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Abstract. We study the existence and uniqueness of traveling wave solutions for a
class of two-component reaction-diffusion systems with one species being immobile. Such
a system has a variety of applications in epidemiology, bio-reactor models, and isothermal
autocatalytic chemical reaction systems. Our result not only generalizes earlier results of
Ai and Huang (Proceedings of the Royal Society of Edinburgh 2005; 135A:663–675), but
also establishes the existence and uniqueness of traveling wave solutions to the reaction-
diffusion system for an isothermal autocatalytic chemical reaction of any order in which
the autocatalyst is assumed to decay to the inert product at a rate of the same order.

1. Introduction. In this article, we are concerned with the following reaction-
diffusion system:

ut = d1uxx − f(u)vm, vt = d2vxx + [f(u) − K]vm. (1.1)

Here d1 ≥ 0, d2 ≥ 0, K > 0 and m ≥ 1 are constants, and f is a differentiable function
defined on (0,∞). The system (1.1) has been proposed as a model for several physical
and biological systems, which we shall briefly discuss below.

First, if we choose f(u) = βu and m = 1, then the system (1.1) is a diffusive epidemic
model, which describes the interaction between the susceptible individual u and the
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infected individual v. In this case, the reaction term βuv is of the well-known Kermack-
McKendric type [17, 6]. Moreover, the positive constants β and K are the contact rate
and the removal rate, respectively.

Secondly, if m = 1 and f(u) takes the form m1u/(m2 + u) with positive constants m1

and m2, then the system (1.1) has been introduced in [7] to study the effects of motility
on the ability of a bacterial population to survive in a flow reactor and/or to be a good
competitor for a limiting nutrient in a mixed culture if we set the flow velocity to be
zero. In this situation, u stands for the concentration of the nutrient, v is the density
of the bacterial population, and f(u) describes the nutrient uptake and growth rate of
the bacterial population at the nutrient concentration u. The parameter K > 0 is the
cell death rate. We remark that Kennedy and Aris [18] have also considered a similar
bio-reactor model.

The parameter m is chosen to be 1 in the previous two applications. But, the pa-
rameter m can be different from 1 in the context of higher order autocatalytic reactions.
Specifically, we follow Merkin and Needham [21, 20, 19] to consider the general mth order
isothermal autocatalytic chemical reaction

A + mB → (m + 1)B with rate k1uvm (1.2)

with the autocatalyst B assumed to decay to the inert product C at a rate of order m,

B → C with rate k2v
m, (1.3)

where u and v are the concentration of the reactant A and the autocatalyst B, respec-
tively, and the ki are the rate constants. Then by applying the law of mass action, the
above reaction schemes lead to the system (1.1) with f(u) = k1u and K = k2. Unlike
the previous examples, here m can be any positive integer. Such autocatalytic reaction
schemes have been used in many models of realistic chemical systems. For example, it
has been shown by Voronkov and Semenov [26] that the cubic autocatalytic reaction
(the reaction (1.2) with m = 2) can be used to model the almost-isothermal flames in
the carbon-sulphide-oxygen reaction. The cubic autocatalytic reaction also works well
in the iodate-arsenous acid system proposed by Saul and Showalter [24]. Furthermore,
Aris, Gray and Scott [3] have discussed that a series of bimolecular steps can lead to the
cubic autocatalytic reaction. On the other hand, if we ignore the effect of the decay to
the inert product, then the constant K becomes zero in (1.1). For this case, we refer
the reader to the works of Billingham and Needham [4, 5], Qi [23], Ai and Huang [2]
and Chen and Qi [9]. However, as Gray [11] suggested, the decay step (1.3) plays an
important role in these autocatalytic chemical reactions. Therefore, we shall take this
step into our consideration in this paper.

Wave phenomena have been observed in a variety of chemical and biomedical sciences
(see [22]). For example, experimental observations [28] indicate that traveling waves can
be generated in the chemical system based on the cubic autocatalytic chemical reaction
followed by the quadratic decay. Specifically, suppose that initially we have the reactant
A at uniform concentration, and introduce a quantity of the autocatalyst, B, locally
into this system. Then A and B will react in this initial zone, which results in the
concentration gradients and then leads to the generation of two waves propagating from
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this initial zone for the reactant A (and the autocatalyst B, respectively). The wave
for the reactant is of front type and the one for the autocatalyst is of pulse type due to
the decay. By focusing on the right-half part, this leads to the study of the problem of
traveling waves. Mathematically, it has also been known [27] that traveling waves of the
reaction-diffusion systems play a key role in understanding the dynamical behavior of
solutions of the system under study. These two reasons and the rich applications of the
system (1.1) necessitate a detailed study of traveling wave solutions of (1.1).

We first define what we mean by a traveling wave solution of the system (1.1). A
couple of nonnegative functions (U, V ) ∈ C2(R) × C1(R) is said to be a traveling wave
solution of (1.1) with wave speed c ∈ R if (u(x, t), v(x, t)) = (U(z), V (z)), z := x − ct,
is a solution of (1.1) and satisfies the boundary conditions limz→−∞(U, V ) = (a, 0) and
limz→+∞(U, V ) = (b, 0) for some a ∈ (0, γ) and b ∈ (γ,∞), where γ is a positive constant
satisfying f(γ) = K. That is, (U, V ) satisfies the ordinary differential system

d1U
′′ + cU ′ − f(U)V m = 0, d2V

′′ + cV ′ + [f(U) − K]V m = 0 (1.4)

subject to the boundary conditions

lim
z→−∞

(U, U ′, V, V ′) = (a, 0, 0, 0), lim
z→+∞

(U, U ′, V, V ′) = (b, 0, 0, 0), (1.5)

where the prime denotes d/dz.
The existence of traveling wave solutions of (1.1) has been investigated by several

authors. When d1 = 0 and m = 1, the problem (1.4)–(1.5) can be reduced to a system of
two first order ordinary differential equations, and Källén [16] and Kennedy [18] have used
the phase-plane analysis to solve the existence and uniqueness of solutions of the problem
(1.4)–(1.5) for the particular choice f(u) = u and f(u) = m1u

m2/(m3 + um2) with some
positive constants m1, m2, and m3, respectively. For sufficiently small d1 > 0 and m = 1,
Smith and Zhao [25] have employed the so-called geometric singular perturbation theory
to treat the case when f(u) = m1u/(m2 +u) for some positive constants m1 and m2. For
the other extreme case d1 > 0, d2 = 0 and m = 1, Hosono and Ilyas [12] have considered
the special case f(u) = u and used the Wazewski principle [10] to show that there always
exists a solution for the problem (1.4)–(1.5) with b = 1 for any c > 0. Later, Hosono and
Ilyas [13] used the shooting argument and the invariant manifold theory to include the
case d1 > 0, d2 > 0 and m = 1. Recently, Huang [15] has developed a method to treat
the problem (1.4)–(1.5) with positive d1, d2 and m = 1 for a general class of functions f

which cover all of the models mentioned above. The idea of this method was then used
by Ai and Huang [1] to establish the existence of solutions of the problem (1.4)–(1.5)
with d2 = 0 and m = 1 for a class of functions f whose assumption is slightly different
from that in [15].

We note that m is always equal to 1 in all of the above results. The only result (to the
authors’ knowledge) for the problem (1.4)–(1.5) with m > 1 is by Hosono [14], where the
author considered the special case d1 = 0 and f(u) = u so that the problem (1.4)–(1.5)
can be reduced to a planar system and the phase-plane analysis can be employed. On the
other hand, this reduction is not available if d1 > 0 and m > 1. In this paper, we shall
develop another means to deal with the problem (1.4)–(1.5) for the extreme case when
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d1 > 0, d2 = 0 and m > 1. We shall assume that the function f satisfies the following
conditions:
(A1) There exists a unique number γ > 0 such that f(γ) = K and

f(u) ∈ (0, K) for all u ∈ (0, γ), f(u) > K for all u ∈ (γ,∞).

(A2) f ′ > 0 on (0, u0) for some u0 ∈ (0, γ) and satisfies∫ γ

0+

1
f(u)

du = ∞.

(A3) lim infu→∞ f(u) > K.
We first state our main theorem on the existence of traveling waves as follows.

Theorem 1.1. Let d1 > 0, d2 = 0 and m > 1. Suppose that f satisfies the assumptions
(A1)–(A3). Then, for each given a ∈ (0, γ), there is a nonnegative constant c(a) such
that for each c > c(a), there exists a unique solution (U, V ) (up to a translation) to
(1.4)–(1.5) for some b = b(a, c) ∈ (γ,∞). Moreover, U ′ > 0 on R, V ′ > 0 on (−∞, z1)
and V ′ < 0 on (z1, +∞), where z1 is defined by U(z1) = γ. Conversely, for each given
b > γ, there is a nonnegative constant c̄(b) such that for each c > c̄(b), there exists a
solution (U, V ) to (1.4)–(1.5) for some a ∈ (0, γ).

Next, we have the following theorem on the lower bounds of wave speed.

Theorem 1.2. Let the assumptions of Theorem 1.1 be in force. If m ∈ (1, 2], then
c(a) = 0 for all a ∈ (0, γ) and c̄(b) = 0 for all b > γ. If m > 2, then c(a) is bounded on
(ε, γ) for each ε ∈ (0, γ), c(a) → 0 as a → γ−, and c(a) → +∞ as a → 0+.

By a result of Ai and Huang [1] and Theorem 1.2, we see that a traveling wave exists for
any positive wave speed if m ∈ [1, 2]. We conjecture that the property of zero minimum
wave speed should hold for all m ≥ 1. For m > 2, due to some technical difficulties, we
can only provide here a lower bound estimate for the wave speed as the quantity c(a).
We shall leave this important question as an open problem.

We also have the following properties for b(a, c).

Theorem 1.3. Let the assumptions of Theorem 1.1 be in force. Then for each given
a0 ∈ (0, γ) and c such that c > c(â) for all â ∈ (a0 − δ0, a0 + δ1) and for some δ0 ∈ (0, a0)
and δ1 ∈ (0, γ − a0), b(a, c) is continuous at a = a0. Moreover, it follows that

lim
a→γ−

b(a, c) = γ for each given c > 0,

b(a, c) > a + K

∫ u0

a

1
f(u)

du for each c > c(a),

where u0 is given in the assumption (A2).
If we further assume that f satisfies the extra assumption:
(A4) f ′ > 0 on (0, +∞),

then b = b(a, c) is strictly decreasing in a ∈ (0, γ).

We note that the reaction term f in the existing models [16, 18, 7, 21, 20, 19] satisfies
the assumptions (A1)–(A4). Hence our result establishes the existence and uniqueness
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of traveling wave solutions to the reaction-diffusion system associated with the reactions
(1.2)–(1.3) (i.e., the system (1.1) with f(u) = k1u and K = k2) for an isothermal
autocatalytic chemical reaction of any order in which the autocatalyst is assumed to
decay to the inert product at a rate of the same order.

The method of our proof is based on the method in [1] (see also [15]), where the
authors only consider the case m = 1. However, since we have m > 1, a solution
(U(z), U ′(z), V (z)) of the problem (1.4)–(1.5) has to lie on a two-dimensional centre
manifold for negative t with |t| � 1, while the corresponding solution (U(z), U ′(z), V (z))
for the case m = 1 lies on the unique unstable manifold for negative t with |t| � 1.
Therefore, it is nontrivial to establish the local existence and uniqueness of the solution
(U(z), V (z)) to (1.4) with the condition limz→−∞(U(z), U ′(z), V (z)) = (a, 0, 0) for a
given a ∈ (0, γ). The other point is that the growth rate of the V component of a
solution (U, V ) to (1.4) is faster than the linear rate. Therefore, a possible candidate for
a solution of the problem (1.4)–(1.5) may blow up in finite time. Lastly, the V component
of a traveling wave solution (U, V ) of (1.1) must decay to zero at an algebraic rate, not
exponentially fast. Due to these reasons, we need some new techniques and more delicate
estimates than those in [1] to overcome these difficulties.

The paper is organized as follows. In section 2, we first use the centre manifold theory
to establish the local existence and uniqueness of the solution (U, V ) to (1.4) with the
condition limz→−∞(U, U ′, V ) = (a, 0, 0) for a given a ∈ (0, γ). Then we show that such
a solution is globally defined provided c > c(a) for some c(a) ≥ 0. Finally, in section 3,
we establish several auxiliary lemmas to prove Theorems 1.1–1.3.

2. Existence of traveling wave solutions.
2.1. Basic results. Hereafter we shall always assume m > 1 and c > 0. Introducing

the new variables and parameters

t =
√

d1z and c̃ = c/
√

d1,

the system of differential equations (1.4) with d2 = 0 becomes

U ′′ + cU ′ − f(U)V m = 0, cV ′ + [f(U) − K]V m = 0, (2.1)

which is equivalent to

U ′ = W, W ′ = −cW + f(U)V m, V ′ =
1
c
[K − f(U)]V m, (2.2)

where for simplicity we have written c̃ as c. In order to solve the existence of traveling
wave solutions of (1.1), we consider the following (initial value) problem (Pa):⎛

⎝ U ′

W ′

V ′

⎞
⎠ =

⎛
⎝ W

−cW + f(U)V m

[K − f(U)]V m/c

⎞
⎠ , V > 0, (2.3)

lim
t→−∞

(U(t), W (t), V (t)) = (a, 0, 0). (2.4)

Hereafter, we will let (U, W, V ) be a solution of (2.2) satisfying the initial condition

lim
t→−∞

(U(t), W (t), V (t)) = (a, 0, 0) (2.5)
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for a given a ∈ (0, γ). The maximal existence interval of (U, W, V ) will be denoted by
(−∞, T ) (T may be +∞). Adding the equations in (2.1) together, we have that

U ′′ + cU ′ + cV ′ = KV m. (2.6)

Fix t0 ∈ (−∞, T ) and t ∈ (t0, T ). By a simple computation, it is easy to verify the
following equalities (see also [1]):

U ′(t) = U ′(t0)e−c(t−t0) +
∫ t

t0

e−c(t−s)f(U(s))V m(s)ds, (2.7)

U(t) = U(t0) +
1
c
[1 − e−c(t−t0)]U ′(t0)

+
1
c

∫ t

t0

[1 − e−c(t−s)]f(U(s))V m(s)ds, (2.8)

U ′(t) + cU(t) + cV (t) = U ′(t0) + cU(t0) + cV (t0) + K

∫ t

t0

V m(s)ds. (2.9)

Letting t0 → −∞ in (2.7), (2.8) and (2.9), we get

U ′(t) =
∫ t

−∞
e−c(t−s)f(U(s))V m(s)ds, (2.10)

U(t) = a +
1
c

∫ t

−∞
[1 − e−c(t−s)]f(U(s))V m(s)ds, (2.11)

U ′(t) + cU(t) + cV (t) = ca + K

∫ t

−∞
V m(s)ds. (2.12)

Also, we have

V (t) = V (t0) exp
[1
c

∫ t

t0

[K − f(U(s))V m−1(s)ds]
]
, (2.13)

V (t) =
( 1

V 1−m(t0) + (m − 1)
∫ t

t0
[(f(U(s)) − K)/c]ds

) 1
m−1

. (2.14)

Note that (2.14) holds only when m �= 1.
With an elementary calculation, we see that the matrix for the linearized system of

(2.3) at the critical point (a, 0, 0) with a > 0 is given by

A0 =

⎡
⎣ 0 1 0

0 −c 0
0 0 0

⎤
⎦ .

We note that the resulting linearized system is independent of the order of the reaction
m (if m > 1) and the choice of the equilibrium point (a, 0, 0). The eigenvalues of A0 are
λ1 = λ2 = 0 and λ3 = −c, and the corresponding eigenvectors are (1, 0, 0)t, (0, 0, 1)t,
and (1,−c, 0)t, respectively. Hence (2.3) has a two-dimensional centre manifold at the
equilibrium point (a, 0, 0) with a > 0. Moreover, any solution of the problem (Pa) (if it
exists) would lie on such a centre manifold.

In the coming subsections, we will discuss the uniqueness and existence of solutions
of the problem (Pa). Specifically, for each given a ∈ (0, γ) and c > 0, we establish
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the uniqueness and local existence of solutions of the problem (Pa) in subsection 2.2;
in subsection 2.3, we will show that such a solution can be globally defined provided
c > c(a) for some constant c(a) ≥ 0.

2.2. Local existence and uniqueness of solutions of (Pa). To begin with, we will use
the centre manifold theory (cf. [8]) to investigate the local dynamics of the flow of (2.3)
near the equilibrium point (a, 0, 0). In this subsection, we will always assume a ∈ (0, γ).
Define the change of variables⎛

⎝ U − a

W

V

⎞
⎠ = S0

⎛
⎝ x

y

z

⎞
⎠ , S0 =

⎛
⎝ 1 0 1

0 0 −c

0 1 0

⎞
⎠ .

Then we have ⎛
⎝ x

y

z

⎞
⎠ =

⎛
⎝ U + W

c − a

V

−W
c

⎞
⎠ ,

and the problem (Pa) is reduced to the following (initial value) problem (P̂a):⎛
⎝ x′

y′

z′

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0
0 0 −c

⎞
⎠ ·

⎛
⎝ x

y

z

⎞
⎠ +

⎛
⎝ 1

c f(x + z + a)ym

1
c [K − f(x + z + a)]ym

−1
c f(x + z + a)ym

⎞
⎠ , y > 0, (2.15)

lim
t→−∞

(x(t), y(t), z(t)) = (0, 0, 0). (2.16)

Moreover, any centre manifold of (2.3) at the equilibrium point (a, 0, 0) is transformed
into a centre manifold of (2.15) at the origin, whose tangent space is spanned by (1, 0, 0)t

and (0, 1, 0)t, and which can be characterized by a surface

Wc(0) := {(x, y, z) ∈ R
3 | z = ψ(x, y) for |x| < δ0}

for some smooth function ψ and sufficiently small δ0 with ψ(0, 0) = ψx(0, 0) = ψy(0, 0) =
0. Here we denote x = (x, y)t and |x| =

√
x2 + y2.

For a given ψ which characterizes a centre manifold of (2.15) at the origin, the gov-
erning equations of the flow on this centre manifold are given by

x′ = f(x + ψ(x, y) + a)ym/c, y′ = [K − f(x + ψ(x, y) + a)]ym/c. (2.17)

We first study the uniqueness and existence of a solution (x(t), y(t)) to (2.17) with the
condition limt→−∞(x(t), y(t)) = (0, 0) and y(t) > 0 for negative t with |t| � 1. We shall
denote this initial value problem as the problem (Qa). As before, we assume a ∈ (0, γ).

Lemma 2.1. (i) There exists a unique solution (x(t), y(t)) (up to a translation) of
the problem (Qa) which is defined on (−∞, T ) for some T ∈ R ∪ {+∞}.

(ii) x > 0, y > 0, x′ > 0, and y′ > 0 on (−∞, T ).
(iii) For each ε ∈ (0, min{f(a), K − f(a)}/2), there exists a negative tε with |tε| � 1

such that

C1,a,−ε

( y1−m(tε)
Ca,−ε(m − 1)

+ tε − t
) 1

1−m

< x(t) < C1,a,ε

( y1−m(tε)
Ca,ε(m − 1)

+ tε − t
) 1

1−m

, (2.18)

C2,a,−ε

( y1−m(tε)
Ca,−ε(m − 1)

+ tε − t
) 1

1−m

< y(t) < C2,a,ε

( y1−m(tε)
Ca,ε(m − 1)

+ tε − t
) 1

1−m

(2.19)
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for t ≤ tε, where

C1,a,±ε :=
(m − 1

c

) 1
1−m

(
f(a) ± ε

)(
K − f(a) ± ε

) m
1−m

,

C2,a,±ε :=
(m − 1

c

) 1
1−m

(
K − f(a) ± ε

) 1
1−m

,

Ca,±ε := (K − f(a) ± ε)/c.

(iv) Let (xai
, yai

), i = 1, 2, be the solution of (Qai
) with a1, a2 ∈ (0, γ) and a2 > a1.

If f ′ > 0 on (0, γ), then ya2(t) > ya1(t) for negative t with |t| � 1.
(v) Let (Uai

, Vai
), i = 1, 2, be the solution of (Pai

) with a1, a2 ∈ (0, γ) and a2 > a1.
If f ′ > 0 on (0, γ), then Va2(t) > Va1(t) for negative t with |t| � 1.

Proof. To solve the problem (Qa), it suffices to consider the following initial value
problem (Q̂a):

dy

dx
=

K − f(x + ψ(x, y) + a)
f(x + ψ(x, y) + a)

, y(0) = 0.

Recall that ψ(x, y) = o(|x|). Here we write x = (x, y) and |x| =
√

x2 + y2. Hence if x

and y are sufficiently small, the above problem is equivalent to the problem

dy

dx
=

K − f(a)
f(a)

+ N(x, y), y(0) = 0,

where N(x, y) is smooth in x and y and O(
√

x2 + y2). Therefore, by the standard
theory of differential equations, we can conclude that there exists a unique solution
y(x) of (Q̂a) defined on [0, x0] for some sufficiently small x0 > 0 such that y(x) > 0,
K − f(x + ψ(x, y(x)) + a) > (K − f(a))/2, and f(x + ψ(x, y(x)) + a) > f(a)/2 for all
x ∈ [0, x0]. Using this and (2.17), the assertions (i) and (ii) follow.

To investigate the asymptotical behavior of (x(t), y(t)), we first note that (2.17) is
reduced to the following system:

x′ =
(
f(a) + O(|x|

)
ym/c,

y′ =
(
K − f(a) + O(|x|

)
ym/c,

for all x and y sufficiently small. Hence for each given ε ∈ (0, min{f(a), K − f(a)}/2),
we can choose a negative tε with |tε| � 1 such that

f(a) − ε

c
ym(t) < x′(t) <

f(a) + ε

c
ym(t), (2.20)

K − f(a) − ε

c
ym(t) < y′(t) <

K − f(a) + ε

c
ym(t) (2.21)

holds for t ≤ tε. Now by integrating the inequality (2.21) from −∞ to tε, we see that
(2.19) holds. Then by substituting (2.19) into (2.20) and integrating the resulting in-
equality from −∞ to tε, we then obtain (2.18). This establishes the assertion (iii).

Now we turn to the proof of the assertion (iv). Since f ′ > 0 on (0, γ), we can fix a
sufficiently small ε0 ∈ (0, mini=1,2{f(ai), K−f(ai)}/2) such that C1,a2,−ε0 > C1,a1,ε0 and



TRAVELING WAVES OF TWO-COMPONENT REACTION-DIFFUSION SYSTEMS 567

C2,a2,−ε0 > C2,a1,ε0 . By the assertion (iii), we can choose a negative tε0 with |tε0 | � 1
such that

C2,ai,−ε0

( y1−m
ai

(tε0)
Cai,−ε0(m − 1)

+ tε0 − t
) 1

1−m

< yai
(t) < C2,ai,ε0

( y1−m
ai

(tε0)
Cai,ε0(m − 1)

+ tε0 − t
) 1

1−m

hold for t ≤ tε0 and i = 1, 2. Together with the choices of Ci,ai,±ε0 , i = 1, 2, we can
conclude that ya2(t) > ya1(t) for all t ≤ t1 and for some t1 < tε0 .

Finally, with the help of the assertion (iv) and the relationship between the variables
(x, y) and (U, V ), we then obtain the assertion (v). The proof is thus completed. �

We shall find the asymptotic expansion of any centre manifold. To this end, we first
note that a centre manifold of (2.15) at the origin characterized by ψ satisfies the relation
(see [8]):

−cψ(x, y) − f(x + ψ(x, y) + a)
ym

c

= ψx(x, y)f(x + ψ(x, y) + a)
ym

c
+ ψy(x, y)[K − f(x + ψ(x, y) + a)]

ym

c

for all x with |x| < δ0 and some δ0 > 0. Since this is an identity for all x with |x| < δ0,
we then obtain

ψ(x, y) = −(f(a) + O(|x|))ym

c2
. (2.22)

Notice that the leading term in (2.22) is independent of ψ.

Lemma 2.2. For each c > 0 and a ∈ (0, γ), there exists a unique solution (U, V ) (up to
a translation) of (2.1) which is defined on (−∞, T ) for some T ∈ R ∪ {+∞}, such that
the following hold:

(i) U(t) > a, U ′(t) > 0, and V (t) > 0 for all t ∈ (−∞, T ).
(ii) V ′(t)(γ − U(t)) > 0 for U(t) �= γ.
(iii) limt→−∞(U(t), U ′(t), V (t)) = (a, 0, 0).
(iv) (U, W, V ) = (U(t), U ′(t), V (t)) lies on a surface W = Ψ(U, V ) for negative t with

|t| � 1 which takes the form

W =
(f(a)

c
+ O(

√
(U − a)2 + V 2)

)
· V m.

Proof. Take any ψ which characterizes a centre manifold of (2.15) at the origin. From
Lemma 2.1, it follows that there exists a unique solution (x(t), y(t)) (up to a translation)
of (2.17) (with respect to this given ψ) defined for all t ∈ (−∞, 0] (by a suitable shift of t)
such that x > 0, y > 0, x′ > 0, and y′ > 0 on (−∞, 0], and limt→−∞(x(t), y(t)) = (0, 0).
Therefore, by (2.22), there exists a solution (x(t), y(t), z(t)) of the problem (P̂a) defined
on (−∞, 0] such that x > 0, y > 0, z < 0, x′ > 0, and y′ > 0 on (−∞, 0], and
limt→−∞(x(t), y(t), z(t)) = (0, 0, 0).

Next, we want to show the uniqueness of the solution to (P̂a). We will use the method
of [2] to prove it. Since any solution of (P̂a) must lie on a centre manifold of (2.15)
at (0, 0, 0), it suffices to show that (x(t), y(t), z(t)) is independent of the choice of ψ.
Suppose that ψi, i = 1, 2, are the representations of two centre manifolds of (2.15) at
(0, 0, 0). Let (x(t), y(t)) be the solution of (2.17) with ψ = ψ1 obtained above. Then



568 JONG-SHENQ GUO AND JE-CHIANG TSAI

(x(t), y(t), z(t)) := (x(t), y(t), ψ1(x(t), y(t))) is a solution of the problem (P̂a) defined on
(−∞, 0].

Note that for negative t with |t| � 1, (x(t), y(t), ψ2(x(t), y(t))) lies on the centre
manifold associated with ψ2. We claim that z(t) = ψ2(x(t), y(t)) for negative t with
|t| � 1. To this end, we claim that η(t) := z(t) − ψ2(x(t), y(t)) = 0 for negative t

with |t| � 1. Note that η(t) is bounded. Recall that the centre manifold (x, y, ψ2(x, y))
satisfies

ψ2,xf(x + ψ2 + a)
ym

c
+ ψ2,y[K − f(x + ψ2 + a)]

ym

c
= −cψ2 − f(x + ψ2 + a)

ym

c
(2.23)

for all sufficiently small x, y. Here, for simplicity, we write ∂ψ2/∂x and ∂ψ2/∂y as ψ2,x

and ψ2,y, respectively, and ignore the arguments of ψ2, ψ2,x, ψ2,y. Also note that z(t)
satisfies

z′(t) = −cz(t) − f(x(t) + z(t) + a)
ym(t)

c
for all t ∈ (−∞, 0]. Subtracting (2.23) from this equation, we obtain

η′(t) = −cη(t) −
[
f
(
x(t) + z(t) + a

)
− f

(
x(t) + ψ2(x(t), y(t)) + a

)]ym(t)
c

+ψ2,x(x(t), y(t))
[
f
(
x(t) + ψ2(x(t), y(t)) + a

)
− f

(
x(t) + z(t) + a

)]ym(t)
c

+ψ2,y(x(t), y(t))
[
f
(
x(t) + z(t) + a

)
− f

(
x(t) + ψ2(x(t), y(t)) + a

)]ym(t)
c

for negative t with |t| � 1. It follows from the mean-value theorem that

η′(t) = −cη(t) + M(t)ym(t)η(t)

for negative t with |t| � 1 and for some bounded function M(t). Solving the above
equation and using η(−∞) = 0, we have

η(t) =
∫ t

−∞
e−c(t−s)M(s)ym(s)η(s)ds

for negative t with |t| � 1. Since M(t) is bounded and y(t) → 0 as t → −∞, there exists
a negative s0 with |s0| � 1 such that |M(s)ym(s)| ≤ c/2 for all s ∈ (−∞, s0]. Together
with the above equation, this yields

|η(t)| ≤ c

2

∫ t

−∞
e−c(t−s)|η(s)|ds

≤ 1
2

sup
s∈(−∞,s0]

|η(s)|

for all t ∈ (−∞, s0]. Hence we have η(t) = 0 for all t ∈ (−∞, s0].
Therefore, z(t) = ψ2(x(t), y(t))) for negative t with |t| � 1 and so (x(t), y(t)) is also

a solution of (2.17) with ψ = ψ2 satisfying the condition limt→−∞(x(t), y(t)) = (0, 0).
Then, by part (i) of Lemma 2.1, we obtain the uniqueness solution to (P̂a).

Finally, transferring (U, W, V ) back to the origin, we can conclude that there exists
a unique solution (U(t), W (t), V (t)) (up to a translation) of the problem (Pa) defined
on the maximal existence interval (−∞, T ) such that U > a, U ′ = W > 0, V > 0 for
negative t with |t| � 1, and limt→−∞(U(t), U ′(t), V (t)) = (a, 0, 0). Furthermore, with
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the help of the third equation in (2.2), (2.10), (2.11), and (2.13), we have that U > a,
U ′ > 0, V > 0 on (−∞, T ), and V ′(t)(γ − U(t)) > 0 for U(t) �= γ. Also, statement (iv)
follows from (2.22). This proves the lemma. �

2.3. Global existence of solutions of (Pa). For each a ∈ (0, γ) and c > 0, the unique
solution (U, V ) of (2.1) obtained in Lemma 2.2 is a good candidate for a solution to
(1.4)–(1.5). However, since m > 1, from the third equation in (2.2) we see that (U, V )
may blow up in finite time. In this subsection, we will show that such a solution is
globally defined if c is suitably chosen.

First we observe the following lemma.

Lemma 2.3. Let (U, W, V ) be a solution of (Pa) defined on (−∞, T ). If V is bounded on
(−∞, T ), then we have T = +∞.

Proof. The proof is a slight modification of that of [1, part (i) of Lemma 2.1]. Fix
a t0 ∈ (−∞, T ). Using Lemma 2.2 and the boundedness of V , there exists a positive
constant M such that U > a, U ′ > 0, and V m−1 ∈ (0, M/K) on (−∞, T ). Therefore
from (2.9) it follows that for all t ∈ (t0, T ),

U ′(t) + cU(t) + cV (t) = U ′(t0) + cU(t0) + cV (t0) + K

∫ t

t0

V m(s)ds

≤ U ′(t0) + cU(t0) + cV (t0) + M

∫ t

t0

V (s)ds

≤ U ′(t0) + cU(t0) + cV (t0) +
M

c

∫ t

t0

(U ′(s) + cU(s) + cV (s))ds,

which together with an application of Gronwall’s inequality yields

U ′(t) + cU(t) + cV (t) ≤ [U ′(t0) + cU(t0) + cV (t0)]eM(t−t0)/c

for all t ∈ (t0, T ). Recall that U > a, U ′ > 0, and V > 0 on (−∞, T ). The above
inequality implies T = +∞. This completes the proof. �

Now we come to the goal of this subsection.

Lemma 2.4. Let (U, W, V ) be a solution of (Pa) defined on (−∞, T ). Then there exists
a constant c(a) ≥ 0 such that T = +∞ if c > c(a). Moreover, if m ∈ (1, 2], then c(a) = 0
for all a ∈ (0, γ); and if m > 2, then c(a) is bounded on (ε, γ) for each ε ∈ (0, γ), c(a) → 0
as a → γ−, and c(a) → +∞ as a → 0+.

Proof. We first define the quantity c(a). Note that L(a) := minu∈[a,γ] f(u) is a well-
defined positive constant for each a ∈ (0, γ), and lima→0+ L(a) = 0. Set l(n) := inf{k ∈
(0, +∞) | kx ≥ xm for all x ∈ [0, n]}. Note that l(n) = nm−1. Now we consider the case
m > 2. There exists a unique least positive integer n0 = n0(a) ∈ N such that

n0 >
γ
(

maxs∈[a,γ](K − f(s))
)

L(a)
.



570 JONG-SHENQ GUO AND JE-CHIANG TSAI

Notice that n0 is decreasing in a ∈ (0, γ), n0 = 1 for a ∈ (0, γ) with |γ − a| 	 1, and
n0 ↗ +∞ as a ↘ 0+. Note that the function

hn : c −→ c
mK

c · l(n) + c

is increasing on (0, +∞) such that limc→0+ hn(c) = 0 and limc→+∞ hn(c) = 1 for each
n ∈ N. Hence we can choose a positive number c(a) such that

c(a)
mK
c(a) · l(n0) + c(a)

=
1
n0

·
γ
(

maxs∈[a,γ](K − f(s))
)

L(a)
.

It is easy to see that c(a) → 0 as a → γ−, and c(a) is bounded on (ε, γ) for each
ε ∈ (0, γ). Furthermore, from L(0+) = 0 it follows that c(a) → +∞ as a → 0+. Notice
that hn ≥ hn+1 and hn is increasing on (0, +∞) for each n ∈ N. Then with the choice
of n0 and c(a), we have

n0∑
n=1

cL(a)(
mK

c · l(n) + c
)
·
(

maxs∈[a,γ](K − f(s))
) ≥ γ (2.24)

for all c ≥ c(a). On the other hand, if m ∈ (1, 2], we define c(a) = 0 for each a ∈ (0, γ).
Note that

∑∞
n=1

1
l(n) = +∞ for m ∈ (1, 2]. Hence for each fixed m ∈ (1, 2], c > 0 and

a ∈ (0, γ), we can choose a sufficiently large n0 = n0(a, c, m) ∈ N such that (2.24) holds.
Now we will show that the solution (U, W, V ) of (Pa) is globally defined, if c > c(a).

Suppose on the contrary that T < +∞. Note that from the third equation in (2.2), we
have V ′(t) < 0 if U(t) > γ. Hence from Lemma 2.3 and parts (i) and (ii) of Lemma 2.2,
it follows that V (t) ↗ +∞ and U(t) ↗ U0 as t → T− for some U0 ∈ (a, γ]. Also note
that V (−∞) = 0.

Set sn := sup{s ∈ (−∞, T ) | V (t) < n for all t ∈ (−∞, s]} for each n ∈ N. Then sn

is well-defined for each n ∈ N, and si < sj if i < j. It follows from (2.2) that for each
n ∈ N and for all t ∈ (−∞, sn],( W

V m

)′
= −m

( W

V m+1

)
V ′ +

W ′

V m

= −m(K − f(U))
c

(W

V

)
+

(
− c · W

V m
+ f(U)

)
≥ −m(K − f(U))

c

( W

V m/l(n)

)
+

(
− c · W

V m
+ f(U)

)
,

by using the definitions of sn and l(n). Hence we have( W

V m

)′
≥ −

(mK

c
· l(n) + c

) W

V m
+ f(U).

Recall from part (iv) of Lemma 2.2 that limt→−∞ W (t)/V m(t) = f(a)/c. Then an
integration of the above inequality gives

W (t)
V m(t)

≥
∫ t

−∞
e−[ mK

c ·l(n)+c](t−s)f(U(s))ds

≥ L(a)/[
mK

c
· l(n) + c]
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for all t ∈ (−∞, sn]. This, together with the third equation in (2.2), yields

U ′(t) = W (t) ≥ L(a)
mK

c · l(n) + c
· cV ′(t)
K − f(U(t))

≥ cL(a)
mK

c · l(n) + c
· V ′(t)
maxs∈[a,γ](K − f(s))

for all t ∈ (−∞, sn]. Integrating the above inequality over [sn−1, sn] with s0 = −∞, we
then have

U(sn) − U(sn−1) ≥
cL(a)(

mK
c · l(n) + c

)
·
(

maxs∈[a,γ](K − f(s))
)

for all n = 1, . . . , n0. Summing this inequality from n = 1 to n0, we then obtain

U(sn0) − a ≥
n0∑

n=1

cL(a)(
mK

c · l(n) + c
)
·
(

maxs∈[a,γ](K − f(s))
) .

This is a contradiction to (2.24), thereby completing the proof of this lemma. �

3. Proofs of main results. Throughout this section, we will let (U(t; a, c),
W (t; a, c), V (t; a, c)) be a unique solution of (Pa) with c > c(a) defined on (−∞,∞),
which was shown to exist in Section 2. We also denote by b(a, c) the limit
limt→+∞ U(t; a, c), which will be shown to exist in Lemma 3.1. If there is no ambi-
guity, we will write (U(t; a, c), W (t; a, c), V (t; a, c)) and b(a, c) as (U(t), W (t), V (t)) and
b, respectively. Before giving the proofs of Theorems 1.1–1.3, we need some preparation.

3.1. Auxiliary lemmas.

Lemma 3.1. For a ∈ (0, γ), (U, U ′, V ) satisfies the following:
(i) there exists a t1 ∈ R such that U(t1) = γ, V ′ > 0 on (−∞, t1) and V ′ < 0 on

(t1,∞);
(ii) we have the limit limt→∞(U(t), U ′(t), V (t)) = (b, 0, 0), where b ∈ (γ,∞).

Proof. First, we consider part (i). The proof of part (i) is similar to that of [1, part
(ii) of Lemma 2.1]. Since the argument is short, we sketch it here for the convenience of
the reader.

Set t1 := sup{t ∈ R : U < γ on (−∞, t]}. Since U(t) ∈ (a, γ) for negative t with
|t| � 1, we can choose a t0 such that U < γ on (−∞, t0], and set

t̂1 := t0 +
1
c

+
γ − a

k1V m(t0)
, k1 := min

{f(u)
c

: U(t0) ≤ u ≤ γ
}

.

Now we claim that t1 ≤ t̂1. For a contradiction, we assume that t1 > t̂1. Then we
have U(t) < γ for all t ∈ (t0, t̂1]. From parts (i) and (ii) of Lemma 2.2 it follows that
U ′(t0) > 0, V ′(t) > 0 and V (t) > V (t0) for all t ∈ (t0, t̂1]. These facts, together with
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(2.8) and the choice of t̂1, give

U(t̂1) > a + k1V
m(t0)

∫ t̂1

t0

[1 − e−c(t̂1−s)]ds

= a + k1V
m(t0)

[
t̂1 − t0 −

1 − e−c(t̂1−t0)

c

]
> γ,

a contradiction. Hence t1 ≤ t̂1 < +∞. By using the continuity of U , we then have that
U(t1) = γ. The assertion for V then follows from part (ii) of Lemma 2.2.

Now we consider part (ii). Fix t2 ∈ (t1,∞) and set

ρ := inf
{f(u) − K

c
: u ∈ [U(t2),∞)

}
,

which is positive by assumptions (A1) and (A3). By using (2.14) with t0 = t2, we have
that

V (t) ≤
( 1

V 1−m(t2) + (m − 1)ρ(t − t2)

) 1
m−1

for all t ≥ t2. Hence V (t) → 0 as t → ∞. Furthermore, since m/(m−1) > 1, there exists
a positive constant K1 such that for all t ∈ [t2,∞), it follows that∫ t

t2

V m(s)ds ≤
∫ t

t2

( 1
V 1−m(t2) + (m − 1)ρ(s − t2)

) m
m−1

ds ≤ K1.

Together with (2.12), this yields

U ′(t) + cU(t) + cV (t) ≤ ca + K

∫ t2

−∞
V m(s)ds + KK1

for all t ≥ t2. Recall that U , U ′ and V are positive on R. Then the above inequality
implies that U is bounded above. Hence U(t) ↗ b as t → +∞ for some b = b(a, c) ∈
(γ,∞).

Now we will show that U ′(t) → 0 as t → +∞. To this end, we note that the function

h : t →
∫ t

−∞
ecsf(U(s))V m(s)ds

is increasing on R. Therefore, h(+∞) := limt→+∞ h(t) exists. If h(+∞) is finite, then
by applying (2.10), we obtain

lim
t→+∞

U ′(t) = lim
t→+∞

e−cth(t) = 0.

If h(+∞) = +∞, then by using (2.10) and l’Hôpital’s rule, this yields

lim
t→+∞

U ′(t) = lim
t→+∞

h(t)
ect

= lim
t→+∞

f(U(t))V m(t)/c = 0.

Hence U ′(t) → 0 as t → +∞ in any case. This completes the proof. �

Lemma 3.2. Let t1 be such that U(t1; a, c) = γ. The following statements hold:
(i) For each given c > 0, there exists a δ0 ∈ (0, 1/2) such that if a ∈ (γ − δ, γ) with

δ ∈ (0, δ0], we have V (t1; a, c) ≤ δ.
(ii) For each given c > 0, lima→γ− b(a, c) = γ.
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Proof. We first prove (i). Let

M := sup
s∈[γ/2,γ]

|f ′(s)| and δ1 := min
{ (2m−1 − 1)K

2m+2(m − 1)M
,
( (2m−2 − 1/2)c2

(m − 1)M

)1/m}
.

Note that f(γ) = K and lima→γ− c(a) = 0 by Lemma 2.4. Therefore we can choose a
δ0 ∈ (0, min{γ/4, δ1, 1/2}) such that f(u) ≥ K/2 for all u ∈ [γ − δ0, γ], and c > c(a)
for all a ∈ (γ − δ0, γ). In the remainder of the proof, for simplicity, we will write
(U(t; a, c), W (t; a, c), V (t; a, c)) as (U(t), W (t), V (t)). We will show that this δ0 satisfies
the required property. For this, we fix a δ ∈ (0, δ0] and a ∈ (γ − δ, γ). Since δ/2 < δ, it
suffices to prove the case when V (t1) > δ/2. To begin with, since V ′ > 0 on (−∞, t1), we
can choose a t0 ∈ (−∞, t1) with the property that V (t0) = δ/2. Taking into account the
fact that U(t) ∈ (γ − δ, γ) and V ′(t) > 0 for all t ∈ [t0, t1), we have that f(U(t))V m(t) ≥
Kδm/2m+1 for all t ∈ [t0, t1]. Together with (2.8) and U ′(t0) > 0, this yields

U(t1) = U(t0) +
1
c
[1 − e−c(t1−t0)]U ′(t0) +

1
c

∫ t1

t0

[1 − e−c(t1−s)]f(U(s))V m(s)ds

> U(t0) +
Kδm

2m+1c
(t1 − t0 −

1
c
),

which implies

t1 − t0 <
2m+1c

Kδm
[U(t1) − U(t0)] +

1
c

<
2m+1c

Kδm
(γ − a) +

1
c

<
2m+1c

K
δ1−m +

1
c

(since a ∈ (γ − δ, γ)).

With the help of (2.14) and the above estimate on t1 − t0, V (t1) can be estimated as
follows:

V 1−m(t1) = V 1−m(t0) + (m − 1)
∫ t1

t0

[(f(U(s)) − K)/c]ds

≥ (
δ

2
)1−m − m − 1

c
· sup

s∈[γ/2,γ]

|f ′(s)| · sup
s∈[t0,t1]

|U(s) − γ| · (t1 − t0)

(by the mean-value theorem and f(γ) = K)

≥ (
δ

2
)1−m − m − 1

c
· Mδ ·

(2m+1c

K
δ1−m +

1
c

)
(since U(t) ∈ (γ − δ, γ) for all t ∈ [t0, t1))

≥
(
2m−1 − (m − 1)M2m+1

K
δ
)
δ1−m − (m − 1)M

c2
δ

≥
(
2m−1 − (2m−1 − 1)/2

)
δ1−m − (m − 1)M

c2
δ

(since δ < (2m−1 − 1)K/[2m+2(m − 1)M ])

≥ δ1−m (since δ < δ1).

This gives V (t1) ≤ δ, thereby completing the proof of (i).
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Now we turn to show (ii). Given a sufficiently small ε > 0, it suffices to show that
there exists a δ > 0 such that b(a, c) ∈ (γ, γ + ε] if a ∈ (γ − δ, γ). We first give the
definition of the required δ. Indeed, we choose a p > 1 such that m/[p(m − 1)] > 1, and
let q > 1 satisfy 1/p + 1/q = 1. Define

δ := min
{
δ0,

c2ε

4K1(1 + 2c)
, (

ε

2
)q

(K1

c2
+

K1

c
+

K1C
m
2

c[ m
p(m−1) − 1]

)−q}
,

where

K1 := max{f(u) : u ∈ [0, γ + ε]},

ρ1 := inf
{f(u) − K

c
: γ +

ε

2
≤ u ≤ γ + ε

}
,

C2 :=
(
p

1
p q

1
q

( (m − 1)ρ1

c

)1− 1
q
) 1

1−m

,

and δ0 is defined in the assertion (i). We claim that this δ satisfies the required property.
Fix a ∈ (γ − δ, γ). Without loss of generality, we may assume that b = b(a, c) > γ + ε/2.
Hence we can choose a t2 > t1 with the property that U(t2) = γ + ε/2.

Define T2 := sup{t ∈ (t2,∞) : U(t) < γ + ε}. Then it remains to show that T2 = ∞.
In fact, by Young’s inequality, we have

V 1−m(t2) +
(m − 1)ρ1

c
(t − t2)

=
(m − 1)ρ1

c

([
q

1
q V

1−m
q (t2)

(
c

(m−1)ρ1

) 1
q
]q

q
+

[
p

1
p (t − t2)

1
p

]p

p

)
≥ C1−m

2 V
1−m

q (t2)(t − t2)
1
p

for all t ≥ t2. It follows from the definition of ρ1, (2.14) and the above estimate that

V (t) =
( 1

V 1−m(t2) + (m − 1)
∫ t

t2
[(f(U(s)) − K)/c]ds

) 1
m−1

≤
( 1

V 1−m(t2) + (m − 1)ρ1(t − t2)/c

) 1
m−1

≤ C2V
1
q (t2)(t − t2)

1
p(1−m) (3.1)

≤ C2V
1
q (t1)(t − t2)

1
p(1−m) (since V (t1) = sup

s∈R

V (s))

≤ C2δ
1
q (t − t2)

1
p(1−m) (by the assertion (i))

for all t ∈ (t2, T2). Now we use (2.10) to estimate U ′(t2) as follows:

U ′(t2) =
∫ t2

−∞
e−c(t2−s)f(U(s))V m(s)ds

≤ K1V
m(t1)

∫ t2

−∞
e−c(t2−s)ds

=
K1V

m(t1)
c

<
K1δ

c
.
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With these preparations, we can come to the assertion of the claim. First we show
that T2 − t2 > 2. Indeed, combining the above estimate on U ′(t2) with (2.8), this yields
that for all t ∈ (t2, T2) we have

U(t) < U(t2) +
U ′(t2)

c
+

K1

c

∫ t

t2

V m(s)ds

≤ U(t2) +
U ′(t2)

c
+

K1V
m(t1)
c

(t − t2)

< γ +
ε

2
+

K1δ

c2
+

K1δ

c
(t − t2).

This together with the definition of δ implies that T2 − t2 > 2. (Otherwise, we have
U(T2) ≤ γ + 3ε/4, a contradiction to the definition of T2.) Therefore, by using (2.8)
again, it follows that for all t ∈ (t2, T2), we have

U(t) < U(t2) +
U ′(t2)

c
+

K1

c

∫ t2+1

t2

V m(s)ds +
K1

c

∫ t

t2+1

V m(s)ds

≤ U(t2) +
U ′(t2)

c
+

K1V
m(t1)
c

+
K1

c

∫ t

t2+1

V m(s)ds (since V (t1) = sup
s∈R

V (s))

< γ +
ε

2
+

K1δ

c2
+

K1δ

c
+

K1

c

∫ t

t2+1

Cm
2 δ

1
q (s − t2)

m
p(1−m) ds

(by (3.1) and δ ∈ (0, 1))

< γ +
ε

2
+

K1δ
1
q

c2
+

K1δ
1
q

c
+

K1C
m
2 δ

1
q

c[ m
p(m−1) − 1]

(since δ ∈ (0, 1))

≤ γ + ε (by the definition of δ).

This implies that T2 = ∞ and hence the proof is completed. �
The proof of the following lemma is only a slight modification of [1, Lemma 2.3], and

so we omit it.

Lemma 3.3. It follows that

b(a, c) > a + K

∫ u0

a

1
f(u)

du

for any a ∈ (0, γ) and c > c(a), where u0 is defined in the assumption (A2).

Lemma 3.4. For each given a0 ∈ (0, γ) and c such that c > c(â) for all â ∈ (a0−δ0, a0+δ1)
and for some δ0 ∈ (0, a0) and δ1 ∈ (0, γ−a0), the function b(a, c) is continuous at a = a0.

Proof. For each given a ∈ (a0 − δ0, a0 + δ1), we let (U(t; a), U ′(t; a), V (t; a)) be the
solution of the problem (1.4)–(1.5) such that U(0; a) = γ. We note that (U(t; a), U ′(t; a),
V (t; a)) with a ∈ (a0 − δ0, a0 + δ1) is globally defined by the choice of c and Lemma 2.4.
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Set

b0 = b(a0), ε0 =
1
4
(b0 − γ), ρ0 = inf

{f(u) − K

c
: u ∈ [b0 − ε0, b0 + ε0]

}
,

K0 = max{f(u) : u ∈ [b0 − ε0, b0 + ε0]
}
, C2 :=

(
p

1
p q

1
q

( (m − 1)ρ0

c

)1− 1
q
) 1

1−m

.

Here we choose p, q > 1 such that m/[p(m − 1)] > 1 and 1/p + 1/q = 1. Fix an
ε ∈ (0, ε0/2). Using the fact that limt→+∞(U(t; a0), U ′(t; a0), V (t; a0)) = (b0, 0, 0), we
can choose a sufficiently large t2 such that

b0 − 1
4ε < U(t; a0) < b0, 0 < U ′(t; a0) < c

32 ε, and

0 < V (t; a0) < min
{(

3c
64K0

ε
) 1

m

,
(

3c
64K0

· [ m
p(m−1)−1]

Cm
2

ε
) q

m
}

for all t ≥ t2. Recall that for any negative t with |t| � 1, (U(t; a), U ′(t; a), V (t; a))
lies on the centre manifold of the system (2.3) at (a, 0, 0). Hence by using the repre-
sentation (2.22) of this centre manifold and the proof of existence of solutions to the
system (2.17), we see that (U(t; a), U ′(t; a), V (t; a)) is continuous on (−∞, t̂2] for some
negative t̂2 with |t̂2| � 1. Then, in the interval [t̂2, t2], we use the standard theory for
the continuous dependence of solutions of differential equations on the parameters to
conclude that there is a positive δ such that for all a ∈ (a0−δ, a0 +δ) ⊂ (a0−δ0, a0 +δ1),
the following hold:

b0 − 1
2 ε < U(t2; a) < b0 + 1

2ε, 0 < U ′(t2; a) < c
16 ε, and

0 < V (t2; a) < min
{(

3c
32K0

ε
) 1

m

,
(

3c
32K0

· [ m
p(m−1)−1]

Cm
2

ε
) q

m
}

.
(3.2)

Here we have used the fact that U ′(·; a) > 0 and V (·; a) > 0 on R.
Set T2 := sup{t ∈ (t2,∞) : |U(t; a)− b0| < ε}. Then it remains to show that T2 = ∞.

First, by using a similar argument as in (3.1), we have that

V (t; a) ≤ C2V
1
q (t2, a)(t − t2)

1
p(1−m) (3.3)

for all t ∈ (t2, T2). Next we show that T2 − t2 > 2. Indeed, by applying (2.8) (with
t0 = t2) and using the definition of K0, it follows that

U(t; a) < U(t2; a) +
U ′(t2; a)

c
+

K0

c

∫ t

t2

V m(s; a)ds

≤ U(t2; a) +
U ′(t2; a)

c
+

K0V
m(t2; a)
c

(t − t2) (since V ′(·; a) < 0 on [t2, T2))

≤ b0 +
1
2
ε +

1
16

ε +
3ε

32
(t − t2) (by (3.2))

for all t ∈ (t2, T2). This implies that T2 − t2 > 2, since otherwise, we have U(T2; a) ≤
b0 + 3ε/4, a contradiction to the definition of T2. Therefore, with the aid of (2.8), the
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fact that V ′(·; a) < 0 on [t2, T2) and the definition of K0, it follows that

U(t; a) < U(t2; a) +
U ′(t2; a)

c
+

K0

c

∫ t2+1

t2

V m(s; a)ds +
K0

c

∫ t

t2+1

V m(s; a)ds

≤ U(t2; a) +
U ′(t2; a)

c
+

K0V
m(t2; a)
c

+
K0

c

∫ t

t2+1

V m(s; a)ds

≤ b0 +
1
2
ε +

1
16

ε +
3
32

ε +
K0

c

∫ t

t2+1

Cm
2 V

m
q (t2; a)(s − t2)

m
p(1−m) ds

(by (3.2), (3.3))

≤ b0 +
21
32

ε +
K0C

m
2 V

m
q (t2; a)

c[ m
p(m−1) − 1]

≤ b0 +
3
4
ε (by (3.2))

for all t ∈ (t2, T2). This implies that T2 = ∞, thereby completing the proof. �
3.2. Proofs of Theorems 1.1–1.3. Now we are ready to prove Theorems 1.1–1.3. In-

deed, the first part of Theorem 1.1 and Theorem 1.2 immediately follow from Lemmas 2.4,
2.2 and 3.1. The first part of Theorem 1.3 follows from Lemmas 3.2, 3.3 and 3.4.

Next, we will show that for each given b0 > γ, there is a nonnegative constant c̄(b0)
such that for each c > c̄(b0), there exists a solution (U, V ) to (1.4)–(1.5) for some a ∈
(0, γ). Indeed, by Lemmas 3.3 and the fact that∫ u0

0+

1
f(u)

du = +∞,

we can choose an â ∈ (0, γ) such that b(â, c) > b0 for all c > c(â). Set c̄(b0) :=
supa∈[â,γ) c(a). Note that c̄(b0) = 0 for m ∈ (1, 2] by Lemma 2.4. Recall from part
(ii) of Lemma 3.2 that lima→γ− b(a, c) = γ for each c > 0. Together with Lemma 3.4,
we can conclude that for each c > c̄(b0) there exists an a(b0, c) ∈ (â, γ) such that
b(a(b0, c), c) = b0. Hence the “converse” part of Theorem 1.1 follows.

Finally, we turn to the proof of the second part of Theorem 1.3. Given 0 < a1 < a2 <

γ, set bi := limt→+∞ U(t; ai), i = 1, 2. Let (U(t; ai), U ′(t; ai), V (t; ai)), i = 1, 2, be the
solution of the problem (1.4)–(1.5) such that U(0; ai) = γ. We can conclude from part (v)
of Lemma 2.1 and part (iv) of Lemma 2.2 that U(t; a1) < U(t; a2), U ′(t; a1) < U ′(t; a2),
and V (t; a1) < V (t; a2) for negative t with |t| � 1. Then following the arguments of [1,
pp. 671–673] we have b1 > b2.
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