On stability of linear time-varying second-order differential equations
Authors:
Luu Hoang Duc, Achim Ilchmann, Stefan Siegmund and Peter Taraba
Journal:
Quart. Appl. Math. 64 (2006), 137-151
MSC (2000):
Primary 34A30, 34D20, 35B40
DOI:
https://doi.org/10.1090/S0033-569X-06-00995-X
Published electronically:
January 24, 2006
MathSciNet review:
2211381
Full-text PDF Free Access
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We derive sufficient conditions for stability and asymptotic stability of second order, scalar differential equations with differentiable coefficients.
- Zvi Artstein and E. F. Infante, On the asymptotic stability of oscillators with unbounded damping, Quart. Appl. Math. 34 (1976/77), no. 2, 195–199. MR 466789, DOI https://doi.org/10.1090/S0033-569X-1976-0466789-0
- I. Barbălat, Systèmes d’équations différentielles des oscillations non linéaires, Com. Acad. R. P. Romîne 9 (1959), 779–782 (Romanian, with French and Russian summaries). MR 111895
- Charles A. Desoer, Slowly varying system $\dot x=A(t)x$, IEEE Trans. Automatic Control AC-14 (1969), 780–781. MR 0276562, DOI https://doi.org/10.1109/tac.1969.1099336
- L. Dieci and E. S. Van Vleck, Lyapunov and other spectra: a survey, Collected lectures on the preservation of stability under discretization (Fort Collins, CO, 2001) SIAM, Philadelphia, PA, 2002, pp. 197–218. MR 2026670
- L. Hatvani, Integral conditions on the asymptotic stability for the damped linear oscillator with small damping, Proc. Amer. Math. Soc. 124 (1996), no. 2, 415–422. MR 1317039, DOI https://doi.org/10.1090/S0002-9939-96-03266-2
hatvani-kristin-totik95 L. Hatvani, T. Krisztin, and V. Totik, A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differential Equations 119 (1995), 209–223.
- Frank Charles Hoppensteadt, Singular perturbations on the infinite interval, Trans. Amer. Math. Soc. 123 (1966), 521–535. MR 194693, DOI https://doi.org/10.1090/S0002-9947-1966-0194693-9
- Gro R. Hovhannisyan, Asymptotic stability for second-order differential equations with complex coefficients, Electron. J. Differential Equations (2004), No. 85, 20. MR 2075424
- A. O. Ignatyev, Stability of a linear oscillator with variable parameters, Electron. J. Differential Equations (1997), No. 17, 6. MR 1476064
- J. J. Levin and J. A. Nohel, Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics, Arch. Rational Mech. Anal. 5 (1960), 194–211 (1960). MR 119524, DOI https://doi.org/10.1007/BF00252903
- Patrizia Pucci and James Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems, Acta Math. 170 (1993), no. 2, 275–307. MR 1226530, DOI https://doi.org/10.1007/BF02392788
- Patrizia Pucci and James Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. II, J. Differential Equations 113 (1994), no. 2, 505–534. MR 1297668, DOI https://doi.org/10.1006/jdeq.1994.1134
- Patrizia Pucci and James Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators, SIAM J. Math. Anal. 25 (1994), no. 3, 815–835. MR 1271312, DOI https://doi.org/10.1137/S0036141092240679
- H. H. Rosenbrock, The stability of linear time-dependent control systems, J. Electronics Control (1) 15 (1963), 73–80. MR 0159085
- Wilson J. Rugh, Linear system theory, Prentice Hall Information and System Sciences Series, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993. MR 1211190
- Robert J. Sacker and George R. Sell, A spectral theory for linear differential systems, J. Differential Equations 27 (1978), no. 3, 320–358. MR 501182, DOI https://doi.org/10.1016/0022-0396%2878%2990057-8
- Stefan Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations 14 (2002), no. 1, 243–258. MR 1878650, DOI https://doi.org/10.1023/A%3A1012919512399
- R. A. Smith, Asymptotic stability of $x^{\prime \prime }+a(t)x^{\prime } +x=0$, Quart. J. Math. Oxford Ser. (2) 12 (1961), 123–126. MR 124582, DOI https://doi.org/10.1093/qmath/12.1.123
- Victor Solo, On the stability of slowly time-varying linear systems, Math. Control Signals Systems 7 (1994), no. 4, 331–350. MR 1359034, DOI https://doi.org/10.1007/BF01211523
artstein-infante76 Z. Artstein and E.F. Infante, On the asymptotic stability of oscillators with unbounded damping. Quart. Appl. Math. 34 (1976/77), no. 2, 195–199.
B59 I. Barbălat, Systèmes d’équations différentielles d’oscillations nonlinéaires, Revue de Mathématiques Pures et Appliquées, Bucharest IV (1959), 267–270.
desoer69 C.E. Desoer, Slowly varying system $\dot x=A(t)x$. IEEE Trans. Automatic Control 14 (1969), 780–781.
dieci-vleck02 L. Dieci and E. Van Vleck, Lyapunov and other spectra: a survey. Collected lectures on the preservation of stability under discretization (Fort Collins, CO, 2001), 197–218, SIAM, Philadelphia, PA, 2002.
hatvani96 L. Hatvani, Integral conditions on the asymptotic stability for the damped linear oscillator with small damping. Proc. Amer. Math. Soc. 124 (1996), 415–422.
hatvani-kristin-totik95 L. Hatvani, T. Krisztin, and V. Totik, A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differential Equations 119 (1995), 209–223.
H66 F.C. Hoppenstaed, Singular perturbations on the infinite interval. Trans. Am. Math. Soc. 123 (1966), 521–535.
hovhannisyan04 G.R. Hovhannisyan, Asymptotic stability for second-order differential equations with complex coefficients. Electron. J. Differential Equations 85 (2004), 20 pp.
ignatyev97 A.O. Ignatyev, Stability of a linear oscillator with variable parameters. Electron. J. Differential Equations 17 (1997), 6 pp.
levin-nohel60 J.J. Levin and J.A. Nohel, Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics. Arch. Rational Mech. Anal. 5 (1960), 194–211.
pucci-serrin93 P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. Acta Math. 170 (1993), no. 2, 275–307.
pucci-serrin94a P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. II. J. Differential Equations 113 (1994), no. 2, 505–534.
pucci-serrin94b P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25 (1994), no. 3, 815–835.
rosenbrock63 H.H. Rosenbrock, The stability of linear time-dependent control systems. J. Electronics Control 15 (1963), 73–80.
R96 W.J. Rugh (1996), Linear System Theory 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey.
sacker-sell78 R.J. Sacker and G.R. Sell, A Spectral Theory for Linear Differential Systems. J. Differential Equations 27 (1978), 320–358.
siegmund02 S. Siegmund, Dichotomy spectrum for nonautonomous differential equations. J. Dynam. Differential Equations 14 (2002), no. 1, 243–258.
smith61 R.A. Smith, Asymptotic stability of $x” +a(t)x’ + x = 0$. Quart. J. Math. Oxford Ser. (2) 12 (1961), 123–126.
solo94 V. Solo, On the stability of slowly time-varying linear systems. Math. Control Signals Systems 7 (1994), no. 4, 331–350.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2000):
34A30,
34D20,
35B40
Retrieve articles in all journals
with MSC (2000):
34A30,
34D20,
35B40
Additional Information
Luu Hoang Duc
Affiliation:
Fachbereich Mathematik, J.W. Goethe Universität, Frankfurt, Germany
Email:
lhduc@math.uni-frankfurt.de
Achim Ilchmann
Affiliation:
Institut für Mathematik, Technische Universität Ilmenau, Ilmenau, Germany
Email:
achim.ilchmann@tu-ilmenau.de
Stefan Siegmund
Affiliation:
Fachbereich Mathematik, J.W. Goethe Universität, Frankfurt, Germany
MR Author ID:
687393
Email:
siegmund@math.uni-frankfurt.de
Peter Taraba
Affiliation:
Fachbereich Mathematik, J.W. Goethe Universität, Frankfurt, Germany
Email:
taraba@math.uni-frankfurt.de
Received by editor(s):
April 11, 2005
Published electronically:
January 24, 2006
Article copyright:
© Copyright 2006
Brown University