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Abstract. A material with memory typically has a set of many free energy function-

als associated with it, all members of which yield the same constitutive relations. An

alternative interpretation of this set is explored in the present work.

Explicit formulae are derived for the free energy and total dissipation of an arbitrary

material in the cases of step function and sinusoidal/exponential histories. Expressions

for the fraction of stored and dissipated energy are deduced. Also, various formulae are

given for discrete spectrum materials.

For materials with relaxation function containing one decaying exponential, the asso-

ciated Day functional is the physical free energy. For more general materials, we seek a

best fit of the relaxation function with one decaying exponential to that chosen for the

general case. The free energy, total dissipation and fractions of stored and dissipated

energies relating to the Day material are derived for the various histories. Similar data,

in the case of the general material, are explored for the minimum and maximum free

energies and also for a centrally located free energy given in the literature. Various plots

of aspects of this data, including comparisons between the behaviour for general and Day

materials, are presented and discussed.

1. Introduction. In this work, we consider completely linear materials with memory,

where the stress is given by a linear functional of strain.1 For such materials, free energies
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1We consider for definiteness here isothermal mechanical problems, indeed those for solid viscoelastic
materials. Also, only the scalar case is considered, which simplifies the algebra and allows us to focus
on the essential structure of the arguments. It must be emphasized, however, that similar results can
be given with little extra difficulty, for viscoelastic fluids, certain non-isothermal problems, electromag-
netism, non-simple materials, etc., as presented in the references noted above, and also for the general
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and associated rates of dissipation are quadratic functionals of strain characterized by

kernels defined on R
+ × R

+. Various results for classical free energy functionals of

this kind are presented in [7, 8]. Developments over the last two decades relating to

free energies for these materials may be found in, for example, [1, 2, 9, 10, 12, 13, 17–22].

These deal mainly with the minimum, maximum, and other extremal free energies. An

exception is the free energy proposed in [10] (see also [2, 21]) and denoted by ψF (t).

Numerical examples are included in [3, 23] and the present work.

Let us identify a particular material with memory, which will be referred to as material

I. It is assumed to exhibit linear behaviour. The stress-strain relation of this material is

known; in other words, its relaxation function is given. There are generally many free

energies and corresponding dissipation functionals associated with material I. All of these

generate the same stress and, therefore, have the same relaxation function. They form

a convex set with a minimum and a maximum element ([11], for example). We denote

this set by F , which is of course dependent on the choice of strain history. The physical

free energy for material I, yielding the observed rate of dissipation, is a member of F , as

well as all free energies with the given stress.

Remark 1.1. In recent papers [20, 22], it was shown that any material with memory

can be uniquely characterized by specifying the kernel of its physical rate of dissipation

functional. This quantity determines the relaxation function, which in turn yields the

stress-strain or constitutive relation, for a given strain history. The work function can

be deduced from these quantities. However, the dissipation kernel determines also the

amount of dissipation under deformation, and indeed the associated free energy. We will

consider the set of all such kernels associated with materials with a specified constitutive

relation; this set will be denoted by K. For a given choice of strain history, K generates

a set of free energies F , corresponding to our chosen constitutive relation. It will emerge

that the boundaries of K and F are at least roughly determined by the relaxation function

of the constitutive relation.

The following alternative viewpoint will be discussed in the present work. We inter-

pret the set of kernels K as specifying all the distinct linear materials with the same

constitutive relation but different dissipation rates as a result of deformation. These can

be labeled by individual members of K. One of them yields the physical free energy in F
for material I. Other members of F would traditionally be regarded as approximations

to or bounds on (notably the minimum and maximum free energy) this physical free

energy. Instead, we now regard these, or more specifically the corresponding kernels in

K, as describing different actual materials with the same constitutive relation, but differ-

ent dissipation properties. For the material labeled by a particular kernel, the relevant

member of F for a given strain history is the physical free energy for that material.

Particular examples may not currently exist as real materials but it seems reasonable to

assume that they could be manufactured, to a close approximation, now or in the future.

It is not a new prediction that materials with a particular constitutive relation may

have different rates of dissipation, but it is interesting to see how it emerges in this way.

tensor cases relating to all these materials. Indeed, it is shown in [2, page 135] how tensor equations
correspond to a series of scalar relations in each eigenspace of the tensor relaxation function.



GENERAL DISSIPATIVE MATERIALS FOR SIMPLE HISTORIES 629

Both of the above viewpoints are valid and can be adopted as context demands. We

will refer to the more traditional viewpoint, where K is the set of kernels producing

the physical free energy of material I as well as approximations to and bounds on this

quantity, as Interpretation 1 or I1. The viewpoint that each K(s, u) ∈ K fully describes

a separate material, each equally of interest, will be referred to as I2.

Under I2, the set K is defined not by the choice of material I but by the constitutive

equation of the materials. If we replace material I by another material with the same

stress-strain relation, the set K remains unchanged. We do not focus on one specific

example but rather treat all materials labeled by members of K on an equal footing.

Free energy functionals, generalized to three dimensions, are useful in defining the

topology of the space of states, when studying stability and related problems for the

integro-differential equations describing the evolution of materials with memory (for ex-

ample, [14]); these evolution equations are of course derived from the constitutive equa-

tions of the material.

Another use for free energies is in modeling dissipation of energy in a material with

memory, for example, material I. To do this accurately requires knowledge of the physical

rate of dissipation kernel which may be difficult to determine. This in turn yields the

physical free energy kernel of material I and a complete description of the thermodynamic

behaviour of this material under load.

Even without exact knowledge of thermodynamic behaviour, we can explore the dissi-

pation behaviour for the minimum and maximum free energies, together with a centrally

(in F) located functional [2, 18] (referred to below as the central free energy). Detailed

formulae for these free energies are given, with corresponding total (and rate of) dissi-

pation and the work function, for step function and sinusoidal/exponential (abbreviated

to SE) histories. This latter category includes semi-infinite sinusoidal/exponential (ab-

breviated to SSE) histories and SE histories, where the strain vanishes for t < 0. Also,

fractions of stored and dissipated energies are defined and discussed. Various relevant

quantities are plotted.

As noted earlier, the minimum and maximum free energies together with associated

total dissipations provide bounds on energy storage and dissipation in material I. They are

also descriptive of valid materials in their own right, according to viewpoint I2 outlined

in Remark 1.1.

For semi-infinite sinusoidal histories, the work function and the total dissipation are

infinite, while the free energy and rate of dissipation are finite. It is, therefore, not

possible to give fractions of stored and dissipated energies in this case. However, free

energy and rate of dissipation formulae are given for general rate of dissipation kernels.

These are compared with previously obtained results for specific kernels.

Remark 1.2. We will deal only with free energies that are functionals of the minimal

state, as defined in [2, page 151] and in many other papers, most recently [20–23].

The Day free energy for a discrete spectrum material with one decay time is the only

free energy that is a functional of the minimal state. It is, therefore, the unique physical

free energy for that material. This quantity and the associated dissipation are explored

for a choice of relaxation function approximately equal to that for the more general set

of materials under consideration.
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Regarding the notational convention for referring to equations, we adopt the following

rule. A group of relations with a single equation number (***) will be individually labeled

by counting “=” signs or “<”, “>”, “≥”, and “≤”. Thus, (***)5 refers to the fifth “=”

sign, if all the relations are equalities. Relations with “∈” are ignored for this purpose.

For notational conventions in general and for many basic results, we refer to [2] and

indeed to a variety of other publications, such as [18, 20, 21]. Such basic formulae and

many derivations of results are omitted here.

The numerical work was carried out using mainly Matlab R2015b; one aspect involved

the use of Maple 2017.

2. Strain history, stress and free energies. The current value of the strain func-

tion is E(t) while the strain history and relative history are given by

Et(s) = E(t− s), Et
r(s) = Et(s)− E(t), s ∈ R

+, (2.1)

where R is the real line, while R
+ is [0,∞). It is generally assumed here that

lim
s→∞

Et(s) = lim
u→−∞

E(u) = 0, (2.2)

which simplifies certain formulae. However, for strictly sinusoidal histories, relation (2.2)

does not hold.

There are generally three equivalent forms of the constitutive equations and free en-

ergy/rate of dissipation functionals (for example, [20,21]). We shall confine ourselves to

one of these here.

Let T (t) = T̃ (Et, E(t)) be the stress at time t, where T̃ is understood to be a functional

of Et and a function of E(t). Then the constitutive relation with a linear memory term

has the form

T (t) = G∞E(t) +

∫ ∞

0

G̃(u)Ėt(u)du,

G̃(u) = G(u)−G∞, Ėt(u) =
∂

∂t
Et(u),

(2.3)

where the quantity G(·) : R+ �→ R
+ is the relaxation function of the material. The

functional dependence on Ėt is easily transformed into a dependence on Et with the aid

of an integration by parts. We have

G∞ = G(∞), G0 = G(0), G0 −G∞ > 0. (2.4)

The assumption is made that

G̃(·) ∈ L1(R+) ∩ L2(R+), (2.5)

which will be relevant in the context of taking Fourier transforms.

For linear materials, the constitutive relation is characterized by the relaxation func-

tion G(u).

A free energy at time t is denoted by ψ(t) = ψ̃(Et, E(t)) ∈ F , where ψ̃, as for T̃ above,

is a functional of Et and a function of E(t). The basic properties of free energies [4, 25]
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are given as follows. All required derivatives of ψ̃(Et, E(t)) are assumed to exist. The

relation
∂

∂E(t)
ψ̃(Et, E(t)) =

∂

∂E(t)
ψ(t) = T (t) (2.6)

must hold for all ψ(t) ∈ F . For linear materials, this is the constitutive relation (2.3),

which, as we shall see, at least roughly determines the boundary of F . For any history

Et,

ψ̃(Et, E(t)) ≥ φ̃(E(t)) or ψ(t) ≥ φ(t), (2.7)

where φ(t) is the equilibrium value of the free energy ψ(t) which, for a completely linear

material, is given by

φ̃(E(t)) =
1

2
G∞E2(t). (2.8)

For any (Et, E(t)) we have the first law (balance of energy)

ψ̇(t) +D(t) = T (t)Ė(t), D(t) ≥ 0, (2.9)

where D(t) is the rate of dissipation of energy associated with ψ(t). This non-negativity

requirement on D(t) is an expression of the second law.

Integrating (2.9) over (−∞, t] yields that

ψ(t) +D(t) = W (t), D(t) ≥ 0, (2.10)

where

W (t) =

∫ t

−∞
T (u)Ė(u)du, D(t) =

∫ t

−∞
D(u)du ≥ 0. (2.11)

We assume that these integrals are finite, except for purely periodic histories. The

quantity W (t) is the work function, while D(t) is the total dissipation resulting from the

entire history of deformation of the body. Note that Ḋ(t) = D(t).

Under I2 defined in Remark 1.1, the functional ψ(t) ∈ F is the physical free energy for

a particular material with a physically observed rate of dissipation D(t) and constitutive

relation given by (2.6) or (2.3).

The fraction of energy stored and dissipated, respectively, for any given history, can

be determined from (2.10), according to the formulae

Fs(t) =
ψ(t)

W (t)
, Fd(t) =

D(t)

W (t)
, Fs(t) + Fd(t) = 1. (2.12)

Remark 2.1. The implied description of a free energy for the material as a mea-

sure of the stored energy is a convenient intuitive shorthand, which will be used in this

work. However, there are various complexities surrounding this issue. For one thing,

any stored energy in the material can be only partially transformed into useful work,

since in particular the deformation necessary for this transformation will itself generate

dissipation.

Also, there is the more general question regarding whether the definition of the free

energy functional for a given history justifies this identification with stored energy. A

particular choice of free energy is in general intermediate between the minimum and the

maximum free energies for the material, or equal to one or the other of these quantities

(see Remark 1.1, relating to I1). Now, the minimum free energy at time t is defined

as the maximum recoverable work from that time, while the maximum free energy at
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time t is the minimum work required to achieve this state from the initial state, obtained

by searching among histories in the same minimal state as the given history ([2, 5], for

example). Both of these are related to stored energy but are, in the case of dissipative

materials, quite different from each other. Intermediate free energy functionals are linear

combinations of these and other functionals, as we shall see later. Thus, a clear, simple

definition is not generally available in every case, though our characterization of such

functionals as energy storage measures has validity.

Remark 2.2. The variation of ψ(t), D(t) and the ratios in (2.12) over time is of

interest. It would be useful also to pick a particular time, for example, t → ∞, or

average over times, in the case of oscillatory behaviour, yielding constant quantities

which characterize storage and dissipation occurring in the material. Such quantities

will be determined where possible.

3. The general form of a free energy functional. For a scalar theory with a

linear memory constitutive relation for the stress, the most general form of a free energy

is

ψ(t) = φ(t) +
1

2

∫ ∞

0

∫ ∞

0

Ėt(s)G̃(s, u)Ėt(u)dsdu ∈ F ,

G̃(s, u) = G(s, u)−G∞, G∞ = G(∞, u) = G(s,∞), s, u ∈ R
+.

(3.1)

The kernel G̃(s, u) must be such that the integral term in (3.1) is non-negative. The

relaxation function G(u), introduced in (2.3), is given by

G(u) = G(0, u) = G(u, 0) ∀ u ∈ R
+. (3.2)

It follows from (2.4) and (3.2) that

G0 = G(0) = G(0, 0), (3.3)

and also that G∞ in (2.4) and (3.1)3 are the same quantity. There is no loss of generality

in taking

G̃(s, u) = G̃(u, s). (3.4)

The set of all G̃(s, u) with the non-negativity property will be denoted by G. The rate

of dissipation can be deduced from (2.9) to be

D(t) = −1

2

∫ ∞

0

∫ ∞

0

Ėt(s)K(s, u)Ėt(u)dsdu, (3.5)

where

K(s, u) = G1(s, u) +G2(s, u) ∈ K. (3.6)

The integral in (3.5) must be non-positive. This requirement on K(·, ·) is central to the

definition of the set K. It can be assured, for example, by adopting sums of product

forms for the kernel, as in [20]. For any given G̃(s, u) ∈ G, relation (3.6) is a mapping

G �→ K.

The quantity K(s, u) is defined on R
+ × R

+. It can also be taken to be symmetric

in its arguments, just as in (3.4). The non-negativity requirements on G̃, −K imply in

particular that ([2, page 127])

G̃(s, s) ≥ 0, K(s, s) ≤ 0, s ∈ R
+. (3.7)
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The assumption is made that (cf. (2.5))

G̃(·, ·), K(·, ·) ∈ L1(R+ × R
+) ∩ L2(R+ × R

+) (3.8)

which will also be relevant in the context of taking the Fourier transform of these quan-

tities.

The work function, given by (2.11)1, can be expressed as ([2, page 153] and earlier

references cited therein):

W (t) = φ(t) +
1

2

∫ ∞

0

∫ ∞

0

Ėt(s)G̃(|s− u|)Ėt(u)duds. (3.9)

We see that it can be cast in the form (3.1) by putting G̃(s, u) = G̃(|s− u|). The

quantity W (t) has some but not all the properties [23] of a free energy, though with zero

dissipation, which is clear from (2.10). It also follows from (2.10), for any free energy

ψ(t), that

ψ(t) ≤ W (t). (3.10)

It is shown in [20, 22] that the material can be uniquely characterized by choosing the

correct physical kernel K(s, u), yielding a non-negative rate of dissipation. This may be

achieved either by experimental measurement or by appealing to a theoretical model, or

perhaps a combination of both approaches. Thus, K(s, u) is the fundamental quantity

determining a particular material. The set of all such kernels K will generate a set of

free energies F for each choice of strain history.

A free energy functional of the form (3.1) with the correct non-negativity properties

is uniquely generated by the kernel

G̃(s, u) = −
∫ ∞

0

K(z + s, z + u)dz, (3.11)

which is a mapping K �→ G. Relation (3.2) gives

G(s) = G(s, 0) = G∞ −
∫ ∞

0

K(z + s, z)dz = G∞ −
∫ ∞

0

K(z, z + s)dz. (3.12)

It follows that

G0 = G∞ −
∫ ∞

0

K(z, z)dz, (3.13)

using the notation of (2.4).

Each K(s, u) in K yields the same relaxation function through (3.12). This is part of

the definition of K. However, there are usually many different K(s, u) in K, generating

different rates of dissipation through (3.5) for any specified history.

We shall see later that the minimum, maximum and various intermediate free ener-

gies along the boundary of F are determined from the form of the relaxation function;

similarly for the associated rates of dissipation. Thus, G(s) determines the boundaries

of F and K, at least in an approximate sense.

Two important dimensionless parameters are

β =
G∞
G0

, χ =
G0 −G∞

G0
= 1− β = − 1

G0

∫ ∞

0

K(z, z)dz, β, χ ∈ [0, 1]. (3.14)
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Remark 3.1. These provide simple measures of the memory contribution and, there-

fore, the amount of energy loss due to material deformation. The smaller the quantity β

or the larger the parameter χ, the greater the energy loss. These parameters will prove

important in the context of detailed forms of the fractions given by (2.12).

Remark 3.2. Expressions for the free energy, total dissipation and the ratios Fs(t),

Fd(t) will be given in the case of a general rate of dissipation kernel K(s, u), and three

different types of strain history. These quantities are important characteristic properties

of the material described by this kernel. The fractions Fs(t), Fd(t) represent, in a nor-

malized fashion, the physical content of (2.10). Any choice of K(s, u) ∈ K will describe

the stress-strain and energy behaviour of one specific material.

Matters are more difficult when we seek to reverse this process and determine the

kernel K(s, u) which describe a pre-chosen material, earlier referred to as material I.

4. Frequency domain quantities. Let Ω be the complex ω plane and

Ω+ = {ω ∈ Ω | Im(ω) ∈ R
+},

Ω(+) = {ω ∈ Ω | Im(ω) ∈ R
++}.

(4.1)

These define the upper half-plane including and excluding the real axis, respectively.

Similarly, Ω−, Ω(−) are the lower half-planes including and excluding the real axis, re-

spectively.

The notation and properties used here for Fourier transforms of the various quantities

of interest are outlined in many publications, including [2, 20].

Remark 4.1. Throughout this work, a subscript “+” attached to any quantity defined

on Ω will imply that it is analytic on an open set including Ω−, with all its singularities

in Ω(+). We shall abbreviate this description to simply a statement that it is analytic on

Ω−. Similarly, a subscript “−” will indicate that it is analytic on an open set including

Ω+, with all its singularities in Ω(−); again, this is abbreviated to a statement that it is

analytic on Ω+.

Let us define the quantities

G̃+(ω) =

∫ ∞

0

G̃(s)e−iωsds = G̃c(ω)− iG̃s(ω),

G′
+(ω) =

∫ ∞

0

G′(s)e−iωsds = G′
c(ω)− iG′

s(ω).

(4.2)

The function G̃+(ω) is analytic on Ω−. This implies that any singularities of G̃+(ω) are at

least slightly off the real axis into Ω(+), which in turn means that G̃ decays exponentially

at large positive times, though perhaps weakly. We shall be considering G̃+(ω) both for

values of ω on R and off the real axis, into Ω(−).

The quantity G̃+(ω) is analytic in Ω+, its singularity structure being a mirror image,

in the real axis, of that of G̃+(ω). Thus, in particular, G̃c(ω) has singularities in both

Ω(+) and Ω(−) which are mirror images of one another. Similarly, its zeros will be mirror

images of one another.
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The standard properties that, for large ω,

G̃+(ω) ∼
G̃(0)

iω
or G̃s(ω) ∼

G̃(0)

ω
,

G′
+(ω) ∼

G′(0)

iω
or G′

s(ω) ∼
G′(0)

ω
,

(4.3)

will be required below.

The inverse relationships of (4.2) are given by

G̃(s) =
1

2π

∫ ∞

−∞
G̃+(ω)e

iωsdω, G′(s) =
1

2π

∫ ∞

−∞
G′

+(ω)e
iωsdω, s > 0. (4.4)

However, we have

G0 −G∞ = G̃(0) =
1

π

∫ ∞

−∞
G̃+(ω)dω =

1

π

∫ ∞

−∞
G̃c(ω)dω. (4.5)

Relation (4.5)2 follows by considering a contour integral over Ω(−) and using (4.3), while

(4.5)3 results from the fact that G̃s(ω) is an odd function. Applying a partial integration

in (4.2)3 yields that

G0 +G′
+(ω) = G∞ + iωG̃+(ω) = M+(ω), ω ∈ Ω−, (4.6)

where M+(ω) is the complex modulus of the material [24]. Its real and imaginary parts

for ω ∈ R are given by

M+(ω) = R(ω) + iI(w),

R(ω) = G0 +G′
c(ω) = G∞ + ωG̃s(ω),

I(w) = −G′
s(ω) = ωG̃c(ω).

(4.7)

Important properties of G̃c(ω) and G′
s(ω) include the equivalent conditions [2, 11]

G̃c(ω) ≥ 0, G′
s(ω) ≤ 0 ∀ ω ∈ R

++, (4.8)

which are consequences of the second law. We note some properties of G̃(s), which also

apply to G′(s). Because G̃(s) is real, we have, from (4.2), that

G̃+(ω) = G̃+(−ω), G̃+(ω) = G̃+(−ω), (4.9)

for all points ω ∈ Ω where G̃+(ω) is defined. Relation (4.9)2 yields

G̃c(ω) = G̃c(−ω), G̃s(−ω) = −G̃s(ω), G̃s(0) = 0, ω ∈ R. (4.10)

We also have

G̃0 > 0, G∞ > 0, (4.11)

the latter relation being true for a viscoelastic solid.

A quantity which will be of significant interest, particularly in the context of the

minimum and related free energies, is

H(ω) = −ωG′
s(ω) = ω2G̃c(ω) = ωI(ω) ≥ 0, ω ∈ R, (4.12)
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where the inequality is a consequence of (4.8) and (4.10). From (4.12)2, it follows that

the quantity H(ω) goes to zero quadratically at the origin. Using (4.3)4 and (4.12), one

can show that

H∞ = lim
ω→∞

H(ω) = −G′(0) ≥ 0. (4.13)

We assume for present purposes that G′(0) is non-zero so that H∞ is a finite, positive

number. Then H(ω) ∈ R
++ ∀ ω ∈ R, ω �= 0. The structure of its singularities are

similar to those for G̃c(ω), which are noted before (4.3).

The non-negative quantity H(ω) can always be expressed as the product of two factors

([17], [2, page 239])

H(ω) = H+(ω)H−(ω), (4.14)

where H+(ω) has no zeros in Ω(−) and is analytic in Ω−. Similarly, H−(ω) is analytic in

Ω+ with no zeros in Ω(+). We put

H±(ω) = H∓(−ω) = H∓(ω), H(ω) = |H±(ω)|2 , ω ∈ R. (4.15)

The factorization (4.14) is the one relevant to the minimum free energy. For materials

with only isolated singularities, there is a much broader class of factorizations, where

the property that the zeros of H±(ω) are in Ω±, respectively, need not be true. These

generate a range of free energies related to the minimum free energy, as discussed briefly

in section 5.

The notation ω±, which will be used below, was introduced in [17] and adopted in

subsequent work. We have ω± = ω ± iε, ω ∈ R, where ε is a small positive quantity.

The limit ε → 0 can be taken after integrations have been carried out. It is useful, for

example, in applying the Plemelj formulae.

The Fourier transform of Et(s), taken to be zero for s ∈ R
−−, has the form ([2, page

144])

Et
+(ω) =

∫ ∞

0

Et(s)e−iωsds. (4.16)

This quantity is analytic on Ω−. The Fourier transform of Et
r, defined by (2.1)2 and zero

for s ∈ R
−− has the form ([2, page 145])

Et
r+(ω) = Et

+(ω)−
E(t)

iω− . (4.17)

Note the important connection

d

dt
Et

+(ω) = Ėt
+(ω) = −iωEt

+(ω) + E(t) = −iωEt
r+(ω), (4.18)

between Ėt
+(ω) and Et

r+(ω). Virtually all work on the minimum and related free energies

up to and including [2] was based on Et
r+(ω). Relations (4.18) provide the mechanism

for changing to Ėt
+(ω). It follows also from (4.17) and (4.18) that

∂

∂E(t)
Ėt

+(ω) = 1. (4.19)
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For large ω (see (4.3)),

Et
+(ω) ∼

E(t)

iω
, Ėt

+(ω) ∼
A(t)

iω
, (4.20)

where A(t) is independent of ω.

The constitutive equation (2.3) in terms of frequency domain quantities has the form

T (t) = G∞E(t) +
1

2π

∫ ∞

−∞
G̃+(ω)Ė

t
+(ω)dω

= G∞E(t) +
1

π

∫ ∞

−∞

H(ω)

ω2 Ėt
+(ω)dω,

(4.21)

where the second form follows from the argument given in [2, page 146].

The frequency domain representation for the work function, given by (3.9), has the

form ([2, page 154]):

W (t) = φ(t) +
1

2π

∫ ∞

−∞

H(ω)

ω2

∣∣∣Ėt
+(ω)

∣∣∣2 dω. (4.22)

4.1. Frequency domain representations of dissipation rate and free energy kernels. We

define

Z+−(ω1, ω2) =

∫ ∞

0

∫ ∞

0

Z(s, u)e−iω1s+ iω2udsdu, (4.23)

where Z(s, u) represents either of the kernels G̃(s, u) or K(s, u). Note that

Z+−(ω1, ω2) = Z+−(−ω2,−ω1),

Z+−(ω1, ω2) = Z+−(−ω1,−ω2) = Z+−(ω2, ω1), ω1, ω2 ∈ Ω,
(4.24)

where the property Z(s, u) = Z(u, s) has been used. These relations hold if ω1, ω2 are

points of analyticity of Z+−(ω1, ω2). It follows from (4.24) that Z+−(ω1, ω2) is real if

ω2 = ω1. In particular, Z+−(ω0, ω0) is real if ω0 is real. The quantity Z+−(ω1, ω2) is

analytic in the lower half of the ω1 complex plane and in the upper half of the ω2 plane.

Thus, Z+−(ω1, ω2) is given by analytic continuation from the real axis for ω1 ∈ Ω(−) and

ω2 ∈ Ω(+).

It is shown in [20] for ω1, ω2 ∈ R that

i(ω1 − ω2)G̃+−(ω1, ω2) = K+−(ω1, ω2) + G̃+(ω1) + G̃+(ω2), (4.25)

where G̃+(ω) is defined by (4.2)1. We will extrapolate this relationship by analytic

continuation to ω1 ∈ Ω(−) and ω2 ∈ Ω(+).

Remark 4.2. Condition (3.8) ensures that Z+−, defined by (4.23), exists. This has the

consequence that ψ(t) andD(t), given by (3.1) and (3.5), respectively, are finite quantities

for sinusoidal histories. It will emerge later that W (t) diverges for such histories, so that

D(t) must also become infinite in this case, by virtue of (2.10).

It follows from (4.12) and (4.25), by taking ω1 = ω2 = ω that [20]

K+−(ω, ω) = −2G̃c(ω) = −2
H(ω)

ω2 = −2
I(ω)
ω

. (4.26)

Let the quantity K+−(ω1, ω2), determined from each K(s, u) ∈ K by (4.23), form a set

KF . Thus, the quantity K+−(ω, ω) is the same for all K+−(ω1, ω2) ∈ KF .
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5. The minimum and related free energies. It is shown in [2, 12, 18] that, for

materials with only isolated singularities, the quantity H(ω) is a rational function and

has many factorizations other than (4.14), denoted by

H(ω) = Hf
+(ω)H

f
−(ω), Hf

±(ω) = Hf
∓(−ω) = Hf

∓(ω), (5.1)

where f is an identification label distinguishing a particular factorization. These are ob-

tained by exchanging the zeros of H+(ω) and H−(ω), leaving the singularities unchanged.

Each factorization yields a different free energy and total dissipation given by

ψf (t) = φ(t) +
1

2π

∫ ∞

−∞

∣∣∣pft− (ω)
∣∣∣2 dω,

Df (t) =
1

2π

∫ ∞

−∞

∣∣∣pft+ (ω)
∣∣∣2 dω,

pft± (ω) =
1

2π

∫ ∞

−∞

Hf
−(ω

′)Ėt
+(ω

′)

ω′(ω′ − ω∓)
dω′.

(5.2)

Note that each ψf (t) is determined by the factors of H(ω). This latter quantity is

determined from G(s) by means of (4.12). Defining

Kf (t) = − 1

2πi

∫ ∞

−∞

Hf
−(ω)

ω
Ėt

+(ω)dω = lim
ω→∞

[−iωpft− (ω)], (5.3)

we can write the associated rate of dissipation in the form

Df (t) = |Kf (t)|2 , (5.4)

which can be expressed as a quadratic functional of the strain history. Relation (5.2)1
can be expressed also as a quadratic functional (for example, [20]). Note that Df (t)

vanishes if Kf (t) = 0, which is a linear condition that can be satisfied for certain choices

of strain history. Thus, the quadratic form for Df (t) is reduced from positive definite to

positive semi-definite, indicating that each ψf (t) is on the boundary of F , as indicated

earlier.

For these free energies and rates of dissipation, K+−(ω1, ω2) has the form

ω1ω2K
f
+−(ω1, ω2) = −2Hf

+(ω1)H
f
−(ω2). (5.5)

These factorized quantitiesKf
+−(ω1, ω2) lie on the boundary of KF , by a similar argument

as that applied to (5.4).

Remark 5.1. The factorization (4.14) yields the minimum free energy ψm(t). This

case is labeled as f = 1. Each exchange of zeros, starting from these factors, can be

shown to yield a free energy which is greater than or equal to the previous quantity

([2, page 363]). All these free energies are functionals of the minimal state. They are

labeled by f = 2, 3, . . . , N where N is the total number of distinct factorizations.

The quantity obtained by interchanging all the zeros is denoted by ψf (t) for f = N .

It can be identified as the maximum free energy among all those that are functionals of

the minimal state. Reflecting this property, it is also denoted by ψM (t). This quantity

is less than the work function.
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The most general rate of dissipation and free energy arising from these factorizations

is given by

D(t) =
N∑

f=1

λfDf (t), ψ(t) =
N∑

f=1

λfψf (t) ∈ F ,
N∑

f=1

λf = 1, λf ≥ 0. (5.6)

The question whether (5.6)2 is the most general representation of a free energy in F is

discussed in subsection 8.1. From (4.19) and (5.2), we have

∂

∂E(t)
pft− (ω) = −

Hf
−(ω)

iω
, (5.7)

which, with the help of (4.18) and ([2, page 249]), yields

∂

∂E(t)
ψf (t) = G∞E(t) +

1

π

∫ ∞

−∞

H(ω)

ω2 Ėt
+(ω)dω = T (t), (5.8)

where (4.21) has been used. This provides confirmation that the constitutive equation

associated with all free energies of the form (5.6) is that given by (4.21) or (2.3).

The general form of K+−(ω1, ω2) ∈ KF , which yields (5.6), is given as follows:

K+−(ω1, ω2) = − 2

ω1ω2

N∑
f=1

λfH
f
+(ω1)H

f
−(ω2),

N∑
f=1

λf = 1, λf ≥ 0, (5.9)

where (5.5) has been used.

As already noted, the functionals ψf (t), f = 1, 2, . . . , N lie on the boundary of F ,

in particular, the minimum and maximum free energies which provide lower and upper

bounds; similarly for Kf
+−(ω1, ω2) with respect to KF . The factorizations (5.1) and,

therefore, all these quantities are deduced from the parameters of the relaxation function.

The size of the set F (and KF or K) is, in this sense, determined by the relaxation

function.

6. Free energy and dissipation functionals for particular histories. We seek

to give detailed expressions for free energies and related quantities for general choices of

the kernel K(s, u) ∈ K and histories with step function and SE behaviour. The latter

will be considered both for semi-infinite and finite histories.

6.1. Step function histories. This is the simplest non-constant behaviour, given as

follows. An alternative way of writing the history (2.1)1 is E(u), u ≤ t where t is the

current time, assumed to be positive. We put

E(u) =

{
0, u ≤ 0,

E0, 0 < u ≤ t,
(6.1)

giving

Ė(u) =
dE(u)

du
= E0δ(u), (6.2)

in terms of the singular delta function. Thus, in the notation of (2.1)1,

Ėt(s) = E0δ(t− s). (6.3)
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It follows from this relation and (3.5) that

D(t) = −E2
0

2
K(t, t). (6.4)

Also, from (3.11), (2.8), and (3.1), we have

ψ(t) = φ(t)− E2
0

2

∫ ∞

0

K(t+ z, t+ z)dz

=
1

2
G∞E2

0 − E2
0

2

∫ ∞

t

K(y, y)dy, t ≥ 0.

(6.5)

The integral term is non-negative, by virtue of (3.7)2. Relation (3.13) yields that

1

2
G0E

2
0 =

1

2
G∞E2

0 − E2
0

2

∫ ∞

0

K(y, y)dy. (6.6)

Thus, on using (3.7)2 again, we see that

ψ(t) ≤ 1

2
G0E

2
0 . (6.7)

It follows from (3.9) that

W (t) =
1

2
G0E

2
0 , (6.8)

so that (3.10) is satisfied. Relation (2.10), together with (3.13), gives that

D(t) = −E2
0

2

∫ t

0

K(y, y)dy. (6.9)

The finite range of the integral is easily understood, from a physical point of view. For

the infinite period specified by (6.1)1, there is no dissipation. At time t = 0, dissipation

begins. Referring to (2.12), we see that

Fd(t) = − 1

G0

∫ t

0

K(y, y)dy, Fs(t) = 1− Fd(t). (6.10)

Differentiating with respect to time, we obtain

d

dt
Fd(t) = − 1

G0
K(t, t),

d

dt
Fs(t) = − d

dt
Fd(t), (6.11)

so that Fd(t) is monotonically increasing and Fs(t) is monotonically decreasing.

Referring to Remark 2.2, a natural choice of selected time in this context is t → ∞,

which gives, by virtue of (3.13),

Fdc =
G0 −G∞

G0
= χ = 1− β, Fsc =

G∞
G0

= β, (6.12)

in terms of the quantities introduced in (3.14). Thus, χ measures the energy dissipation

and β the energy storage for any material in K, due to a sudden step change in strain

(see Remark 3.1).

The quantity Fd(t) is zero at t = 0 and increases monotonically to χ as t → ∞, while

Fs(t) = 1 at t = 0 and decreases monotonically to β at large t. Note that K(y, y) must

tend to zero as y → ∞ to yield convergent integrals in (6.5) or (6.6).

Observe from (6.4) that, if D(t) can be determined, this yields a measurement of

K(t, t). To obtain measurements of K(s, u), s, u ∈ R+, one needs to consider histories
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with two steps ([2, page 132]). Of course, this is not a very practical technique since step

function histories are difficult to approximate closely.

6.2. SSE histories. Consider a history and current value (Et, E(t)) defined by

E(t) = E0e
iω−t + E0e

−iω+t, Et(s) = E(t− s), s ∈ R
+, (6.13)

where E0 is an amplitude and E0 its complex conjugate. Furthermore,

ω− = ω0 − iη, ω+ = ω−, ω0, η ∈ R
++. (6.14)

The parameter η ensures finite results in certain quantities. For η = 0, we have purely si-

nusoidal behaviour, while for ω0 = 0, the history is exponentially growing. The derivative

Ėt(s), defined by (2.3)3, has the form

Ėt(s) = iω−E0e
iω−(t− s) − iω+E0e

−iω+(t− s), (6.15)

for SSE histories. Also, the quantity Et
+(ω) (see (4.16)) is given by

Et
+(ω) = E0

eiω−t

i(ω + ω−)
+ E0

e−iω+t

i(ω − ω+)
, (6.16)

while

Ėt
+(ω) = E0ω−

eiω−t

ω + ω−
− E0ω+

e−iω+t

ω − ω+
. (6.17)

Using (2.3) and (6.15), we find that the stress is given by

T (t) = M+(ω−)E0e
iω−t +M+(−ω+)E0e

−iω+t, (6.18)

where M+(ω) is defined by (4.6). Referring to (6.16) and (6.17), we see that

Et
+(−iα) = E0

eiω−t

α+ iω−
+ E0

e−iω+t

α− iω+
,

Ėt
+(−iα) = iE0

ω−e
iω−t

α+ iω−
− iE0

ω+e
−iω+t

α− iω+
.

(6.19)

The real quadratic form

V (t) = ME2
0e
2iω−t +M E0

2
e−2iω+t +N |E0|2 ei(ω− − ω+)t

= 2Re[ME2
0e
2iω−t] +N |E0|2 ei(ω− − ω+)t

=
[
2Re

(
ME2

0e
2iω0t

)
+N |E0|2

]
e2ηt

(6.20)

will be denoted by

V (t) = {M,N} . (6.21)

The quantity N is real. All free energies, total dissipations, rates of dissipation and work

functions can be represented in the form V (t), for histories given by (6.13). Note that∫ t

−∞
V (s)ds =

{
M

2iω−
,

N

i(ω− − ω+)

}
,

V̇ (t) = {2iω−M, i(ω− − ω+)N} .
(6.22)
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We have, from (6.15) for s = 0 and (6.18),

T (t)Ė(t) = iω−M+(ω−)E
2
0e
2iω−t − iω+M+(−ω+)E0

2
e−2iω+t

+ i [ω−M+(−ω+)− ω+M+(ω−)] |E0|2 ei(ω− − ω+)t

= {iω−M+(ω−), i [ω−M+(−ω+)− ω+M+(ω−)]} .

(6.23)

Using (2.11)1, (6.23), and (6.22)1, we see that

W (t) = {MW , NW } , (6.24)

where

MW =
1

2
M+(ω−), NW =

ω−M+(−ω+)− ω+M+(ω−)

ω− − ω+
. (6.25)

The term NW diverges in the purely sinusoidal limit. A general free energy (3.1)1 for

histories of the form (6.13) is given by

ψ(t) = {Mψ, Nψ} , (6.26)

where

Mψ =
1

2

[
G∞ − ω2

−G̃+−(ω−,−ω−)
]

=
1

2

[
M+(ω−) +

iω−
2

K+−(ω−,−ω−)

]
,

(6.27)

by virtue of (4.6), (4.9)2, (4.23), and (4.25). Also, from (4.6), (4.24)1, and subsequent

observations,

Nψ = G∞ +
1

2

{
|ω−|2 G̃+−(ω−, ω+) + |ω+|2 G̃+−(−ω+,−ω−)

}
= G∞ + |ω−|2 G̃+−(ω−, ω+)

= G∞ +
|ω−|2

i(ω− − ω+)

[
K+−(ω−, ω+) + G̃+(ω−) + G̃+(ω+)

]
=

−i |ω−|2 K+−(ω−, ω+) + ω−M+(−ω+)− ω+M+(ω−)

ω− − ω+
,

(6.28)

again using (4.25). From (3.5), (4.24), and (6.15), we find that

D(t) = {MD, ND} , (6.29)

where

MD =
ω2
−
2

K+−(ω−,−ω−),

ND = −|ω−|2

2
{K+−(ω−, ω+) +K+−(−ω+,−ω−)}

= − |ω−|2 K+−(ω−, ω+).

(6.30)

Let

D(t) = {MD, ND} . (6.31)

Then, from (6.22)1,

MD = − iω−
4

K+−(ω−,−ω−), ND = i |ω−|2
K+−(ω−, ω+)

ω− − ω+
. (6.32)
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We see from (6.25), (6.27), (6.28), and (6.32) that (2.10) is obeyed. Note that ND
diverges in the sinusoidal limit.

The ratios (2.12) are given by

Fd(t) =
VD(t)

VW (t)
, Fs(t) = 1− Fd(t), (6.33)

where VD(t) has the form (6.20) with M = MD and N = ND given by (6.32). Also,

VW (t) is similarly defined, with MW and NW given by (6.25).

The factor e2ηt, giving the exponential part of the history, cancels out of the ratios,

yielding for Fd(t),

Fd(t) =
MDE

2
0e
2iω0t +MDE2

0e
−2iω0t +ND |E0|2

MWE2
0e
2iω0t +MWE2

0e
−2iω0t +NW |E0|2

. (6.34)

Now, we have

MWE2
0e
2iω0t +MWE2

0e
−2iω0t +NW |E0|2 > 0, (6.35)

which is a consequence of the fact that W (t), given by (4.22), is positive, as is the can-

celled factor e2ηt. Also, by averaging over any interval of duration π/ω0, the oscillatory

terms vanish and we deduce that NW > 0. The expression in (6.35) may be written as

NW |E0|2
[
1 +

2 |MW | cos(2ω0t+ λ)

NW

]
, λ = arg[MWE2

0 ], (6.36)

where the term in brackets must be positive. It follows that, for all t,

NW > 2 |MW | cos(2ω0t+ λ). (6.37)

We can therefore write (6.34) as the numerator multiplying the factor

1

NW |E0|2
[1 +A], (6.38)

where A is an infinite expansion of powers of terms involving e±2iω0t. This expansion

is convergent by virtue of the inequality (6.37). If we take the average of Fd(t) over any

time interval of duration π
ω0

, it reduces to

Fdc =
ND
NW

=
i |ω−|2 K+−(ω−, ω+)

ω−M+(−ω+)− ω+M+(ω−)
,

Fsc = 1− Fdc =
Nψ

NW

=
−i |ω−|2 K+−(ω−, ω+) + ω−M+(−ω+)− ω+M+(ω−)

ω−M+(−ω+)− ω+M+(ω−)
.

(6.39)

The quantities ND, Nψ and the ratios Fdc, Fsc are parameters characterizing typical

dissipated and stored energy for SSE histories, as discussed in Remark 2.2.
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6.3. Purely sinusoidal histories. For this case, the quantitiesW (t) and D(t) diverge, as

pointed out in Remark 4.2, and after (6.25), (6.32). However, we now present expressions

for those quantities that are finite, namely free energies and rates of dissipation.

In this limit, where η → 0, (6.20) and (6.21) become

{M,N} = ME2
0e
2iω0t +M E0

2
e−2iω0t +N |E0|2 . (6.40)

Relation (6.23) converges to a finite result of the form

T (t)Ė(t) = {iω0M+(ω0), 2H(ω0)}, (6.41)

where (4.7) and (4.12) have been invoked. Also, (6.27) and (6.28) yield

Mψ =
1

2

{
M+(ω0) +

iω0

2
K+−(ω0,−ω0)

}
,

Nψ = R(ω0)− ω0
d

dω0
R(ω0) + U(ω0),

U(ω0) =
iω2

0

2

[
− ∂

∂ω1
K+−(ω1, ω2) +

∂

∂ω2
K+−(ω1, ω2)

] ∣∣∣∣
ω1=ω2=ω0

,

(6.42)

where R(ω) is defined by (4.7). Finally, from (6.29) and (6.30), we deduce that

D(t) =

{
ω2
0

2
K+−(ω0,−ω0), 2H(ω0)

}
, (6.43)

where (4.26) has been used. Applying (6.22)2 in the sinusoidal limit, one can show that

(2.9) is obeyed.

6.4. Comparison with special cases. We now compare these results with previously

given particular examples of sinusoidal histories. The minimum free energy is discussed

in detail for such histories in [1, 2]. Precisely analogous formulae apply to all the ψf (t).

Thus, we have, in the notation (6.40), using the complex modulus given by (4.6), rather

than G′(ω0) or G̃(ω0),

ψf (t) =

{
1

2

[
M+(ω0) +

i

ω0

[
Hf

−(−ω0)
]2]

, R(ω0)− ω0
d

dω0
R(ω0) +Qf (ω0)

}
, (6.44)

where Qf (ω) is given by

Qf (ω) = i

[
d

dω
Hf

+(ω)H
f
−(ω)−Hf

+(ω)
d

dω
Hf

−(ω)

]
≥ 0, ω ∈ R. (6.45)

The rate of dissipation is given by (5.4) and (5.3). It can be shown that

Kf (t) = Hf
−(−ω0)E0e

iω0t +Hf
−(ω0)E0e

−iω0t, (6.46)

yielding

Df (t) = {[Hf
−(−ω0)]

2, 2H(ω0)} = {[Hf
+(ω0)]

2, 2H(ω0)}, (6.47)

where (5.1)2 has been used.

We see that relations (6.44) and (6.47) are the special cases of (6.42) and (6.43) for

K+−(ω1, ω2) given by (5.5). In particular, the quantity Qf (ω) in (6.45) is equal to U(ω)

in (6.42) for this choice of kernel.
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6.5. Exponential histories. This can be treated either by direct calculation, or as a

special case of the general formulae of subsection 6.2, where ω0 → 0. We consider a

history and current value (Et, E(t)) given by (6.13) with ω0 = 0, so that

E(t) = Eee
ηt, Et(s) = E(t− s), Ee = E0 + E0. (6.48)

The stress function, given by (6.18), has the form

T (t) = M+(−iη)E(t), M+(−iη) = G∞ + ηG̃+(−iη), (6.49)

where the forms of M+(−iη) can be deduced from (4.6). This quantity is real. From

(6.49) or as special cases of (6.23) and (6.25), we have

T (t)Ė(t) = ηM+(−iη)E2(t) =
1

2
M+(−iη)

d

dt
E2(t),

W (t) =
1

2
M+(−iη)E2(t).

(6.50)

Also, (6.26), (6.27), and (6.28) reduce to

ψ(t) =
1

2
[M+(−iη) +

η

2
K+−(−iη, iη)]E2(t). (6.51)

The rate of dissipation and total dissipation are special cases of (6.29) and (6.32), given

by

D(t) = −η2

2
K+−(−iη, iη)E2(t), D(t) = −η

4
K+−(−iη, iη)E2(t). (6.52)

The results for the various quadratic quantities above can be summarized in a simple

formula. Putting ω0 = 0 in (6.20), we have

V (t) = V0e
2ηt, V0 = ME2

0 +M E0
2
+N |E0|2 . (6.53)

It can be shown using (3.1), (3.5), and (3.9), relating, respectively, to ψ(t), D(t), and

W (t), that

M = M =
N

2
, (6.54)

for exponential histories. This relation must therefore hold true for D(t), by virtue of

(2.10). Equation (6.54) can also be shown using various explicit formulae from (6.25) to

(6.32). It gives that V0 = ME2
e or

V (t) = ME2(t). (6.55)

Each result in (6.50) - (6.52) has the form (6.55) where, for example, if M = M(ω−, ω+)

in the general sinusoidal/exponential case, this is replaced by M = M(−iη, iη). The

property (6.55) was first noted in [3].

The quantities Fs and Fd, defined by (2.12), are time-independent and given by

Fs =
M+(−iη) +

η
2K+−(−iη, iη)

M+(−iη)
, Fd = −η

2

K+−(−iη, iη)

M+(−iη)
. (6.56)

Note that

Fs = Fsc, Fd = Fdc, (6.57)

where Fsc and Fdc are the quantities introduced in (6.39), with ω± replaced by ±iη, as

in the comment after (6.55).
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6.6. Free energy and related functionals for SE histories which vanish for t < 0. For

such histories, (2.3) can be expressed as

T (t) = Te(t) +

∫ t

−∞
G̃(t− s)Ė(s)ds = Te(t) +

∫ t

0

G̃(t− s)Ė(s)ds (6.58)

with the aid of a simple change of variable. Also, (3.1)1 and (3.5) become

ψ(t) = φ(t) +
1

2

∫ t

0

∫ t

0

Ė(s)G̃(t− s, t− u)Ė(u)dsdu,

D(t) = −1

2

∫ t

0

∫ t

0

Ė(s)K(t− s, t− u)Ė(u)dsdu.

(6.59)

The work function is given by

W (t) =

∫ t

0

T (u)Ė(u)du = φ(t) +
1

2

∫ t

0

∫ t

0

Ė(s)G̃(|s− u|)Ė(u)duds, (6.60)

by virtue of (2.11)1 and (3.9).

7. Discrete spectrum materials. The form of the relaxation function considered

in this section is that for discrete spectrum materials, which will be used as our central

illustrative example in later discussions. Let

G̃(s) =

n∑
i=1

Gie
−αis, G′(s) =

n∑
i=1

gie
−αis, gi = −αiGi, (7.1)

where n is a positive integer. The inverse decay times αi ∈ R
+, i = 1, 2, . . . , n, and the

coefficients Gi are also generally assumed to be positive, this being the simplest way to

ensure the condition (4.8), which is clear from (7.3)2 below. Note that

G̃(0) = G0 −G∞ =
n∑

i=1

Gi. (7.2)

The parameters Gi, i = 1, 2, . . . , n, G∞ and αi ∈ R
+, i = 1, 2, . . . , n, are assumed to be

known, given quantities. We arrange that α1 < α2 < α3 . . . . It follows from (4.2) that

G̃+(ω) =

n∑
i=1

Gi

αi + iω
, G̃c(ω) =

n∑
i=1

αiGi

α2
i + ω2 , G̃s(ω) = ω

n∑
i=1

Gi

α2
i + ω2 . (7.3)

Relation (4.12)2 gives

H(ω) = ω2
n∑

i=1

αiGi

α2
i + ω2 ≥ 0. (7.4)

This quantity can be expressed in the form [17]

H(ω) = H∞

n∏
i=1

{
γ2
i + ω2

α2
i + ω2

}
, (7.5)

where the γ2
i are the zeros of f(z) = H(ω), z = −ω2 and obey the relations

γ1 = 0, α2
1 < γ2

2 < α2
2 < γ2

3 . . . . (7.6)
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Recalling (4.13), we see from (7.1)2 that

H∞ =

n∑
i=1

αiGi. (7.7)

Let us define a vector e in R
n with components

ei(t) = E(t)− αiE
t
+(−iαi) =

d

dt
Et

+(−iαi) = Ėt
+(−iαi) = −αiE

t
r+(−iαi),

i = 1, 2, . . . , n,
(7.8)

where (4.18) has been used.2 The quantities Et
+(−iαi) are real. They are the Laplace

transforms of Et(s), evaluated at αi, i = 1, 2, . . . , n.

The complex modulus, defined by (4.6)2, is given by

M+(ω) = G∞ + iω

n∑
i=1

Gi

αi + iω
. (7.9)

The stress function for discrete spectrum materials has the form

T (t) = G∞E(t) +
n∑

i=1

Giei(t), (7.10)

where (2.3)1, (7.1)1, and (7.8) have been used. Any quantity that depends on the history

Et only through the ei(t), defined by (7.8), is a functional of the minimal state ([20], for

example). The work function, given by (2.11)1, has the form

W (t) = φ(t) +
n∑

i=1

Gi

∫ t

−∞
ei(u)Ė(u)du, (7.11)

which is not a functional of the minimal state.

8. Free energies and related functionals for discrete spectrum materials.

We now present a general form of a free energy functional for discrete spectrum materials

([2, page 362]). Consider the quantity

ψ(t) = φ(t) +
1

2
e(t) ·Ce(t) = φ(t) +

1

2

n∑
i,j=1

Cij ei(t)ej(t), (8.1)

where φ(t) is the equilibrium free energy, given by (2.8), and C is a positive semi-definite

(usually positive definite) symmetric matrix with components Cij , i, j = 1, 2, . . . , n. The

function ψ(t) obeys (2.6) if C obeys the conditions
n∑

j=1

Cij = Gi, i = 1, 2, . . . , n. (8.2)

This can be seen by means of (4.19), (7.8), (7.10), and (8.1). Referring to (7.7), we see

that
n∑

i,j=1

αiCij =
1

2

n∑
i,j=1

(αi + αj)Cij = H∞. (8.3)

2Note that analytic continuation into Ω− is straightforward since Et
+(ω) is analytic in this half-plane.
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The form (8.1) is the most general form of a free energy that is a functional of the minimal

state, for discrete spectrum materials. One can show that

ψ̇(t) +D(t) = T (t)Ė(t),

D(t) =
1

2
e · Γe =

1

2

n∑
i,j=1

Γij ei(t)ej(t),

Γij = (αi + αj)Cij ,

(8.4)

where Γij are the components of the matrix Γ. Condition (2.9)2 requires that Γ must

be at least positive semi-definite. It follows from (8.3) that

n∑
i,j=1

Γij = 2H∞. (8.5)

Condition (8.2) is a restriction on C and therefore Γ, through (8.4)4. Thus, Γ has

n(n−1)/2 independent parameters, which are, however, subject to inequalities due to the

positivity requirement on Γ. By varying all these parameters within allowed ranges, we

mark out the extent of the set K, or under I2, the range of choices ofK(s, u) describing the

different materials with constitutive relation (7.10) constructed from relaxation function

(7.1). The kernels G̃ and K, given by

G̃(s, u) =
n∑

i,j=1

Cije
−αis− αju ∈ G,

K(s, u) = −
n∑

i,j=1

Γije
−αis− αju ∈ K,

(8.6)

have the property that, when substituted into (3.1) and (3.5), they yield (8.1) and (8.4)2,

respectively. It follows from (4.23) and (8.6) that

G̃+−(ω1, ω2) =

n∑
i,j=1

Cij

(αi + iω1)(αj − iω2)
,

K+−(ω1, ω2) = −
n∑

i,j=1

Γij

(αi + iω1)(αj − iω2)
,

(8.7)

which can be shown to obey (4.25), by virtue of (8.2), (8.4)4 and the use of partial

fractions. Observe that

K+−(ω, ω) = −
n∑

i,j=1

Cij

{
1

αi + iω
+

1

αj − iω

}
= −2H(ω)

ω2 , (8.8)

which may be shown with the aid of (7.3), (7.4), and (8.2). This agrees with (4.26).

The formulae presented in this section are for arbitrary histories, based on (7.8). It is

of interest to check that the results are in agreement with the formulae of section 6 for

specified histories but which apply to materials more general than the discrete spectrum

category. It follows from (4.16), (6.3), and (7.8) that, for step function histories,

ei(t) = E0e
−αit, (8.9)
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and we see that, for example, (8.1) agrees with (6.5), by virtue of (8.6)2 and (8.4)4. Also,

for SSE histories, it can be shown that (8.4)2,3 is a special case of (6.30), with the aid

of (6.19)2, (7.8), and (8.7)2. The other formulae for step function and SSE histories in

section 6 can also be shown to agree with the corresponding results in the present section.

For the discrete spectrum model, the set F consists of all free energies of the form (8.1).

The fundamental quantities are of course theK(s, u) ∈ K, which are uniquely determined

by the non-negative symmetric matrix Γ, and the quantities αi, i = 1, 2, . . . , n.

8.1. Free energies ψf . Let us now consider important special cases of this formalism.

Explicit forms of the factors Hf
±(ω), the free energies ψf (t), and the dissipation rates

Df (t) (see (5.2) - (5.4)) are given for discrete spectrum materials in, for example, [2, 12,

18]. The quantities Hf
±(ω) can be written in the form

Hf
−(ω) = ih∞ω

n∑
i=1

Rf
i

αi(αi − iω)
, Hf

+(ω) = H
f

−(ω),

Rf
i = (ρfi − αi)

n∏
j=1
j �=i

{
ρfj − αi

αj − αi

}
,

h∞ = H1/2
∞ , γ1 = 0, ρ1 = 0,

ρfi = εfi γi, εfi = ±1, i = 2, . . . , n.

(8.10)

Different choices of the vector with components εfi yield different factorizations and

free energies. There are N = 2n−1 possible choices of the vector with components εfi ,

i = 2, 3, . . . , n. A way of generating them was suggested in [23], and is repeated here.

Remark 8.1. For each integer f , express f − 1 ∈ [0,M − 1] as a binary number of

length n−1, and regard each digit of this number as a component of the matrix. Change

each 0 in the matrix to −1, which completes the construction.

This method is used to produce numerical results in the present work.

Taking the large ω limit of (8.10)1, we see that

n∑
i=1

Rf
i

αi
= −1. (8.11)

The function pft− (ω), given by (5.2)3, has the form

pft− (ω) = −ih∞

n∑
i=1

Rf
i ei(t)

αi(ω + iαi)
. (8.12)

Using (8.12) in (5.3)2, we obtain

Kf (t) = −h∞

n∑
i=1

Rf
i ei(t)

αi
. (8.13)

From (5.4) and (8.13), we see that

Df (t) = H∞

[
n∑

i=1

Rf
i

αi
ei(t)

]2

= H∞

n∑
i,j=1

Rf
i R

f
j

αiαj
ei(t)ej(t). (8.14)
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Comparing with (8.4)3, we obtain that

Γij = 2H∞
Rf

i R
f
j

αiαj
, (8.15)

for the family of free energies related to the factorizations (8.10). This identification

also emerges from (5.5), (8.7)2, and (8.10). Note that relation (8.5) holds for each

factorization, by virtue of (8.11). It follows from (8.12) and (5.2)1 that

ψf (t) = φ(t) +H∞

n∑
i,j=1

Rf
i R

f
j

(αi + αj)αiαj
ei(t)ej(t), (8.16)

which, with the aid of (8.1) and (8.15), yields (8.4)4. One can show directly that (8.2)

is obeyed from an argument given in [2, page 267], which is valid for all subscripts f .

The central free energy, discussed below, is a linear combination of the forms (8.16),

as in (5.6), for particular values of the λf .

A general form of K+−(ω1, ω2) for discrete spectrum materials can be given by (5.9),

using (8.10). The question arises whether this is the most general representation, equiva-

lent to (8.7)2. This latter form has n(n−1)/2 independent parameters in Γ, as determined

after (8.5). Both the λf and the components of Γ are subject to positivity related in-

equalities. The number of independent λf is 2n−1 − 1. Thus, for n ≥ 4, there are more

λf than independent elements of Γ. Dependence on these parameters is linear in both

cases. Thus, for n ≥ 4, equivalence between the two representations can probably be

demonstrated if the inequality constraints on the two sets of parameters are consistent.

Remark 8.2. Recalling (5.8) or (8.2), we see that the constitutive equation associated

with each ψf (t) and any linear combination of them, as in (5.6), is that given by (2.3),

with relaxation function specified by (7.1).

8.2. The Day free energy. For the case n = 1, the relations (8.1) and (8.4) reduce to

the formulae for the Day free energy and rate of dissipation [2,6]. A relaxation function

given by (7.1), but with only one decaying exponential, has the form

GD(t) = G∞ +Gde
−αt, Gd = G0 −G∞. (8.17)

This behaviour has, in some contexts, been referred to as the standard linear model [24].

By virtue of (8.2) and (8.4)4, we must have

C11 = Gd, Γ11 = 2αGd. (8.18)

The Day free energy functional is given by

ψD(t) = φ(t) +
Gd

2
e21(t), (8.19)

in terms of e1(t) defined by (7.8). The corresponding rate of dissipation is

DD(t) = αGde
2
1(t). (8.20)

From (6.25) and (7.9), we can determine MW and NW for this case. In particular,

NW = G∞ +Gd
(ω2

0 + η2)(α+ η)

η[(α+ η)2 + ω2
0 ]
. (8.21)
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The kernels (8.6) reduce to

G̃(s, u) = Gde
−α(s+ u), K(s, u) = −2αGde

−α(s+ u), (8.22)

and (8.7) becomes

G̃+−(ω1, ω2) =
Gd

(α+ iω1)(α− iω2)
,

K+−(ω1, ω2) = − 2αGd

(α+ iω1)(α− iω2)
,

(8.23)

which yield explicit functions for MD and ND, given by (6.32). Thus, we obtain that

MD =
iGd

2

(w0 − iη)α

(α+ η + iω0)
2 , ND = Gd

α(ω2
0 + η2)

η[(α+ η)2 + ω2
0 ]
. (8.24)

Relations (8.14) and (8.16) are particular cases of the general formulae (8.4) and (8.1),

and must have the same limit for n = 1. This can be seen by noting that

H∞ = −G′(0) = αGd, (8.25)

and from (8.11),

R1
1 = −α, (8.26)

for n = 1.

The fundamental point made in [22] is that a material with memory is completely

characterized by choosing K(s, u) rather than the relaxation function. However, for

the n = 1 case, specifying the relaxation function parameters fixes uniquely the kernel

K(s, u) and, therefore, determines the material completely. Thus, the set K for n = 1 is

a singleton given by (8.22)2, and there is only one material with the constitutive relation

generated by the relaxation function (8.17), with parameters as specified.

This is essentially the observation in the Introduction that there is only one free energy

which is a functional of the minimal state ([2, page 150], for example) if n = 1, namely

(8.19).

Remark 8.3. If a material behaviour can be adequately simulated by one decay

constant α, together with coefficients G∞ and Gd, then ψD(t), given by (8.19), is the

physical free energy for that material.

9. Functionals to be plotted for comparison purposes. The free energy func-

tional proposed in [18] (see also [2, page 367]) is given by (5.6)2 with λf = 1/N ,

f = 1, 2, . . . N for discrete spectrum materials. It was proposed as a candidate for the

physical free energy. Adopting viewpoint I2, we see that it is the physical free energy of

the material described by kernel K(s, u) ∈ K with Fourier transform K+−(ω1, ω2) given

by (5.9), with equal λf . This may indeed be a reasonable approximation to many choices

of material behaviour. Similarly, the rate of dissipation has the form (5.6)1, for the same
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λf . Closed formulae for these quantities were established, which can be put in the form

ψc(t) = φ(t) +H∞

n∑
i,j=1

Pn(αi, αj)

αi + αj
ei(t)ej(t),

Dc(t) = H∞

n∑
i,j=1

Pn(αi, αj)ei(t)ej(t),

(9.1)

where

Pn(αi, αj) =

∏n
k=2{αiαj + γ2

k}∏n
k=1
k �=i

(αi − αk)
∏n

k=1
k �=j

(αj − αk)
. (9.2)

We shall refer to ψc(t) as the central free energy.

In subsection 11.4, we will present plots of total dissipations associated with the central

free energy, and also the minimum and maximum free energies, as specified in Remark

5.1. The quantities R1
i for the minimum free energy and associated dissipation, are given

by (8.10) with ε1i = 1, i = 2, . . . , N , while for the maximum free energy and dissipation,

the quantities RN
i have εNi = −1, i = 2, . . . , N . The ratios defined in (2.12), or related

quantities (see Remark 2.2), are also presented. Using (8.10) and (9.2), the matrix Γ in

(8.4) for these three cases can be expressed as

Γij = 2H∞
Fij(r)∏n

k=1
k �=i

(αi − αk)
∏n

k=1
k �=j

(αj − αk)
,

Fij(1) =
n∏

l=1

(γl − αi)
n∏

l=1

(γl − αj)

=
n∏

l=1

[αiαj + γ2
l − γl(αi + αj)],

Fij(2) =
n∏

l=1

(αiαj + γ2
l ),

Fij(3) =
n∏

l=1

(γl + αi)
n∏

l=1

(γl + αj)

=
n∏

l=1

[αiαj + γ2
l + γl(αi + αj)],

(9.3)

where the minimum, central and maximum free energies are labeled by r = 1, 2, 3, re-

spectively. We can determine Cij from (8.4)4.

The quantities K(s, u) and K+−(ω1, ω2) are given by (8.6)2 and (8.7)2 in terms of

Γij . All the functionals of interest are presented in section 6 for step function and SE

histories, in terms of K(s, u) and K+−(ω1, ω2). The total dissipation for SSE histories

in the Day case is given explicitly by (8.23).
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10. Choice of parameters for the relaxation function. The inverse decay times

are given by the formula

αr = αnκr, κr =
sin2 rπ

2(n+ 1)

sin2 nπ
2(n+ 1)

,

r = 1, 2, . . . , n, κn = 1, κr ≤ 1,

(10.1)

based on a simple polymeric model ([3, 15] and the references therein).

The quantities Ri/αi, i = 1, 2, . . . , n, given by (8.10) for f = 1, can clearly be ex-

pressed in terms of the dimensionless parameters κr, r = 1, 2, . . . , n, and γj/αn, j =

1, 2, . . . , n. Now, (7.5), expressed in terms of the variable ω2/α2
n, has zeros at −(γj/αn)

2,

which are dimensionless numbers denoted by μ2
j . Thus, we have

γr = αnμr, r = 1, 2, . . . , n, (10.2)

where the quantities κr and μr obey (7.6) with κr replacing αr and μr replacing γr.

However, the simplest way of proceeding is to keep the notation αr and γr rather than

κr and μr, and put αn equal to unity. In fact, we absorb αn into the time (or frequency)

variable, taken to be the dimensionless quantity αnt (or ω/αn); it is then understood

that when αn appears in formulae, it is equal to unity. Of course, in a practical situation,

it must be ascribed its physical value, but we need not concern ourselves with what that

value is, in the present work.

Also, based on this polymeric model [15], we choose all the Gi in (7.1) to be equal to

G1, so that, from (7.2),

G1

G0
=

χ

n
, (10.3)

in the notation of (3.14). It follows from (7.7) that

H∞ =
χ

n
G0

n∑
i=1

αi. (10.4)

We take

G0 = 1. (10.5)

In order to choose an appropriate value for n, we initially consider values between 4 and

8, since 2, 3 are perhaps too simple and 8 is where the material is a close approximation

to the continuous spectrum case [23]. The relaxation functions, for n = 4, 5, · · · , 8, with
the αi defined by (10.1) and G1, given by (10.3), are very close in value. This is indicated

by a plot of the relaxation functions for n = 4, 8 on Figure 1; the n = 5, 6, 7 cases fall

between these two. Note that the n = 8 function has not converged to its infinite limit

β, even at αnt = 40. This is because the smallest inverse decay time α1 for this case is

equal to 0.0311.

We will adopt (10.1) and the equality of all the Gi, yielding (10.3). Full knowledge of

the matrix Γ for material I, or whatever other kernel in K is of interest, remains to be

established, presumably by measurement.
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Fig. 1. Relaxation functions for n = 4, 8, where β = 0.4.

10.1. Closest Day relaxation function. We now seek the Day relaxation function which

is closest to the actual relaxation function for the materials in K.

The αi, i = 1, 2, . . . , n, in (7.1) are given by (10.1), while the Gi, i = 1, 2, . . . , n,

are determined by (10.3), together with the assumption that the Gi are all equal. This

equality will be explicitly invoked later. We choose G0, G∞, and α such that the resulting

n = 1 relaxation function approximates (7.1) as closely as possible.

We choose G0 and G∞ to be the same for the materials with relaxation function given

by (7.1) and (8.17), respectively. Then, Gd is given by (8.17)2.

Choosing the optimal value of α is somewhat more difficult. Consider

f(α) =
1

G2
d

∫ ∞

0

[GD(s)−G(s)]2 ds

=
1

G2
d

∫ ∞

0

[
Gde

−αs −
n∑

i=1

Gie
−αis

]2

ds,

(10.6)

which is an L2(R+) norm of the difference between the relaxation functions for the Day

case and that in (7.1). Then, we put

fm = min
α>0

f(α), (10.7)

and this minimum is achieved at αd, so that

f(αd) = fm ≤ f(α) ∀α ∈ R
+. (10.8)
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The quantity αd is the inverse time decay constant that will be used in the Day free

energy and dissipation. We have from (10.6) that

fm =

∫ ∞

0

d2(s)ds, d(s) = e−αds − 1

Gd

n∑
i=1

Gie
−αis. (10.9)

Note that d(0) = 0 and lims→∞ d(s) = 0. It is assumed that the fit sought by the limiting

process (10.7) is reasonably good, so that fm � 1. For the specific example considered

below, fm = 0.1. It follows that d(s) must be small except perhaps on regions of R+

with small measure.

Let WD(t) denote the Day work function. It follows from (3.9) that

1

Gd
[WD(t)−W (t)] =

1

2

∫ ∞

0

∫ ∞

0

d(|s− u|)Ėt(s)Ėt(u)dsdu. (10.10)

The conclusion that d(s) is typically small suggests that 1
Gd

[WD(t)−W (t)] should also

be small. In the examples presented later, it is indeed always the case that WD(t) and

W (t) are very close in value.

The quantity f(α), given by (10.6), can be explicitly calculated. Let us replace α by

α0. Then

f(α0) =

n∑
i,j=0

cicj
αi + αj

, α0 ∈ (0, 1],

ci =

⎧⎨⎩1, i = 0,

−Gi
Gd

, i = 1, 2, · · · , n.

(10.11)

This can be written in the form

f(α0) =
1

2α0
+ 2

n∑
i=1

ci
α0 + αj

+

n∑
i,j=1

cicj
αi + αj

, (10.12)

so that

f ′(α0) = − 1

2α2
0

− 2
n∑

i=1

ci
(α0 + αj)

2 . (10.13)

Thus, the α0 satisfying (10.8) is the solution of the equation

1 + 4
n∑

i=1

ciα
2
0

(α0 + αj)
2 = 0, (10.14)

which is a minimum if f ′′(α0) > 0. Thus α0 is equal to αd.

Note that the values of αd on Table 1 do not vary greatly with n. The quantities

f ′′(αd) are all positive so that the extrema of f(α) at α = αd are all minima.

It seems, therefore, to matter little what value of n is adopted. We choose n = 5 for

the remainder of this work. The numerical values of αr, r = 1, 2, 3, 4, 5, given by (10.1),

are 0.0718, 0.2679, 0.5359, 0.8038, and 1.0.

Referring to Remark 8.1 and the developments of subsection 8.1, we find that the

vectors with components εfi , i = 2, 3, 4, 5 are as shown on Table 2.
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Table 1. The function defined by (10.12), the solution of (10.14),
denoted by αd and the second derivatives of f(α) at αd.

f(αd), n = 4, 5, · · · , 8 0.0603 0.0968 0.1347 0.1722 0.2088

αd, n = 4, 5, · · · , 8 0.3536 0.3225 0.3030 0.2896 0.2798

f ′′(αd), n = 4, 5, · · · , 8 8.6 10.7 12.4 13.8 14.9

Table 2. Vectors with components εfi , i = 2, 3, 4, 5, where f =
1, 2, . . . , 16, as generated by the algorithm described in Remark 8.1.
Note that f = 1and 16 relate to the minimum and maximum free
energies, respectively.

f = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

The appropriate Day relaxation function is determined by (10.6) - (10.8) where f(α)

has the form (10.12). Since the Gi are all equal, (10.11)2 becomes

ci =

{
1, i = 0,

− 1
n, i = 1, 2, · · · , n,

(10.15)

with the aid of (7.2) and (8.17)2. We look for a solution to (10.14) where α0 ∈ (0, 1].

This is denoted by αd, which from Table 1 is equal to 0.3225, with optimum choice

f(αd) = fm = 0.0968.

The quantities G(s) and GD(s), where the latter is given by (8.17)1 with α = αd, are

plotted on Figure 2. We see that the curves are reasonably close. The relaxation function

G(s) converges very slowly to zero because the least inverse decay time, α1 = 0.0718 is

small; see paragraph after (10.5).

Figure 2 clearly suggests that d(s), defined in (10.9), is small for most s, which is

empirical confirmation of the discussion around (10.10).

Observe that if all the αi in (8.6) are replaced by αd, then these relations reduce to

(8.22), on using (8.5) and (8.25).

It is of interest to compare the Day free energy and total dissipation with various

free energies and total dissipations derivable from different choices of K(s, u) ∈ K for
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Fig. 2. The relaxation function for n = 5, β = 0.4, and the Day
relaxation function approximating it.

relaxation function (7.1). This will be done for total dissipation in various plots presented

in subsection 11.4.

10.2. Closest kernel to the Day form. All free energies and total dissipations related

to each K(s, u) ∈ K reduce to the unique Day versions for n = 1. It might be expected,

therefore, that the latter are close to the average of those for general n. What emerges

from the numerical work is, however, that the Day free energy is closer to the minimum

free energy than the maximum free energy for n = 5, with corresponding results for the

total dissipations.

This can be demonstrated directly by seeking the kernel K(s, u) ∈ K which is closest

to the Day kernel given by (8.22)2 for α = αd, that is,

KD(s, u) = −2αdGde
−αd(s+ u), (10.16)

Referring to (8.6)2 and (8.22)2, we define

m(λ) =
1

G2
d

∫ ∞

0

∫ ∞

0

[KD(s, u)−K(s, u)]
2
dsdu

=
1

G2
d

∫ ∞

0

∫ ∞

0

⎡⎣2αdGde
−αd(s+ u) −

n∑
i,j=1

Γije
−αis− αju

⎤⎦2

dsdu

= 1− 4αd

Gd

n∑
i,j=1

Γij

(αd + αi)(αd + αj)
+

1

G2
d

n∑
i,j,k,l=1

ΓijΓkl

(αi + αk)(αj + αl)
.

(10.17)
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Varying the general matrix Γij has the drawback that it is difficult to ensure that the

optimum matrix determined by such variational procedures is non-negative. However,

the linear combination of Df (t) given by (5.6) and (8.14) has non-negativity requirements

built in, and also the constraints (8.2). Noting (8.15), we see that this choice amounts

to using the following expression for Γij :

Γij =
2H∞
αiαj

N∑
f=1

λfR
f
i R

f
j , λf > 0, f = 1, 2, . . . , N,

N∑
f=1

λf = 1. (10.18)

Substituting for Γij in (10.17), we obtain

m(λ) = 1−A · λ+ λ ·Bλ, (10.19)

where the vector λ ∈ R
N has components λf , f = 1, 2, . . . , N , A ∈ R

N while B is in the

space of symmetric linear operators on R
N . These are given explicitly by

Af =
8H∞αd

Gd

n∑
i,j=1

Rf
i R

f
j

αiαj(αd + αi)(αd + αj)
,

Bfg =
2H2

∞
G2

d

n∑
i,j,k,l=1

Rf
i R

f
jR

g
kR

g
l

αiαjαkαl

[
1

(αi + αk)(αj + αl)

+
1

(αi + αl)(αj + αk)

]
,

f, g = 1, 2, . . . , N.

(10.20)

The matrix B is non-negative by construction.

The idea is to minimize m(λ), given by (10.19), by varying the λf , under the con-

straints given in (10.18). This is a classic quadratic programming problem. The number

of parameters λf is typically large, equal to 16, for example, in the particular case dealt

with here. Maple 2016 was used to obtain a solution.

We also consider an approximation to (5.6) [23] which involves retaining only the

minimum and maximum free energies, and related dissipations, in the sum of terms.

The vector A ∈ R
2 and matrix B ∈ R

2 × R
2. There are only two λi, namely λ1 and

λN obeying λ1 + λN = 1 and both must be non-negative, so that λ1 = λ ∈ [0, 1] and

λN = 1− λ ≥ 0. Relation (10.18) becomes

Γij =
2H∞
αiαj

[
λR1

iR
1
j + (1− λ)RN

i RN
j

]
. (10.21)

The quantities R1
i and RN

i for the minimum and maximum free energies and associated

dissipations are described before (9.3). Relation (10.19) is replaced by

m(λ) = F0 + F1λ+ F2λ
2, (10.22)

where
F0 = 1−AN +BNN ,

F1 = AN −A1 + 2(B1N −BNN ),

F2 = B11 +BNN − 2B1N .

(10.23)
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The value of λ yielding an optimum value of m(λ) is given by

λ0 = − F1

2F2
. (10.24)

This model is discussed further in subsection 10.3. It emerges that, for the parameters

chosen, λ0 ∈ (0, 1), as required without this constraint being explicitly applied.

10.3. Results of the optimization process. Let us now consider the result of the op-

timization problem described after (10.20). It emerges that the matrix B is positive

semi-definite since five of its eigenvalues are zero or extremely small (less than 0.006 in

magnitude). This implies that there may be many choices of the 16 dimensional vector

λ which give the same optimal behaviour. The results are as follows. The parameters λ3

to λ16 are zero or negligible. The parameters λ1 and λ2 are equal to 0.9464 and 0.1067,

respectively. Thus, the member of F closest to the Day free energy has the form

ψm2(t) = 0.9464ψm(t) + 0.1067ψ2(t). (10.25)

The last constraint of (10.19) should give that λ1+λ2 = 1, which is not fully enforced by

the numerical procedure. This is a difficulty in that it means that ψm2(t) may not obey

the requirements for a free energy. Let us, therefore, accept that only two of the λf are

non-zero and implement the procedure leading to (10.22) - (10.24), with the subscript

N , replaced by 2, relating to ψ2(t) in (10.25). Instead of (10.25), we have

ψm2(t) = λ2ψm(t) + (1− λ2)ψ2(t), (10.26)

where λ2 must be chosen to minimize m(λ2), defined by

m(λ2) = N0 +N1λ2 +N2λ
2
2, (10.27)

with
N0 = 1−A2 +B22,

N1 = A2 −A1 + 2(B12 −B22),

N2 = B11 + B22 − 2B12.

(10.28)

The value of λ2 yielding an optimum value of m(λ2) is given by

λ2 = − N1

2N2
= 0.9169. (10.29)

It follows that 1 − λ2 = 0.0831. The quantity N2 = 1.7761 > 0 so that the optimum

point is a minimum. The optimal value of m(λ2) is 0.071.

There is also the second alternative, generated by the solution to (10.22). The quantity

λ0, given by (10.24), is equal to 0.98 which is, therefore, the desired optimum point. We

have F2 = 2.0 > 0, which again ensures a minimum. Thus, within this approximate

treatment, the free energy in F closest to the Day free energy is given by

ψmM (t) = 0.98ψm(t) + 0.02ψM (t). (10.30)

The total dissipations corresponding to these two choices are compared with the Day

total dissipation on Figure 9 and the results discussed in subsection 11.4.

However, it is clear from (10.30) that the Day free energy is very close to ψm(t) and

not close to ψM (t). Also, from (10.26) and (10.29), the proximity of ψD(t) to ψm(t) is

clear.
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11. Functional forms to be evaluated and plotted. The various functional ex-

pressions for step function and SE histories are summarized in this section.

11.1. Step function histories. Convenient expressions can be given for step function

histories in the case of discrete spectrum materials. We take E0 = 1 in (6.1). The general

results (6.5), (6.9), and (6.10) together with relations (8.4)4, (8.6)2, and (10.5) yield that

2D(t) = Fd(t) =

n∑
i,j=1

Γij

αi + αj

[
1− e−(αi + αj)t

]
=

n∑
i,j=1

Cij

[
1− e−(αi + αj)t

]
,

2ψ(t) = Fs(t) = 1− Fd(t).

(11.1)

Given the close numerical connection between the total dissipation and Fd(t), only the

latter is plotted in subsection 11.4. The various choices of the symmetric matrix Γ are

presented in (9.3).

For the case of the Day free energy, we have n = 1 and

Fd(t) = χ
[
1− e−2αdt

]
,

Fs(t) = (1− χ)

[
1 +

χ

1− χ
e−2αdt

]
,

(11.2)

where χ ∈ (0, 1) is defined by (3.14)2.

The formulae (11.1) and (11.2) provide examples of (6.12), for discrete spectrum

materials.

11.2. SSE histories. We choose a special case of (6.13) where E1 = iE0 = E1, so that

the history and current value (Et, E(t)) have the forms

E(t) = −iE1[e
iω−t − e−iω+t] = 2E1e

ηt sin(ω0t),

Et(s) = E(t− s), s ∈ R
+,

(11.3)

where the ω± are defined by (6.14) and 2E1e
ηt is the amplitude. It will be assumed that

E1 = 1.

For the total dissipation and Fdc, given, respectively, by (6.32) and (6.39)1, we use

(8.7)2. The work function is given by (6.24), (6.25), and (7.9). These quantities are

plotted in subsection 11.4, together with analogous functions related to the Day free

energy.

Recalling (6.19) and (7.8), relation (8.4)3 can be put in the form (6.30), on using

(8.7)2. Similarly, (8.1) can be shown to be equal to (6.26) by virtue of (8.7)1, (6.27)1,

and (6.28)1.

For the Day free energy, the formulae are compact enough to write explicitly. The

form of DD(t) follows from (6.31) and (8.24). From (8.21) and (8.24), we find that

Fdc =
(ω2

0 + η2)αdχ

βη[ω2
0 + (αd + η)2] + (ω2

0 + η2)χ(αd + η)
, Fsc = 1− Fdc. (11.4)
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The ratios Fdc and Fsc are functions of the positive quantities β, ω0, and η. For expo-

nential histories, we put ω0 = 0 in (11.4) to obtain

Fdc =
ηαdχ

(βαd + η)(αd + η)
, Fsc = 1− Fdc. (11.5)

In this case, one can easily show that 0 ≤ Fdc ≤ 1 by noting first that the quadratic

q(η) = (βαd + η)(αd + η)− αdχη has no real zeros for β ≤ 1, and second that q(0) > 0.

11.3. SE histories which vanish for t < 0. The quantity ei(t), defined by (7.8), be-

comes

ei(t) =

∫ ∞

0

e−αiuĖt(u)du =

∫ t

−∞
e−αi(t− s)Ė(s)ds

= e−αit
∫ t

0

eαisĖ(s)ds, t ≥ 0.

(11.6)

Relations (7.10), (7.11), (8.1), and (8.4) remain unchanged. The total dissipation is given

by

D(t) =
1

2

n∑
i,j=1

Γij

∫ t

0

ei(u)ej(u)du = W (t)− ψ(t), (11.7)

where the integral is clearly finite.

The history (11.3), non-zero only for t > 0, will be used. The parameter η will be

allowed to have both positive, negative, and zero values for such histories. If η = − |η| <
0, the exponential behaviour of the history is decaying rather than increasing. We have

Ė(t) = E1[ω−e
iω−t + ω+e

−iω+t], t > 0, (11.8)

and

ei(t) = 2E1Re

{
ω−

αi + iω−

[
eiω−t − e−αit

]}
. (11.9)

Also, from (7.11) and (11.8),

W (t) =
1

2
G∞E2(t) + 2E2

1

n∑
i=1

GiRe

{
ω−

2i(αi + iω−)
(e2iω−t − 1)

+
|ω−|2

2η(αi + iω−)
(e2ηt − 1)

+
2ω−

(αi + iω−)
Re

[
ω−

(αi − iω−)
(e(iω− − αi)t − 1)

]}
.

(11.10)

The total dissipation is conveniently evaluated by (11.7)2 and (11.10). The fraction

Fd(t), defined by (2.12), can also be determined from these relations. They are plotted

in subsection 11.4.

For η < 0, we see from (11.9) that each ei(t) tends to zero as t → ∞, so that ψ(t) and

D(t) also have this property. However, W (t) and D(t) = W (t)−ψ(t) tend to some finite

value, which, by neglecting all exponential decay terms in (11.10), can be deduced to be

W (∞) = D(∞) = −E2
1

n∑
i=1

Gi
αiω

2
0

η[(αi − η)2 + ω2
0 ]
. (11.11)



662 G. AMENDOLA, M. FABRIZIO, AND J. M. GOLDEN

11.4. Plotting total dissipation functionals and fractions. The quantities Fd(t), Fs(t)

for the Day free energy, given by (11.2), are plotted on Figure 3. The asymptotic limits

Fd(t) → χ and Fs(t) → β are apparent. These curves must always meet at Fd(t) =

Fs(t) = 0.5.

In all remaining plots, we present only the total dissipations, work functions, and the

ratios Fd(t), Fdc; free energies and the quantities Fs(t), Fsc are easily deduced from (2.10)

and (2.12)3. The total dissipation associated with the minimum, central, and maximum

free energies are denoted by Dm(t), Dc(t), and DM (t). The total dissipation for the Day

free energy is DD(t), introduced before (11.4).

The three fractions Fd(t) derived from (9.3) (or total dissipations; see comment after

(11.1)) and the corresponding quantity for the Day free energy in the case of step function

histories are plotted on Figure 4, where β = 0.4. These are the quantities given by

(11.1)2,3 and (11.2)1. Note that Dm(t) is the largest, while DM (t) is the smallest. For

all other free energies, the total dissipation is intermediate, in particular, Dc(t). These

assertions are obvious consequences of (2.10).

The Day free energy used here and below is such that αd = 0.3225, as observed after

(10.15). Also, (7.2), (8.17)2, (10.3), and (10.5) determine Gd = nG1 to be equal to χ.

This free energy yields a dissipation fraction very close to that for the minimum free

energy. Note that some curves on Figure 4 approach their asymptotic value χ quite

slowly. This is due to the smallness of α1, as pointed out after (10.15) in the context of

Figure 2.
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Fig. 3. The fraction of dissipated (dotted line) and stored (continu-
ous line) energy for the Day functional with a step function history,
where β = 0.4.
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Fig. 4. The fraction of dissipated energy for minimum, central, max-
imum, and Day free energies with a step function history, where

β = 0.4.

For all the curves presented below, there is a proximity between DD(t) and Dm(t); in

some cases, this is true for Dc(t). Similar statements must apply to ψD(t) and ψm(t)

(or, where applicable, ψc(t)), since, as argued below, W (t) and WD(t) are close. This

phenomenon is supported by (10.26), (10.29), and (10.30). The very simple formula

for the Day free energy could in many circumstances provide a quick, fairly accurate

approximation3 to the minimum free energy. This feature may be useful in a practical

sense.

Figures 5 and 6 are plots of dissipated energy and of these quantities divided by the

work functions, for SE histories vanishing if t < 0. Figures 10 and 11 are similar plots for

SSE histories. We multiply all quantities plotted on Figures 5 and 10 by e−2ηt, which

shows the relative positions of the various curves with greater clarity.

The quantities Dc(t) and DM (t) exhibit reduced oscillations in Figures 5 and 10.

These are presented with a larger scale on Figure 9, showing the same effect. The

work function is strongly oscillatory, which produces the more marked oscillation in the

fractions involving Dc(t) and DM (t) on Figures 6 and 11.

On Figure 6 (and Figure 11), we notice that the fractions related to the minimum and

Day total dissipations coincide near the oscillation peaks.

3The free energy ψF (t) referred to in the Introduction, also has the property that, in at least some
cases, it is a close approximation of ψm(t) [3].
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Fig. 5. Dissipated energies × e−2ηt related to the listed free energies
for SE histories vanishing for t < 0, where η = 0.5, ω0 = 1.0, and
β = 0.4; also the listed work functions.

Figures 5, 10 and 6, 11 are very similar, but distinguished by a time translation; t = 0

on Figures 5, 6 correspond roughly to t = 2 on Figures 10, 11. This indicates that

transient effects quickly vanish for the histories that are zero when t < 0.

On Figures 5, 7, 10, 12, 14 and 16, it is clear that the work function W (t) is very close

to the Day work function WD(t). We refer in this context to the paragraph after (10.10).

The same plots for the same parameters are presented on Figures 7 and 8 as on Figures

5 and 6, except that η = −0.5. The oscillatory nature of the histories is reflected in both

plots. On Figure 7, the difference between W (t) and WD(t) is slightly more substantial

than on the other plots.

The phenomenon described in the context of (11.11) is clear from Figure 7. Indeed,

if the formula (11.11) is evaluated for the stated parameters, it yields that W (∞) =

D(∞) = 0.26.

On Figure 9, the total dissipations associated with ψm2 and ψmM (denoted by Dm2(t)

and DmM (t)), defined in subsection 10.3, are compared, for SSE histories, with DD(t)

and Dm(t). It emerges from this plot that DmM (t) is very close to Dm(t) and less close

to DD(t), while Dm2(t) is intermediate between the two and is a better fit to DD(t),

though not a close fit.
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Fig. 6. Fraction of dissipated energy related to the listed free ener-
gies for SE histories vanishing for t < 0, where η = 0.5, ω0 = 1.0,
and β = 0.4.

The plots from Figure 12 onwards are illustrations of the dependence of the average

total dissipation and the quantity Fdc (defined by (6.39)1, (7.9), and (8.7)2) on the

parameters η, ω0, and β. The first two are parameters of the history, while the last one

is a property of the material. Also, the equivalent quantity for the Day free energy, as

given by (11.4), is plotted. All these are for SSE histories.

On Figures 12 and 13 , we have plots of the average total dissipations and Fdc for SSE

histories as a function of η, with ω0 and β as specified, and the corresponding quantities

for the Day free energy. Also, the work function and the Day work function are plotted

on Figure 12. Figures 14 and 15 are plots of these quantities as a function of ω0, with

η and β fixed, while Figures 16 and 17 present them as a function of β, with η and ω0

specified. Note that there is a magnification of difference for each of these cases between

the plots of total dissipation and those of fractions.

All curves decline with increasing η and β but become larger with ω0. These are in

line with intuitive expectations. Regarding the variation with β, we recall Remark 3.1;

also, it is consistent with (11.2)1 for large times since χ decreases as β increases.

The Day average total dissipation (referred to as DDa) is close to the average total

dissipation associated with the minimum free energy, Dma, as η varies, though, partic-

ularly for lower values of η, it is perceptibly separate and more evenly spaced between
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Fig. 7. Dissipated energy related to the listed free energies for SE
histories vanishing for t < 0, where η = −0.5, ω0 = 1.0, and β = 0.4;
also, the listed work functions.

Dma and the dissipations associated with the central free energy (the latter referred to

as Dca). As a function of ω0, this quantity is close to Dma at low values, but moves over

to Dca as ω0 increases. The quantity DDa is closer to Dma than Dca for all values of β,

though the three converge as β → 1.

A plausible choice to represent the Day energy loss fraction is the curve, indeed almost

straight line, on Figure 17, describing the behaviour of Fdc given by (11.4). This formula

depends only weakly on ω0, which can be seen by considering the plot of the Day total

dissipation on Figure 14. Putting ω0 = 0 yields (11.5) and near β = 0 gives, for α = αd,

the form

Fdc =
αdχ

αd + η
. (11.12)

This simple relation in fact is a good fit for the Day fraction on Figure 17, because of

the near linearity of the curve and the fact that Fdc vanishes at χ = 0. Equation (11.12)

holds for values of η other than 0.5, provided the curve remains nearly linear. For small

η, it reduces to Fdc = χ, as in the step function case. However, (11.12) provides only a

very rough approximation to the Day curve on Figure 13.
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Fig. 8. Fraction of dissipated energy related to the listed free ener-
gies for SE histories vanishing for t < 0, where η = −0.5, ω0 = 1.0,
and β = 0.4.
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Fig. 9. Comparison of dissipated energies× e−2ηt related to the
listed free energies for SSE histories, where η = 0.5, ω0 = 1.0, and
β = 0.4.
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Fig. 10. Dissipated energies× e−2ηt related to the listed free ener-
gies for SSE histories, where η = 0.5, ω0 = 1.0, and β = 0.4; also,
the listed work functions.
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Fig. 11. Fraction of dissipated energy related to the listed free en-
ergies for SSE histories, where η = 0.5, ω0 = 1.0, and β = 0.4.
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Fig. 12. The average dissipated energy related to the listed free en-
ergies and work functions for SSE histories as functions of η, with
ω0 = 1.0 and β = 0.4.
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Fig. 13. The average fraction of dissipated energy related to the
listed free energies for SSE histories as functions of η, with ω0 = 1.0

and β = 0.4.
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Fig. 14. The average dissipated energy related to the listed free en-
ergies and work functions for SSE histories as functions of ω0, with
η = 0.5 and β = 0.4.
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Fig. 15. The average fraction of dissipated energy related to the

listed free energies for SSE histories as functions of ω0, with η = 0.5
and β = 0.4.
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Fig. 16. The average dissipated energy related to the listed free en-
ergies and work functions for SSE histories as functions of β with
η = 0.5 and ω0 = 1.
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Fig. 17. The average fraction of dissipated energies related to the
listed free energies for SSE histories as functions of β with η = 0.5

and ω0 = 1.
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