < (1 ~ j2)-3/2e-27T<s|€|_

Denoting 6{p) = 4n2h(2np) and M = sup0<p<1 0(p), we finally get

0(|£|) < Cse~2*m,

with Cs = max{(l — 52)~3^2, Me2nS}, and the proof is complete.
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