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Abstract. The dynamics of the magnetic distribution in a ferromagnetic material

is governed by the Landau-Lifshitz equation, which is a nonlinear geometric dispersive

equation with a nonconvex constraint that requires the magnetization to remain of unit

length throughout the domain. In this article, we present a mass-lumped finite element

method for the Landau-Lifshitz equation. This method preserves the nonconvex con-

straint at each node of the finite element mesh, and is energy nonincreasing. We show

that the numerical solution of our method for the Landau-Lifshitz equation converges to

a weak solution of the Landau-Lifshitz-Gilbert equation using a simple proof technique

that cancels out the product of weakly convergent sequences. Numerical tests for both

explicit and implicit versions of the method on a unit square with periodic boundary

conditions are provided for structured and unstructured meshes.

Micromagnetics is the study of the behavior of ferromagnetic materials at sub-micron

length scales, including magnetization reversal and hysteresis effects [22]. The dynamics

of the magnetic distribution of a ferromagnetic material occupying a region Ω ⊂ R
2 or

R
3 is governed by the Landau-Lifshitz (LL) equation [22, 25, 36]. The magnetization
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m(x, t) : Ω× [0, T ] → S
2 ⊂ R

3 satisfies

⎧⎪⎪⎨
⎪⎪⎩
∂tm = −m× h− αm× (m× h) in Ω,
∂m
∂ν = 0 on ∂Ω,

m(x, 0) = m0(x),

(0.1)

where α is a dimensionless damping parameter and h is an effective field given by

h(m) := − δE
δm

(m) = ηΔm−Q(m2e2 +m3e3) + hs(m) + he. (0.2)

Here η is the exchange constant, Q is an anisotropy constant, hs is the stray field, he

is an external field, and δE
δm is the functional derivative of the Landau-Lifshitz energy,

defined by

E(m) =
η

2

∫
Ω

|∇m|2 + Q

2

∫
Ω

m2
2 +m2

3 −
1

2

∫
Ω

hs(m) ·m−
∫
Ω

he ·m. (0.3)

The first term is the exchange energy, which tries to align the magnetization locally; the

second term is the anisotropy energy, which tries to orient the magnetization in certain

easy direction taken to be e1; the third term is the stray field energy, which is induced

by the magnetization distribution inside the material; and the last term is the external

field energy, which tries to align the magnetization with an external field. We denote the

lower order terms in (0.2) by

h̄(m) := −Q(m2e2 +m3e3) + hs(m) + he. (0.4)

When considering mathematical properties such as existence and regularity of the solu-

tion, these terms can be considered lower order compared to the exchange term [6]. They

also have fewer derivatives than the exchange term, and can be treated as lower order

when developing numerical methods.

The stray field hs depends on m via hs = −∇φ, where the potential φ satisfies

Δφ =

{
∇ ·m in Ω,

0 on ∂Ω,

[φ]∂Ω = 0,

[
∂φ

∂ν

]
∂Ω

= −m · ν.
(0.5)

Here [v]∂Ω(x) = v(x+)− v(x−) is the jump in v across the boundary ∂Ω from inside (−)

to outside (+); see [25].

There are several equivalent forms of the Landau-Lifshitz (LL) equation. The following

is the Landau-Lifshitz-Gilbert (LLG) equation:

∂tm− αm× ∂tm = −(1 + α2)(m× h). (0.6)
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Also, the equation

α∂tm+m× ∂tm = (1 + α2)(h− (h ·m)m) (0.7)

is equivalent to LL and LLG; see [6]. If only the gyromagnetic term is present in equation

(0.1), i.e. if ∂tm = −m × Δm, it is called a Schrödinger map into S
2 [29]. This is a

geometric generalization of the linear Schrödinger equation. If only the damping term is

present, i.e. if ∂tm = −m× (m×Δm), it is called a harmonic map heat flow into S
2 [29].

In 1935, Landau and Lifshitz [37] calculated the structure of the domain walls between

antiparallel domains, which started the theory of micromagnetics. The theory was further

developed by W. F. Brown, Jr. in [15]. Applications of micromagnetics include magnetic

sensor technology, magnetic recording, and magnetic storage devices such as hard drives

and magnetic memory (MRAM) [22].

Finite difference methods for micromagnetics can be derived in two different ways [41].

The first is a field-based approach in which the effective field h is discretized directly,

and the other is an energy-based approach in which the effective field is derived from the

discretized energy. Finite element methods can also be derived in a number of ways. In

[44], the Landau-Lifshitz-Gilbert equation (0.6) is used to obtain a discrete system by

approximating the magnetization by piecewise linear function on a finite element mesh

and then applying time integration in the resulting system of ODEs. In [22], the effective

field h is calculated by taking a functional derivative of the discretized energy, where

the magnetization in the energy formula is approximated by piecewise linear functions.

Extensive work has also been done developing time stepping schemes for micromagnetics

[18, 25]. In [31], semi-analytic integration in time was introduced, which is explicit and

first order in time and allows stepsize control. In [34,38], geometric integration methods

were applied to the Landau-Lifshitz equation. In [26, 47], a Gauss-Seidel projection

method was developed that treats the gyromagnetic term and damping term separately

to overcome the difficulty of the stiffness and the nonlinearity of the equation.

However, relatively little work has been done deriving error estimates or establishing

rigorous convergence results for weak solutions. In a series of papers [4, 6, 8], Alouges

and various co-authors introduced a convergent finite element method based on equation

(0.7), an equivalent form of the Landau-Lifshitz equation, that is first order in time. The

idea is to use a tangent plane formulation at each timestep, where the velocity vector lies

in the finite element space perpendicular to the magnetization at each node. One advan-

tage of this method is that at each step, only a linear system has to be solved, although

the Landau-Lifshitz-Gilbert equation is nonlinear. More recently, they developed a for-

mally second order in time scheme [7,35] that performs better than first order in practice,

though not fully at second order. Another finite element scheme was introduced by Bar-

tels and Prohl in [11] based on the Landau-Lifshitz-Gilbert equation, which is an implicit,

unconditionally stable method, but involves solving nonlinear equations at each timestep.

This method is second order in time; however, there is still a time step constraint, namely

that k/h2 remain bounded, to guarantee the existence of the solutions of the nonlinear

systems. Cimrák [19] introduced a finite element method based on the Landau-Lifshitz

equation, which is an implicit, unconditionally stable method, but also has nonlinear
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inner iterations. We note that the Backward Euler method and higher-order diagonally

implicit Runge-Kutta (DIRK) methods [30] generally involve solving nonlinear equations

at each internal Runge-Kutta stage when applied to nonlinear PDEs.

In this article, we introduce a family of mass-lumped finite element methods for the

Landau-Lifshitz equation. The implicit version is similar in computational complexity

to the algorithms in [4, 6, 8] in that each timestep involves solving a large sparse linear

system. The explicit method is more efficient than the explicit version of [4, 6, 8] as

it is completely explicit — it does not even require that a linear system involving a

mass matrix be solved as the effective mass matrix is diagonal. The method involves

finding the velocity vector in the tangent plane of the magnetization by discretizing the

Landau-Lifshitz equation instead of the Landau-Lifshitz-Gilbert equation, as was done

in [4, 6–8, 35]. By building a numerical scheme based on the Landau-Lifshitz equation

instead of the Landau-Lifshitz-Gilbert equation, we can naturally apply the scheme to

limiting cases such as the Schrödinger map or harmonic map heat flow [12,20,29,32,33].

The main result of the paper is a proof that the numerical solution of our scheme for

the Landau-Lifshitz equation converges to a weak solution of the Landau-Lifshitz-Gilbert

equation, using a simple technique that cancels out the product of two weakly convergent

sequences. Our proof builds on tools developed in [8]. For simplicity, we defer the

treatment of the stray field to future work. This term poses computational challenges

[1,2,13,16,21,23,27,39,40,43,46,48], but does not affect the convergence results since it

is a lower order term in comparison to the exchange term; see [8].

The paper is organized as follows. In section 1, we introduce a finite element mesh

and review the weak formulation of the Landau-Lifshitz-Gilbert equation. In section 2,

the main algorithm and the main theorem will be introduced. In section 3, we conduct

a numerical test for the equation h = Δm on the unit square with periodic boundary

conditions, where an exact analytical solution is known from [24]. In section 4, the proof

of the main theorem will be presented.

1. Weak solutions, meshes and the finite element space. Let us denote ΩT =

Ω× (0, T ). The definition of a weak solution of the Landau-Lifshitz-Gilbert equation is

given by

Definition 1.1. Letm0(x) ∈ H1(Ω)3 with |m0(x)| = 1 a.e. Thenm is a weak solution

of (0.6) if for all T > 0,

(i) m(x, t) ∈ H1(ΩT )
3, |m(x, t)| = 1 a.e.,

(ii) m(x, 0) = m0(x) in the trace sense,

(iii) m satisfies∫
ΩT

∂tm · φ− α

∫
ΩT

(m× ∂tm) · φ (1.1)

= (1 + α2)η

d∑
l=1

∫
ΩT

(m× ∂xl
m) · ∂xl

φ− (1 + α2)

d∑
l=1

∫
ΩT

(m× h̄(m)) · φ.

for all φ ∈ H1(ΩT )
3.
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(iv) m satisfies an energy inequality

C

∫
ΩT

|∂tm|2 + E(m(x, T )) ≤ E(m(x, 0)). (1.2)

for some constant C > 0, where the energy E(m) is defined in equation (0.3).

In [6,11], the value of C in (iv) is taken to be C = α
1+α2 . The existence of global weak

solution of the Landau-Lifshitz equation in Ω ⊂ R
3 into S

2 was proved in [9, 28]. The

nonuniqueness of weak solution was proved in [9].

Let the domain Ω ⊂ R
d where d = 2 or 3 be discretized into triangular or tetrahedral

elements {Th}h of mesh size at most h with vertices (xi)
N
i=1. Let the family of partitions

T = {Th}h be admissible, shape regular and uniform [14]. Let {φi}1≤i≤N be piecewise

linear nodal basis functions for T , such that φi(xj) = δij , where δij is a Kronecker

delta function. We will consider a vector-valued finite element space Fh defined by

Fh = {wh | wh(x) =
∑N

i=1 w
h
i φi(x), wh

i ∈ R
3}. The discrete magnetization mh is

required to belong to the submanifold Mh of Fh defined by Mh = {mh ∈ Fh | mh(x) =∑N
i=1 m

h
i φi(x), |mh

i | = 1}. We define the interpolation operator Ih : C0(Ω,R3) → Fh by

Ih(m) =
N∑
i=1

m(xi)φi(x). (1.3)

We need the following additional conditions for our finite element method: There exist

some constants C1, C2, C3, C4 > 0 such that

C1h
d ≤ bi =

∫
Ω

φi ≤ C2h
d,

|Mij | =
∣∣∣∣
∫
Ω

φiφj

∣∣∣∣ ≤ C3h
d,

|∂xl
φi| ≤

C4

h∫
Ω

∇φi · ∇φj ≤ 0, for i �= j,

(1.4)

for all h > 0, i, j = 1, . . . , N and l = 1, . . . , d.

2. The finite element scheme, the algorithm, and the main theorem. To

illustrate how we obtain Algorithm 1 below, consider the simple case in which only the

exchange energy term is present in the effective field, i.e. h = η�m from (0.2). Let’s first

consider the weak form of the Landau-Lifshitz equation with h = η�m,

∫
ΩT

∂tm · w = η
d∑

l=1

∫
ΩT

(m× ∂xl
m) · ∂xl

w

− αη

d∑
l=1

∫
ΩT

∂xl
m · ∂xl

w + αη

d∑
l=1

∫
ΩT

(∂xl
m · ∂xl

m)(m · w).
(2.1)



388 EUGENIA KIM AND JON WILKENING

Taking this weak form as a hint, we would like to find v =
∑N

j=1 vjφj ∈ Fh such that

∫
Ω

N∑
j=1

vjφj · wiφi = η

d∑
l=1

N∑
j=1

∫
Ω

(mi ×mj∂xl
φj) · ∂xl

φi wi

− αη

d∑
l=1

N∑
j=1

∫
Ω

mj∂xl
φj · ∂xl

φiwi + αη

d∑
l=1

N∑
j=1

∫
Ω

(∂xl
φjmj ·mi)(mi · wi∂xl

φi)

(2.2)

for i = 1, . . . , N , where m =
∑N

j=1mjφj(x) ∈ Mh, w ∈ (C∞(Ω))3 and wi = Ih(w)(xi) =

w(xi). Then, with wi as (1, 0, 0), (0, 1, 0) or (0, 0, 1) in equation (2.2), we obtain

(Mv)i = η mi × (Am)i + αη mi × (mi × (Am)i) (2.3)

for i = 1, . . . , N , where M =

⎡
⎣M 0 0

0 M 0

0 0 M

⎤
⎦ and A =

⎡
⎣A 0 0

0 A 0

0 0 A

⎤
⎦ are 3N × 3N block

diagonal matrices with each blockM and A a mass or stiffness matrix, i.e. Mij =
∫
Ω
φiφj ,

and Aij =
∑d

l=1

∫
Ω
∂xl

φi∂xl
φj . Note that mi ·(Mv)i = 0, so approximating v by v̂ = Mv

b

yields a tangent vector to the constraint manifold Mh, where bi =
∫
Ω
φi. The left hand

side of (2.3) is then biv̂i which is a mass-lumping approximation. This suggests the

following algorithm.

Algorithm 1. For a given time T̄ > 0, set J = [ T̄k ].

(1) Set an initial discrete magnetization m0 at the nodes of the finite element mesh

described in section 1 above.

(2) For j = 0, . . . , J ,

a. compute a velocity vector v̂ji at each node by

v̂ji =
(Mvj)i

bi
=

η mj
i × (Am+ θkAv̂)ji + αη mj

i × (mj
i × (Am+ θkAv̂)ji )

bi

−mj
i × (Mh̄(m) + θkMh̄(v̂))ji + αmj

i × (mj
i × (Mh̄(m) + θkMh̄(v̂))ji )

bi

(2.4)

for θ ∈ [0, 1] and for i = 1, . . . , N .

b. Compute mj+1
i =

mj
i+kv̂j

i

|mj
i+kv̂j

i |
for i = 1, . . . , N .

We define the time-interpolated magnetization and velocity as in [8]:

Definition 2.1. For (x, t) ∈ Ω× [jk, (j + 1)k) ⊂ Ω× [0, T ), where T = Jk, define

mh,k(x, t) = mj(x),

m̄h,k(x, t) =
t− jk

k
mj+1(x) +

(j + 1)k − t

k
mj(x),

v̂h,k(x, t) = v̂j(x),

vh,k(x, t) = vj(x).
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The main theorem in this article is the following theorem, which is proved in section

4.

Theorem 2.2. Let m0 ∈ H1(Ω, S2) and suppose mh
0 → m0 in H1(Ω) as h → 0. Let θ ∈

[0, 1], and for 0 ≤ θ < 1
2 , assume that k

h2 ≤ C0, for some C0 > 0. If the triangulation T =

{Th}h satisfies condition (1.4), then the sequence {mh,k}, constructed by Algorithm 1

and Definition 2.1, has a subsequence that converges weakly to a weak solution of the

Landau-Lifshitz equation.

3. Numerical results. Before proving Theorem 2.2, we demonstrate the effective-

ness of the scheme on a test problem. We conduct a numerical experiment for the

Landau-Lifshitz equation (0.1) with effective field involving only the exchange energy

term, with h = Δm in equation (0.2), on the unit square with periodic boundary con-

ditions. This corresponds to setting η = 1 and h̄ = 0 in equation (2.4) in Algorithm 1.

For the convergence study, we used an explicit method (θ = 0) and an implicit method

(θ = 0.5) on a structured and unstructured mesh. The unstructured mesh with point

and line sources, which is an arbitrary mesh, was generated using DistMesh [42], with

an example shown in Figure 1.

0 0.1 0. 02 .3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Unstructured mesh with point and line sources, with h = 1/32.

The L∞ and L2 errors were measured relative to an exact solution for the Landau-

Lifshitz equation with h = Δm from [24], namely

mx(x1, x2, t) =
1

d(t)
sinβ cos(k(x1 + x2) + g(t)),

my(x1, x2, t) =
1

d(t)
sinβ sin(k(x1 + x2) + g(t)),

mz(x1, x2, t) =
1

d(t)
e2k

2αt cosβ.

(3.1)
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Here β = π
24 , k = 2π, d(t) =

√
sin2 β + e4k2αt cos2 β and g(t) = 1

α log(d(t)+e2k
2αt cos β

1+cosβ ).

The numerical results are summarized in Tables 1 and 2. Figure 2 shows the convergence

rate of the methods, which is first order in the time step k and second order in the mesh

size h.

10-3 10-2 10-1

spatial step h

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

At time 0.001

1

2

structured - L  error

structured - L2 error
unstructured - L  error
unstructured - L2 error

10-3 10-2 10-1
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10-5

10-4

10-3

10-2

10-1

E
rr

o
r

At time 0.001

1

2

structured - L  error

structured - L2 error
unstructured - L  error
unstructured - L2 error

Fig. 2. Convergence plot, Top: Explicit method, Bottom: Implicit method.
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Table 1. Explicit method (θ = 0) : L∞ and L2 error and con-
vergence rates on a structured and unstructured mesh with spatial
step h, time step k = 8 · 10−5h2 and time 0.001.

Structured mesh Unstructured mesh
1
h ||m−mh||L∞ rate ||m−mh||L2 rate ||m−mh||L∞ rate ||m−mh||L2 rate

32 8.22e-05 2.00 7.40e-04 2.00 5.61e-03 1.28 3.83e-03 1.65

64 2.06e-05 2.00 1.85e-04 2.00 2.32e-03 1.56 1.22e-03 1.97

128 5.15e-06 2.00 4.63e-05 2.00 7.87e-04 1.81 3.13e-04 2.01

256 1.29e-06 1.16e-05 2.25e-04 7.77e-05

Table 2. Implicit method (θ = 1
2
) : L∞ and L2 error and con-

vergence rates on a structured and unstructured mesh, with spatial
step h, time step k = 0.00256h2 and time 0.001.

Structured mesh Unstructured mesh
1
h ||m−mh||L∞ rate ||m−mh||L2 rate ||m−mh||L∞ rate ||m−mh||L2 rate

32 8.26e-05 2.00 7.40e-04 2.00 5.61e-03 1.28 3.83e-03 1.65

64 2.07e-05 2.00 1.85e-04 2.00 2.32e-03 1.56 1.22e-03 1.97

128 5.17e-06 2.00 4.63e-05 2.00 7.87e-04 1.81 3.13e-04 2.01

256 1.29e-06 1.16e-05 2.25e-04 7.77e-05

3.1. Going beyond first order in time. In this section, we propose a method which is

second order in time, by replacing the nonlinear projection step 2 (b) in Algorithm 1

by a linear projection step, and test the convergence order. In Algorithm 1, step 2

(a) can be viewed as the predictor step and 2 (b) as the corrector step. The corrector

step was used to conserve the length of the magnetization at each node. By replacing

this nonlinear projection by a linear projection step, it not only preserves the length of

the magnetization, but also makes the method higher order. Moreover, it has a similar

complexity as the nonlinear projection step in that you only need to solve a 3× 3 matrix

equation for each node. We defer a rigorous analysis to future work and present here the

modified algorithm and some convergence test results.

Algorithm 2. For a given time T̄ > 0, set J = [ T̄k ].

(1) Set an initial discrete magnetization m0 at the nodes of the finite element mesh

described in section 1 above.
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(2) For j = 0, . . . , J ,

a. compute an intermediate magnetization vector m∗
i at each node by

m∗
i −mj

i

k
= v̂ji =

(Mvj)i
bi

=
η mj

i × (Am+ θkAv̂)ji + αη mj
i × (mj

i × (Am+ θkAv̂)i)
j

bi

− mj
i × (Mh̄(m) + θkMh̄(v̂))ji + αmj

i × (mj
i × (Mh̄(m) + θkMh̄(v̂))i)

j

bi

for θ ∈ [0, 1] and for i = 1, . . . , N .

b. Compute mj+1
i for i = 1, . . . , N .

mj+1
i −mj

i

k
=

=
η

mj+1
i +mj

i

2 × (Am
j+1/2
i ) + αη

mj+1
i +mj

i

2 × (m
j+1/2
i × (Amj+1/2)

bi

−
mj+1

i +mj
i

2 ×Mh̄(mj+1/2)i + α
mj+1

i +mj
i

2 × (m
j+1/2
i × (Mh̄(m

j+1/2
i ))

bi

where mj+1/2 = mj+m∗

2 for i = 1, . . . , N .

As before, we conduct a numerical test for the Landau-Lifshitz equation (0.1) with

effective field involving only the exchange energy term, with h = Δm in equation (0.2),

on the unit square with periodic boundary conditions, to compare the two algorithms.

For the convergence study, we used an implicit method (θ = 0.5) on a structured and

unstructured mesh. One of the unstructured meshes was shown in Figure 1. The L2

errors were measured relative to an analytical solution (3.1) for the Landau-Lifshitz

equation with h = Δm. The numerical results are summarized in Table 3. Figure 3

shows the convergence rates of the methods, which shows first order in k for Algorithm 1

and second order convergence for Algorithm 2.

Table 3. Implicit method (θ = 1
2
) : L2 error and convergence

rates on a structured and unstructured mesh, with spatial step h,
time step k = 0.04h and time 0.01.

Structured mesh Unstructured mesh
1
h Alg. 1 rate Alg. 2 rate Alg. 1 rate Alg. 2 rate

32 5.14e-04 1.32 1.87e-04 2.01 2.10e-03 1.61 1.91e-03 1.72

64 2.06e-04 1.18 4.66e-05 2.00 6.87e-04 1.75 5.81e-04 2.01

128 9.12e-05 1.10 1.16e-05 2.00 2.04e-04 1.57 1.44e-04 2.03

256 4.27e-05 2.91e-06 6.84e-05 3.53e-05



CONVERGENCE OF A MASS-LUMPED FINITE ELEMENT METHOD 393

10-2

spatial step h

10-6

10-5

10-4

10-3

E
rr

o
r

At time 0.01

1

2

1

Algorithm 1
Algorithm 2

10-2

spatial step h

10-5

10-4

10-3

10-2

E
rr

o
r

At time 0.01

1

2
1

Algorithm 1
Algorithm 2

Fig. 3. Convergence plot, Top: Structured mesh, Bottom: Unstruc-

tured mesh.

4. Proof of Theorem 2.2. In this section, we present the proof of the theorem,

which states that the sequence {mh,k}, constructed by Algorithm 1 and Definition 2.1,

has a subsequence that converges weakly to a weak solution m of the Landau-Lifshitz-

Gilbert equation under some conditions. That is, we show that the limit m satisfies

Definition 1.1. In section 4.1, we derive a discretization of the weak form of the Landau-

Lifshitz-Gilbert equation satisfied by the {mh,k}, namely (4.3). In section 4.2, we derive

energy estimates to show that the sequences mh,k, m̄h,k and v̂h,k converge to m in a

certain sense made precise in section 4.3. In section 4.4, we show that each term of the

discretization of the weak form converges to the appropriate limit, so that the limit m

satisfies the weak form of the Landau-Lifshitz-Gilbert equation. In section 4.5, we show

that the limit m satisfies the energy inequality (1.2) in Definition 1.1 (iv). Finally, in

section 4.6, we establish that the magnitude of m is 1 a.e. in ΩT .

4.1. Equations that mh,k and vh,k satisfy. In this section, we derive a discretization

of the weak form of the Landau-Lifshitz-Gilbert equation. This form is easier to use for

the proof of Theorem 2.2, since it does not involve the product of the weakly convergent
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sequences. In general, a product of weakly convergent sequences is not weakly conver-

gent. It is convergent only in some certain cases, such as when the sequences satisfy the

hypothesis of the div-curl lemma [17, 45].

The generalized version of equation (2.2) including all the terms in the effective field

h (0.2) and with 0 ≤ θ ≤ 1 is

∫
Ω

vh,k · wh = η
∑
l,i

∫
Ω

(mh,k
i × ∂xl

(mh,k + θkv̂h,k)) · ∂xl
φi w

h
i

− αη
∑
l,i

∫
Ω

∂xl
(mh,k + θkv̂h,k) · ∂xl

φiw
h
i

+ αη
∑
l,i

∫
Ω

(∂xl
(mh,k + θkv̂h,k) ·mh,k

i )(mh,k
i · wh

i )∂xl
φi

−
∑
i

∫
Ω

(mh,k
i × h̄(mh,k + θkv̂h,k)) · φiw

h
i

+ α
∑
i

∫
Ω

h̄(mh,k + θkv̂h,k) · φiw
h
i

− α
∑
i

∫
Ω

(h̄(mh,k + θkv̂h,k) ·mi)(mi · wh
i φi).

(4.1)

In fact, by taking wh
i as (1, 0, 0), (0, 1, 0) and (0, 0, 1) in (4.1), we get (2.4) in Algorithm 1.

Setting wh =
∑N

j=1(m
h,k
j × uh

j )φj in (4.1), we have

−
∑
i

∫
Ω

(mh,k
i × vh,k) · uh

i φi = η
∑
l

∫
Ω

∂xl
(mh,k + θkv̂h,k) · ∂xl

uh

− η
∑
l,i

∫
Ω

(∂xl
(mh,k + θkv̂h,k) ·mh,k

i ) (mh,k
i · uh

i )∂xl
φi

+ αη
∑
l,i

∫
Ω

(mh,k
i × ∂xl

(mh,k + θkv̂h,k)) · ∂xl
φiu

h
i

−
∑
i

∫
Ω

(h̄(mh,k + θkv̂h,k)) · φiu
h
i

+
∑
i

∫
Ω

(h̄(mh,k + θkv̂h,k) ·mh,k
i ) (mh,k

i · uh
i )φi

− α
∑
i

∫
Ω

(mh,k
i × h̄(mh,k + θkv̂h,k)) · uh

i φi.

(4.2)

Equations (4.1) and (4.2) have terms that contain the product of weakly convergent

sequences, namely the third term of the right hand side of (4.1), and the second term

of the right hand side of (4.2), αη
∑

l,i

∫
Ω
(∂xl

(mh,k + θkv̂h,k) ·mh,k
i )(mh,k

i ·wh
i )∂xl

φi. By

adding α times equation (4.2) to equation (4.1), we eliminate the terms that contain the
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product of weakly convergent sequences:∫
Ω

[
vh,k · wh − α

∑
i

(mh,k
i × vh,k) · wh

i φi

]

= (1 + α2)

[
η
∑
l,i

∫
Ω

[
(mh,k

i × ∂xl
mh,k) · ∂xl

φiw
h
i + θk(mh,k

i × ∂xl
v̂h,k) · ∂xl

φiw
h
i

]

−
∑
i

∫
Ω

[
(mh,k

i × h̄(mh,k)) · wh
i φi + θk(mh,k

i × h̄(v̂h,k)) · wh
i φi

]]
.

(4.3)

This is a similar procedure to subtracting α times the following equation:

m× ∂tm = −m× (m× h) + αm× h (4.4)

from the Landau-Lifshitz equation (0.1) to get the Landau-Lifshitz-Gilbert equation

(0.6). Here, equation (4.4) is obtained by taking m× the Landau-Lifshitz equation (0.1).

4.2. Energy inequality. In this section, we derive the energy inequalities we will need

to prove Theorem 2.2, namely (4.17) for 0 ≤ θ < 1
2 and (4.18) for 1

2 ≤ θ ≤ 1. We

will use Theorem 1 from [8], which states that the exchange energy is decreased after

renormalization. This result goes back to [5, 10]:

Theorem 4.1. For the P 1 approximation in Ω ⊂ R
2, if∫

Ω

∇φi · ∇φj ≤ 0, for i �= j, (4.5)

then for all w =
∑N

i=1 wiφi ∈ Fh such that |wi| ≥ 1 for i = 1, . . . , N , we have

∫
Ω

∣∣∣∣∇Ih(
w

|w| )
∣∣∣∣
2

≤
∫
Ω

|∇w|2 . (4.6)

In 3D, we have (4.6), if an additional condition that all dihedral angles of the tetra-

hedra of the mesh are smaller than π
2 is satisfied, along with (4.5). Also, we will use

inequality (14) of [8], ∥∥h̄(m)
∥∥
L2 ≤ C5 ‖m‖L2 + C5 (4.7)

and equation (25) from [7],

‖hs(m)‖L2 ≤ C5 ‖m‖L2 (4.8)

where C5 are positive constants, depending only on Ω. Furthermore, we will use an

inequality (20) of [8] in the proof, which states there exists C6 > 0 such that for all

1 ≤ p < ∞ and all φh ∈ Fh, we have

1

C6
‖φh‖pLp ≤ hd

N∑
i=1

|φh(xi)|p ≤ C6 ‖φh‖pLp . (4.9)
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Moreover, we will assume that there exists C7 > 0 such that∫
Ω

|∇vh|2 ≤ C7

h2

∫
Ω

|vh|2 (4.10)

for all vh ∈ Fh.

Taking wh =
∑N

j=1(m
h,k
j × uh

j )φj in (4.3), and setting uh = v̂h,k, we have

− α
∑
i

∫
Ω

vh,ki · v̂iφi = (1 + α2)

[
η
∑
l,i

∫
Ω

[
(∂xl

mh,k · ∂xl
φiv̂i) + θk(∂xl

v̂h,k · ∂xl
φiv̂i)

]

−
∑
i

∫
Ω

[
(h̄(mh,k) · v̂i)φi + θk(h̄(v̂h,k) · v̂i)φi

]]
(4.11)

where we have used the fact mh,k
i · v̂h,ki = 0 for i = 1, . . . , N . This equation can be

written as

(∇m,∇v̂) = −θk ‖∇v̂‖2L2 −
α

1 + α2

1

η

∑
i

|(Mv)j |2
bj

+
1

η
(h̄(m), v̂) +

θk

η
(h̄(v̂), v̂). (4.12)

We now derive an energy estimate. We have

1

2

∥∥∇mj+1
∥∥2
L2 ≤ 1

2

∥∥∇mj + k∇v̂j
∥∥2
L2 =

1

2

∥∥∇mj
∥∥2
L2 + k(∇mj ,∇v̂j) +

1

2
k2

∥∥∇v̂j
∥∥2
L2

≤ 1

2

∥∥∇mj
∥∥2
L2 − k(

α

1 + α2
)
1

η

∑
i

|(Mv)ji |2
b2i

bi +
1

2
k2

∥∥∇v̂j
∥∥2
L2 − θk2

∥∥∇v̂j
∥∥2
L2

+
k

η
(h̄(mj), v̂j) + θ

k2

η
(h̄(v̂j), v̂j)

≤ 1

2

∥∥∇mj
∥∥2
L2 − k(

α

1 + α2
)
1

η

C1

C6

∥∥v̂j∥∥2
L2 − (θ − 1

2
)k2

∥∥∇v̂j
∥∥2
L2 +

k

η
(h̄(mj), v̂j)

+ θ
k2

η
(h̄e, v̂

j)

(4.13)

where the first inequality is obtained by Theorem 4.1, the second inequality by equation

(4.12), and the last inequality by the fact (hs(v̂
j), v̂j) < 0. We have the estimate for the

last two terms of the above inequality:

∣∣(h̄(mj) + θkh̄e, v̂
j)
∣∣ ≤ ∥∥h̄(mj) + θkh̄e

∥∥
L2

∥∥v̂j∥∥
L2 ≤ C8

∥∥v̂j∥∥
L2 ≤ ε

∥∥v̂j∥∥2
L2 +

1

4ε
C2

8

(4.14)

for some C8 > 0, where the second inequality is obtained by equation (4.7) and the last

inequality by Young’s inequality with ε = 1
2

α
1+α2

C1

C6
. Summing the inequality (4.13) from

j = 0, . . . , J − 1 and using (4.14), we get

1

2

∥∥∇mJ
∥∥2
L2 + k(

1

2η
(

α

1 + α2
)
C1

C6
− C7(

1

2
− θ)

k

h2
)

J−1∑
j=0

∥∥v̂j∥∥2
L2 ≤ 1

2

∥∥∇m0
∥∥2
L2 + C9T

(4.15)
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with k
h2 ≤ C0 < 1

2
α

1+α2
C1

C6

1
C7η

, for 0 ≤ θ < 1
2 , and

1

2

∥∥∇mJ
∥∥2
L2 + k(

1

2η

α

1 + α2
)
C1

C6

J−1∑
j=0

∥∥v̂j∥∥2
L2

+ (θ − 1

2
)k2

J−1∑
j=0

∥∥∇v̂j
∥∥2
L2 ≤ 1

2

∥∥∇m0
∥∥2
L2 + C9T

(4.16)

for 1
2 ≤ θ ≤ 1, and for some C9 > 0.

In summary, we have the energy inequalities

1

2

∫
Ω

|∇mh,k(·, T )|2 + (
1

2η
(

α

1 + α2
)
C1

C6
− C7C0)

∫
ΩT

|v̂h,k|2

≤ 1

2

∫
Ω

|∇mh,k(·, 0)|2 + C9T

(4.17)

with C0 < 1
2

α
1+α2

C1

C6

1
C7η

, for 0 ≤ θ < 1
2 and

1

2

∫
Ω

∣∣∇mh,k(·, T )
∣∣2 + (

1

2η

α

1 + α2
)
C1

C6

∫
ΩT

∣∣v̂h,k∣∣2
+ (θ − 1

2
)k

∫
ΩT

∣∣∇v̂h,k
∣∣2 ≤ 1

2

∫
Ω

∣∣∇mh,k(·, 0)
∣∣2 + C9T.

(4.18)

for 1
2 ≤ θ ≤ 1.

4.3. Weak convergence of mh,k, m̄h,k and v̂h,k. In this section, we show the weak

convergence of m̄h,k and v̂h,k and strong convergence of mh,k in some sense, based on

the energy estimates (4.17) and (4.18). We follow similar arguments from section 6 of

[7].

Since we have ∣∣∣∣∣m
j+1
i −mj

i

k

∣∣∣∣∣ ≤
∣∣∣v̂ji ∣∣∣ (4.19)

for i = 1, . . . , N and j = 0, . . . , J − 1, we have

∥∥∂tm̄h,k
∥∥
L2(Ω)

=

∥∥∥∥mj+1 −mj

k

∥∥∥∥
L2(Ω)

≤ C6

∥∥v̂h,k∥∥
L2(Ω)

. (4.20)

Thus, we have

∥∥∂tm̄h,k
∥∥
L2(ΩT )

=

∥∥∥∥mj+1 −mj

k

∥∥∥∥
L2(ΩT )

≤ C6

∥∥v̂h,k∥∥
L2(ΩT )

(4.21)

which is bounded by the energy inequalities, (4.17) for 0 ≤ θ < 1
2 and (4.18) for 1

2 ≤ θ ≤ 1.

Hence, m̄h,k is bounded in H1(ΩT ) and v̂h,k is bounded in L2(ΩT ) by (4.21) and by the

energy inequalities, (4.17) for 0 ≤ θ < 1
2 and (4.18) for 1

2 ≤ θ ≤ 1. Thus, by passing to

subsequences, there exist m ∈ H1(ΩT ) and v̂ ∈ L2(ΩT ) such that

m̄h,k → m weakly in H1(ΩT ),

m̄h,k → m strongly in L2(ΩT ),

v̂h,k → v̂ weakly in L2(ΩT ).

(4.22)
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Moreover, we have

∣∣∣mj+1
i −mj

i − kv̂ji

∣∣∣ =
∣∣∣∣∣ m

j
i + kv̂ji

|mj
i + kv̂ji |

−mj
i − kv̂ji

∣∣∣∣∣ =
∣∣∣1− |mj

i + kv̂ji |
∣∣∣ ≤ 1

2
k2

∣∣∣v̂ji ∣∣∣2 , (4.23)

since |mj
i + kv̂ji | =

√
1 + k2|v̂ji |2 ≤ 1 + 1

2k
2|v̂ji |2, for i = 1, . . . , N and j = 0, . . . , J − 1.

Thus, ∥∥∂tm̄h,k − v̂h,k
∥∥
L1(ΩT )

≤ 1

2
kC2C6

∥∥v̂h,k∥∥2
L2(ΩT )

(4.24)

which converges to 0 as h, k → 0, so

∂tm = v̂. (4.25)

Furthermore, since

∥∥mh,k − m̄h,k
∥∥
L2(ΩT )

=

∥∥∥∥(t− jk)
mj+1 −mj

k

∥∥∥∥
L2(ΩT )

≤ k
∥∥∂tm̄h,k

∥∥
L2(ΩT )

(4.26)

and the right hand side goes to 0 as h, k → 0, we have

mh,k → m strongly in L2(ΩT ). (4.27)

In summary, we have shown that there exist a subsequence of {m̄h,k} that converges

weakly inH1(Ω×(0, T )), a subsequence of {v̄h,k} that converges weakly in L2(Ω×(0, T )),

and a subsequence of {mh,k} converges strongly in L2(ΩT ) based on the energy estimates

(4.17) and (4.18). However, in our numerical tests in section 3, it was not necessary to

take subsequences and the method was in fact second order in space and first order in

time. Thus, there is still a gap in what we are able to prove and the practical performance

of the algorithm in cases where the weak solution is unique and sufficiently smooth.

4.4. The proof that the limit m actually satisfies Landau-Lifshitz-Gilbert equation. In

this section, we show that each term of equation (4.3) converges to the appropriate limit,

so that the limit m of the sequences {m̄h,k} and {mh,k} satisfies the weak form of the

Landau-Lifshitz-Gilbert equation (1.1) in Definition 1.1.

Lemma 4.2. Let the sequences {mh,k}, {m̄h,k}, {v̂h,k}, and {vh,k} be defined by Defi-

nition 2.1. Also, let m ∈ H1(ΩT ) be the limit as in (4.22) and (4.27). Moreover, let’s

assume w ∈ (C∞(ΩT )
3 ∩ (H1(ΩT ))

3, and wh = Ih(w) ∈ Fh as in equation (1.3). Then

we have

lim
h,k→0

∫
ΩT

vh,k · wh = lim
h,k→0

∫ T

0

N∑
j=1

v̂h,kj · wh
j

∫
Ω

φj =

∫
ΩT

∂tm · w. (4.28)

Proof. The difference between the last two terms is bounded by∣∣∣∣
∫
ΩT

Ih(v̂
h,k · wh)− v̂h,k · wh

∣∣∣∣+
∣∣∣∣
∫
ΩT

v̂h,k · wh − ∂tm · w
∣∣∣∣ . (4.29)
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The first term of (4.29) has the following estimate. For each element L, we have v̂h,k(·, t)·
wh(·, t) ∈ C∞(L) and∥∥Ih(v̂h,k · wh)− v̂h,k · wh

∥∥2
L2(L)

≤ C10h
4
∥∥Δ(v̂h,k · wh)

∥∥2
L2(L)

≤ C10h
4(
∥∥Δv̂h,k · wh

∥∥2
L2(L)

+
∥∥∇v̂h,k · ∇wh

∥∥2
L2(L)

+
∥∥v̂h,k ·Δwh

∥∥2
L2(L)

)

≤ C10h
4((

∥∥∇v̂h,k · ∇wh
∥∥2
L2(L)

)

(4.30)

for some C10 > 0, where the first inequality is obtained by the Bramble-Hilbert lemma

[14], and in the last inequality we have used Δv̂h,k = 0 and Δwh = 0 in L, since v̂h,k

and wh are the sum of piecewise linear functions. We have the estimate∥∥∇v̂h,k
∥∥2
L2(Ω)

≤
∑
L

∫
L

|
∑
i

(v̂h,k)i∇φi|2 ≤ C11

h2

∑
L

|
∑
i∈IL

(v̂h,k)i|2|L|

≤ C12h
d−2

N∑
i=1

|(v̂h,k)i|2 ≤ C13

h2

∥∥v̂h,k∥∥2
L2(Ω)

(4.31)

for some constants C11, C12, C13 > 0 and IL is the index of nodes of L, where the second

inequality is obtained by (4.10), and the last inequality by (4.9). Hence,∥∥Ih(v̂h,k · wh)− v̂h,k · wh
∥∥2
L2(ΩT )

≤ C10h
4
∥∥∇v̂h,k · ∇wh

∥∥2
L2(ΩT )

≤ C14h
2
∥∥v̂h,k∥∥

L2(ΩT )

(4.32)

for some constant C14 > 0. Therefore, the first term of (4.29) goes to 0 as h, k → 0.

Moreover, the second term of (4.29) goes to 0 by the weak convergence of v̂h,k to ∂tm

which are equations (4.22) and (4.25) . �

Lemma 4.3. Under the same assumptions of Lemma 4.2, we have

lim
h,k→0

∫
ΩT

∑
i

(mh,k
i × vh,k) · wh

i φi = lim
h,k→0

∫
ΩT

∑
i

(mh,k
i × v̂h,ki ) · wh

i φi

=

∫
ΩT

(m× ∂tm) · w.
(4.33)

Proof. The difference between the last two terms is bounded by∣∣∣∣
∫
ΩT

Ih((m
h,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c

∣∣∣∣
+

∣∣∣∣
∫
ΩT

(mh,k)a(v̂h,k)b(wh)c −ma(∂tm)bwc

∣∣∣∣
(4.34)

for some a, b, c ∈ {1, 2, 3}. The first term of (4.34), has the following estimate. For each

element L, we have (mh,k)a(v̂h,k)b(wh)c ∈ C∞(L) and∥∥Ih((mh,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c
∥∥
L1(L)

≤ C15h
2(
∥∥Δ((mh,k)a(v̂h,k)b(wh)c)

∥∥
L1(L)

)

≤ C15h
2(
∥∥∇(mh,k)a∇(v̂h,k)b(wh)c

∥∥
L1(L)

+
∥∥∇(mh,k)a(v̂h,k)b∇(wh)c

∥∥
L1(L)

+
∥∥(mh,k)a∇(v̂h,k)b∇(wh)c

∥∥
L1(L)

)

(4.35)
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for some constant C15 > 0, where the first inequality is obtained by Bramble-Hilbert

lemma, and in the last inequality we have used Δm̂h,k = 0, Δv̂h,k = 0 and Δwh = 0 in

L, since mh,k v̂h,k and wh are the sum of piecewise linear functions. Hence, we have the

estimate∥∥Ih((mh,k)a(v̂h,k)b(wh)c)− (mh,k)a(v̂h,k)b(wh)c
∥∥
L1(ΩT )

≤ C16h
∥∥(v̂h,k)b∥∥

L2(ΩT )
(
∥∥∇(mh,k)a

∥∥
L2(ΩT )

+ h
∥∥∇(mh,k)a

∥∥
L2(ΩT )

+
∥∥(mh,k)a

∥∥
L2(ΩT )

)

(4.36)

for some constant C16 > 0, where we have used Hölder’s inequality for all the terms and

used (4.31) for the first and the third terms. Therefore, the first term of (4.34) goes to

0 as h, k → 0. Moreover, the second term of (4.34) goes to 0 by the weak convergence of

(v̂h,k)b to (∂tm)b established in (4.22) and (4.25), and strong convergence of (mh,k)a to

ma. �

Lemma 4.4. Under the same assumptions of Lemma 4.2, we have

lim
h,k→0

∑
l,i

∫
ΩT

(mh,k
i × ∂xl

mh,k) · wh
i ∂xl

φi =
∑
l

∫
ΩT

(m× ∂xl
m) · ∂xl

w. (4.37)

Proof. The difference between the last two terms is bounded by∣∣∣∣
∫
ΩT

(∂xl
mh,k)b∂xl

Ih((m
h,k)c(wh)a) −

∫
ΩT

(∂xl
mh,k)b((mh,k)c(∂xl

wh)a)

∣∣∣∣
+

∣∣∣∣
∫
ΩT

(mh,k)c(∂xl
mh,k)b(∂xl

wh)a −
∫
ΩT

mc(∂xl
m)b(∂xl

w)a)

∣∣∣∣ ,
(4.38)

for some a, b, c ∈ {1, 2, 3}. The first term is bounded by∥∥(∂xl
mh,k)b

∥∥
L2(ΩT )

∥∥∂xl
Ih((m

h,k)c(wh)a)− ∂xl
((mh,k)c(wh)a)

∥∥
L2(ΩT )

. (4.39)

For each element L, we have mh,k(·, t)w(·, t) ∈ C∞(L), and we have the estimate,∥∥∂xl
Ih((m

h,k)c(wh)a)− ∂xl
((mh,k)c(wh)a)

∥∥2
L2(L)

≤ C17h
2|(mh,k)c(wh)a|2H2(L) (4.40)

for some constant C17 > 0, by the Bramble-Hilbert lemma. Moreover, we have the

estimate,

|(mh,k)c(wh)a|2H2(L) =

∫
L

|Δ((mh,k)c(wh)a)|2 ≤ C18

∫
L

|∇(mh,k)c|2|∇(wh)a|2

≤ C19

∥∥(mh,k)c
∥∥2
H1(L)

(4.41)

for some constants C18, C19 > 0, since Δmh,k = 0 and Δwh = 0 in L, since mh,k and wh

are the sum of piecewise linear functions. We get the estimate∥∥∂xl
Ih((m

h,k)c(wh)a)− ∂xl
((mh,k)c(wh)a)

∥∥2
L2(ΩT )

≤ C17C19h
2
∥∥(mh,k)c

∥∥2
H1(ΩT )

.

(4.42)

Therefore, we may conclude that the first term of (4.38) goes to 0 as h, k → 0. Moreover,

the second term of (4.38) goes to 0 by the weak convergence of (∂xl
mh,k)b to (∂xl

m)b

and strong convergence of (mh,k)c to mc, which gives (4.22) and (4.27). �
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Lemma 4.5. Under the same assumptions of Lemma 4.2, we have

lim
h,k→0

∣∣∣∣∣k
∑
i

∫
ΩT

(mh,k
i × ∂xl

v̂h,k)a(∂xl
wh

i )
a

∣∣∣∣∣ = 0 (4.43)

for 0 ≤ θ ≤ 1.

Proof. An upper bound for the sequence above is

√
k
∥∥∥√k ∂xl

(v̂h,k)c
∥∥∥
L2(ΩT )

∥∥∇(Ih(m
h,k)b(wh)a)

∥∥
L2(ΩT )

. (4.44)

for some a, b, c ∈ {1, 2, 3}. The term
∥∥∥√k ∂xl

(v̂h,k)c
∥∥∥
L2(ΩT )

in (4.44) is uniformly

bounded, since
∥∥∥√k∂xl

(v̂h,k)c
∥∥∥
L2(Ω)

≤ C7

√
k
h

∥∥(v̂h,k)c∥∥
L2(Ω)

is uniformly bounded by

(4.17) for 0 ≤ θ < 1
2 , which is obtained by (4.10), and

∥∥∥√k∂xl
(v̂h,k)c

∥∥∥
L2(Ω)

is uni-

formly bounded by equation (4.18) for 1
2 ≤ θ ≤ 1. For each element L, we have

mh,k(·, t)w(·, t) ∈ C∞(L), so∥∥∇Ih((m
h,k)b(wh)a)−∇((mh,k)b(wh)a)

∥∥2
L2(L)

≤ C20h
2(
∥∥(∇(mh,k)b)

∥∥2
L2(L)

), (4.45)

for some constant C20 > 0, by the Bramble-Hilbert lemma, and using Δmh,k = 0 and

Δwh = 0 in L, since mh,k and wh are the sum of piecewise linear functions. Thus, we

have ∥∥∇(Ih(m
h,k)b(wh)a)

∥∥2
L2(ΩT )

≤
∥∥∇(mh,k)b

∥∥2
L2(ΩT )

+ C20h
2(
∥∥(∇(mh,k)b)

∥∥2
L2(ΩT )

),
(4.46)

which is uniformly bounded. Hence, (4.44) goes to 0 as h, k → 0. �

Lemma 4.6. Under the same assumptions of Lemma 4.2, we have

lim
h,k→0

∑
i

∫
ΩT

(mh,k
i × h̄(mh,k)) · wh

i φi =

∫
ΩT

(m× h̄(m)) · w. (4.47)

Proof. An upper bound for the difference between the sequence and the limit is given

by ∣∣∣∣
∫
ΩT

(h̄(mh,k))aIh((m
h,k)b(wh)c)−

∫
ΩT

(h̄(mh,k))a(mh,k)b(wh)c)

∣∣∣∣
+

∣∣∣∣
∫
ΩT

(h̄(mh,k))a(mh,k)b(wh)c −
∫
ΩT

(h̄(m))ambwc)

∣∣∣∣
(4.48)

for some a, b, c ∈ {1, 2, 3}. The first term of (4.48) is bounded by∥∥h̄(mh,k)a
∥∥
L2(ΩT )

∥∥Ih((mh,k)b(wh)c)− (mh,k)b(wh)c
∥∥
L2(ΩT )

. (4.49)

For each element L, we have mh,k(·, t)w(·, t) ∈ C∞(L), and we get the estimate,∥∥Ih((mh,k)bwc)− ((mh,k)bwc)
∥∥2
L2(L)

≤ C21h
4|(mh,k)bwc|2H2(L) (4.50)
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for some constant C21 > 0, by the Bramble-Hilbert lemma. Moreover,

|(mh,k)bwc|2H2(L) ≤ C21

∫
L

|∇(mh,k)b|2|∇(wh)c|2 + |(mh,k)b|2|Δ(wh)c|2

≤ C22

∥∥(mh,k)b
∥∥2
H1(L)

(4.51)

for some constant C22 > 0, and using the fact Δmh,k = Δwh = 0 in L, since mh,k and

wh are the sum of piecewise linear functions. We get the estimate∥∥Ih((mh,k)bwc)− ((mh,k)bwc)
∥∥2
L2(ΩT )

≤ C23h
4
∥∥(mh,k)b

∥∥2
H1(ΩT )

(4.52)

for some constant C23 > 0. Thus, the first term of (4.48) goes to 0 as h, k → 0, and the

second term of (4.48) converges to 0 as h, k → 0, because of the strong convergence of

(h̄(mh,k))a and (mh,k)b. �

Lemma 4.7. Under the same assumptions of Lemma 4.2, we have

lim
h,k→0

∣∣∣∣∣k
∑
i

∫
ΩT

(mh,k
i × h̄(v̂h,k)) · wh

i φi

∣∣∣∣∣ = 0. (4.53)

Proof. An upper bound for the sequence above is

k
∥∥h̄(v̂h,k))∥∥

L2(ΩT )

∥∥wh
∥∥
L2(ΩT )

. (4.54)

Since,
∥∥h̄(v̂h,k))∥∥

L2(ΩT )
≤ (C5

∥∥v̂h,k∥∥
L2(ΩT )

+C5) by (4.7), the term
∥∥h̄(v̂h,k))∥∥

L2(ΩT )
in

(4.54) is uniformly bounded. Therefore, (4.54) goes to 0 as h, k → 0. �
4.5. Energy of m. Recall the definition of the energy E(m) in (0.3). We follow the

same arguments in section 6 of [7]. We have an energy estimate of mh,k as

E(mj+1)− E(mj) ≤− k(
α

1 + α2
)
C1

C6
||v̂j ||2L2 − (θ − 1

2
)k2η||∇v̂j ||2L2 + k(h̄(mj), v̂j)

+ θk2(h̄e, v̂
j)− 1

2

∫
Ω

(h̄(mj+1) + h̄(mj)) · (mj+1 −mj)

(4.55)

by (4.13) from section 4.2. For 0 ≤ θ < 1
2 , the second term on the right has an upper

bound

(θ − 1

2
)k2η

∥∥∇v̂j
∥∥2
L2(Ω)

≤ k2η
∥∥∇v̂j

∥∥2
L2(Ω)

≤ C7kη
k

h2

∥∥v̂j∥∥2
L2(Ω)

≤ C7C0ηk
∥∥v̂j∥∥2

L2(Ω)

(4.56)

and by choosing C0 ≤ 1
2

α
1+α2

C1

C6

1
C7η

, this term and the first term on the right hand side

of (4.55) can be combined to be less than equal to

−k

2
(

α

1 + α2
)
C1

C6
||v̂j ||2L2(Ω). (4.57)

The second term on the right of equation (4.55) can be disregarded for 1
2 ≤ θ ≤ 1. We

will derive the upper bound for the rest of the terms of the right hand side of (4.55).

The third and the last terms on the right can be combined to be written as∣∣∣∣k(h̄(mj), v̂j)− 1

2

∫
Ω

(h̄(mj+1) + h̄(mj)) · (mj+1 −mj)

∣∣∣∣ (4.58)
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and has an upper bound∣∣∣∣
∫
Ω

h̄(mj) · (mj+1 −mj − kv̂j)

∣∣∣∣+
∣∣∣∣12

∫
Ω

(h̄(mj+1)− h̄(mj)) · (mj+1 −mj)

∣∣∣∣ . (4.59)

The first term of (4.59) is bounded by

C24k
2
(∥∥v̂j∥∥

L2(Ω)

∥∥v̂j∥∥
L4(Ω)

)
≤ C24

k2

2

(∥∥v̂j∥∥2
L2(Ω)

+
∥∥v̂j∥∥2

L4(Ω)

)
(4.60)

for some constant C24 > 0, by (4.23), and (4.9). The second term of (4.59) is bounded

by C25k
2
∥∥v̂j∥∥2

L2(Ω)
for some constant C25 > 0, by (4.19) and (4.9).

The fourth term on the right has the upper bound |θk2(h̄e, v̂
j)| ≤ C26k

2
∥∥v̂j∥∥

L2(Ω)
for

some constant C26 > 0. Then (4.55) has an upper bound

E(mj+1)− E(mj) +
k

2

(
α

1 + α2

)
C1

C6
||v̂j ||2L2(Ω) ≤C27k

2
(∥∥v̂j∥∥2

L4(Ω)
+
∥∥v̂j∥∥2

L2(Ω)

)
≤C28k

2
(∥∥∇v̂j

∥∥2
L2(Ω)

+
∥∥v̂j∥∥2

L2(Ω)

)
(4.61)

for some constants C27, C28 > 0, by using Sobolev embedding theorem [3],
∥∥v̂j∥∥

L4(Ω)
≤

C29

∥∥∇v̂j
∥∥
L2(Ω)

for some constant C29 > 0. Summing from j = 0, . . . , J − 1, we get

E(mJ)− E(m0) +
1

2

(
α

1 + α2

)
C1

C6

∫
ΩT

|v̂h,k|2

≤ C28 k
(∥∥∇v̂h,k

∥∥2
L2(ΩT )

+
∥∥v̂h,k∥∥2

L2(ΩT )

)
.

(4.62)

Therefore, taking h, k → 0, we get the energy inequality (1.2).

4.6. Magnitude of m. By the same argument in [8], we have |m(x, t)| = 1 a.e. for

(x, t) ∈ ΩT ( See equation (28) and (29) on page 1347 of [8]).

5. Conclusion. We have presented a mass-lumped finite element method for the

Landau-Lifshitz equation. We showed that the numerical solution of our method has

a subsequence that converges weakly to a weak solution of the Landau-Lifshitz-Gilbert

equation. Numerical tests show that the method is second order accurate in space and

first order accurate in time when the underlying solution is smooth. A second order in

time variant was also presented and tested numerically, but not analyzed rigorously in

the present work.
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[19] Ivan Cimrák, Convergence result for the constraint preserving mid-point scheme for micromag-
netism, J. Comput. Appl. Math. 228 (2009), no. 1, 238–246, DOI 10.1016/j.cam.2008.09.017.
MR2514283
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