Skip to Main Content
Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Itô and Stratonovich stochastic partial differential equations: Transition from microscopic to macroscopic equations


Author: Peter M. Kotelenez
Journal: Quart. Appl. Math. 66 (2008), 539-564
MSC (2000): Primary 60H10, 60H05, 60H30, 60F17
DOI: https://doi.org/10.1090/S0033-569X-08-01102-6
Published electronically: July 2, 2008
MathSciNet review: 2445528
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We review the derivation of stochastic ordinary and quasi-linear stochastic partial differential equations (SODE’s and SPDE’s) from systems of microscopic deterministic equations in space dimension $d\geq 2$ as well as the macroscopic limits of the SPDE’s. The macroscopic limits are quasi-linear (deterministic) PDE’s. Both noncoercive and coercive SPDE’s, driven by Itô differentials with respect to correlated Brownian motions, are considered. For the solutions of semi-linear noncoercive SPDE’s with smooth and homogeneous diffusion kernels we show that these solutions can be obtained as solutions of first-order SPDE’s, driven by Stratonovich differentials and their macroscopic limit, and are solutions of a class of semi-linear second-order parabolic PDE’s. Further, the space-time covariance structure of correlated Brownian motions is described and for space dimension $d\geq 2$ the long-time behavior of the separation of two uncorrelated Brownian motions is shown to be similar to the independent case.


References [Enhancements On Off] (What's this?)

References
  • Vivek S. Borkar, Evolution of interacting particles in a Brownian medium, Stochastics 14 (1984), no. 1, 33–79. MR 774584, DOI https://doi.org/10.1080/17442508408833331
  • D. A. Dawson, J. Vaillancourt, and H. Wang, Stochastic partial differential equations for a class of interacting measure-valued diffusions, Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 2, 167–180 (English, with English and French summaries). MR 1751657, DOI https://doi.org/10.1016/S0246-0203%2800%2900121-7
  • Andrey A. Dorogovtsev, One Brownian stochastic flow, Theory Stoch. Process. 10 (2004), no. 3-4, 21–25. MR 2329772
  • D. Dürr, S. Goldstein, and J. L. Lebowitz, A mechanical model of Brownian motion, Comm. Math. Phys. 78 (1980/81), no. 4, 507–530. MR 606461
  • Dynkin, E.B., Markov processes. Vol. I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965.
  • Albert Einstein, Investigations on the theory of the Brownian movement, Dover Publications, Inc., New York, 1956. Edited with notes by R. Fürth; Translated by A. D. Cowper. MR 0077443
  • Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085
  • Avner Friedman, Stochastic differential equations and applications. Vol. 2, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. Probability and Mathematical Statistics, Vol. 28. MR 0494491
  • Jürgen Gärtner, On the McKean-Vlasov limit for interacting diffusions, Math. Nachr. 137 (1988), 197–248. MR 968996, DOI https://doi.org/10.1002/mana.19881370116
  • I. M. Gel′fand and N. Ya. Vilenkin, Generalized functions. Vol. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Applications of harmonic analysis; Translated from the Russian by Amiel Feinstein. MR 0435834
  • Gikhman, I.I. and Skorokhod, A.V., Stochastic differential equations. Naukova Dumka, Kiev (in Russian - English Translation (1972): Stochastic Differential Equations. Springer-Verlag, Berlin).
  • Nataliya Yu. Goncharuk and Peter Kotelenez, Fractional step method for stochastic evolution equations, Stochastic Process. Appl. 73 (1998), no. 1, 1–45. MR 1603842, DOI https://doi.org/10.1016/S0304-4149%2897%2900079-3
  • Hermann Haken, Advanced synergetics, Springer Series in Synergetics, vol. 20, Springer-Verlag, Berlin, 1983. Instability hierarchies of self-organizing systems and devices. MR 707096
  • Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
  • G. Jetschke, On the equivalence of different approaches to stochastic partial differential equations, Math. Nachr. 128 (1986), 315–329. MR 855965, DOI https://doi.org/10.1002/mana.19861280127
  • Kampen, N.G. van, Stochastic Processes in Physics and Chemistry. North-Holland Publ. Co., Amsterdam, New York, 1983.
  • Peter Kotelenez, A stochastic Navier-Stokes equation for the vorticity of a two-dimensional fluid, Ann. Appl. Probab. 5 (1995), no. 4, 1126–1160. MR 1384369
  • Peter Kotelenez, A class of quasilinear stochastic partial differential equations of McKean-Vlasov type with mass conservation, Probab. Theory Related Fields 102 (1995), no. 2, 159–188. MR 1337250, DOI https://doi.org/10.1007/BF01213387
  • Peter M. Kotelenez, From discrete deterministic dynamics to Brownian motions, Stoch. Dyn. 5 (2005), no. 3, 343–384. MR 2166985, DOI https://doi.org/10.1142/S0219493705001511
  • P. Kotelenez, Correlated Brownian motions as an approximation to deterministic mean-field dynamics, Ukraïn. Mat. Zh. 57 (2005), no. 6, 757–769 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 57 (2005), no. 6, 900–912. MR 2208453, DOI https://doi.org/10.1007/s11253-005-0238-z
  • Kotelenez, P., Stochastic Ordinary and Stochastic Partial Differential Equations - Transition from Microscopic to Macroscopic Equations. Springer-Verlag, Berlin-Heidelberg-New York, 2007.
  • Kotelenez, P., Leitman M. and Mann, J. Adin Jr., On the Depletion Effect in Colloids. Preprint.
  • Kotelenez, P. and Kurtz, T.G., Macroscopic Limit for Stochastic Partial Differential Equations of McKean-Vlasov Type. (Preprint)
  • Krylov, N.V., Private Communication.
  • Krylov, N.V. and Rozovsky, B.L., On stochastic evolution equations. Itogi Nauki i tehniki, VINITI, 71-146, 1979 (in Russian).
  • Hiroshi Kunita, Stochastic flows and stochastic differential equations, Cambridge Studies in Advanced Mathematics, vol. 24, Cambridge University Press, Cambridge, 1997. Reprint of the 1990 original. MR 1472487
  • Thomas G. Kurtz and Jie Xiong, Particle representations for a class of nonlinear SPDEs, Stochastic Process. Appl. 83 (1999), no. 1, 103–126. MR 1705602, DOI https://doi.org/10.1016/S0304-4149%2899%2900024-1
  • Lifshits, E.M. and Pitayevskii, L.P., Physical Kinetics. Theoretical Physics X. Nauka, Moscow, 1979 (in Russian).
  • Metivier, M. and Pellaumail, J., Stochastic Integration. Adademic Press, New York, 1980.
  • Oelschläger, K., A Martingale Approach to the Law of Large Numbers for Weakly Interacting Stochastic Processes. Ann. Probab. 12 (1984), 458-479.
  • E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3 (1979), no. 2, 127–167. MR 553909, DOI https://doi.org/10.1080/17442507908833142
  • B. L. Rozovskiĭ, Stochastic evolution systems, Mathematics and its Applications (Soviet Series), vol. 35, Kluwer Academic Publishers Group, Dordrecht, 1990. Linear theory and applications to nonlinear filtering; Translated from the Russian by A. Yarkho. MR 1135324
  • Ya. G. Sinaĭ and M. R. Soloveĭchik, One-dimensional classical massive particle in the ideal gas, Comm. Math. Phys. 104 (1986), no. 3, 423–443. MR 840745
  • Domokos Szász and Bálint Tóth, Towards a unified dynamical theory of the Brownian particle in an ideal gas, Comm. Math. Phys. 111 (1987), no. 1, 41–62. MR 896758
  • C. Truesdell and W. Noll, The nonlinear field theories of mechanics, 2nd ed., Springer-Verlag, Berlin, 1992. MR 1215940
  • Jean Vaillancourt, On the existence of random McKean-Vlasov limits for triangular arrays of exchangeable diffusions, Stochastic Anal. Appl. 6 (1988), no. 4, 431–446. MR 964251, DOI https://doi.org/10.1080/07362998808809160
  • John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085, DOI https://doi.org/10.1007/BFb0074920
  • Eugene Wong and Moshe Zakai, On the relation between ordinary and stochastic differential equations, Internat. J. Engrg. Sci. 3 (1965), 213–229 (English, with French, German, Italian and Russian summaries). MR 0183023, DOI https://doi.org/10.1016/0020-7225%2865%2990045-5

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC (2000): 60H10, 60H05, 60H30, 60F17

Retrieve articles in all journals with MSC (2000): 60H10, 60H05, 60H30, 60F17


Additional Information

Peter M. Kotelenez
Affiliation: Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
Email: pxk4@po.cwru.edu

Received by editor(s): May 15, 2007
Published electronically: July 2, 2008
Article copyright: © Copyright 2008 Brown University
The copyright for this article reverts to public domain 28 years after publication.