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Abstract. The problem of estimating probability densities underlying given i.i.d.

samples is a fundamental problem in statistics. Taking a Bayesian nonparametric ap-

proach, we put forth a geometric solution that uses different actions of the diffeomorphism

(domain warping) group on the set of positive pdfs to explore this space more efficiently.

This representation shifts the focus from pdfs to the diffeomorphism group and allows

efficient solutions for density estimation under shape (or modality) constraints, i.e., es-

timation of a pdf given a fixed or a maximum number of modes. Focusing on univariate

density estimation, we use the geometry of a (one-dimensional) diffeomorphism group

to reach an (approximate) finite-dimensional Euclidean representation of warping func-

tions, and impose a shrinkage prior on this space to form a posterior distribution. We

sample this posterior using the Markov Chain Monte Carlo algorithm and form Bayesian

estimates of the unknown pdf. This framework results in a novel pdf estimator, with and

without shape constraints, and we demonstrate it in a number of simulated and real data

experiments.
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1. Introduction. Professpr Ulf Grenander was an exceptional researcher, scientist,

and mathematician of his generation, a pioneer in many ways. His expertise spanned a

wide swath of topic areas, with focus on both classical and modern computational statis-

tics. Not surprisingly, he is credited with major innovations in statistics and engineering.

He is greatly admired for his bold initiatives, sometimes without a full support from his

contemporary researchers, along directions that proved fruitful many years later. These

initiatives have had profound impacts on the community, and papers are still being writ-

ten on those topics, even several decades after his original work. Indeed these ideas

continue to motivate research and development for new and emerging types of datasets.

One such area is shape-constrained density estimation, where Grenander’s estima-

tor [14] stands as a foundational result on which a whole research community has been

developed. While his work, and the work that followed, focused on the estimation of

densities with very specific shapes—unimodal and monotone densities—it seems useful

to generalize this idea to a more general notion of shape. Another of Grenander’s pio-

neering contributions was his formalization of the deformable template theory [1,15],

in which one reaches a large span of objects by deforming a prototype or a template.

This representation is based on the action of the deformation groups on the space of com-

plex objects, and the main advantage here is to transfer the process of inference from a

complex space of objects to a much simpler group of deformations. One can use known

geometries of these deformation groups to impose distributions and derive inferences on

these structured spaces.
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In this paper we combine these two of Grenander’s seminal contributions—shape-

constrained density estimation and deformable template theory—to develop geometric,

Bayesian approaches to nonparametric density estimation. The problem of estimating

probability density functions (pdfs) from their samples is a classical problem in statis-

tics and has been studied for several decades in a variety of contexts. Consequently, a

wide variety of solutions have been developed, each with their own strengths and limita-

tions. The broad taxonomy of these solutions are usually parametric or nonparametric,

frequentist or Bayesian, constrained or unconstrained, and so on. While early research

favored parametric solutions, in view of their simplicity and analyzability, the focus has

recently shifted to nonparametric solutions, especially under a Bayesian paradigm. Even

though these solutions represent tremendous progress in the field, there is still plenty of

scope for developments especially for computationally efficient solutions involving large

datasets.

Recent years have seen great advances in the area of functional data analysis, especially

using geometric approaches. The key idea is to consider functions as elements of a certain

functional space, rather than as a set of scalar values over time intervals. This enables

one to exploit the geometry of functional spaces and to develop efficient algorithms for

inference under such geometric representations. Viewing pdfs as functions on a fixed

domain, such as an interval or a unit square or a unit sphere, one can develop a new

perspective on density estimation and statistical inferences. The estimation framework

can either be frequentist or Bayesian, but it is framed atop a mathematical representation

of pdfs that is derived from a geometrical perspective. In this paper we develop a Bayesian

point of view and demonstrate the advantages of a geometric approach over conventional

solutions.

Consider the following setup: Given a set of samples {xi ∈ D, i = 1, 2, . . . , n} from a

density function f0 on a compact domain D, our goal is to estimate f0. In this context,

we consider two problems:

(1) Problem 1: Unconstrained Density Estimation. Suppose there is an ef-

ficient technique, e.g., a parametric solution, to provide a rough estimate fp of

f0. How can one refine this initial estimate to reach an optimal solution while

retaining efficiency? The idea is to bridge the gap between these two densities,

fp and f0, using deformable template theory, and to implement it using a fast

algorithm.

(2) Problem 2: Shape-Constrained Density Estimation. In case we know

that f0 is of certain shape—for example, we know either the precise number or

maximum number of modes of f0—then, how can we incorporate that shape

information in an estimation of f0? The goal here is to identify the set of valid

densities and to define an optimal solution in this set according to some chosen

criterion. The construction of a computationally efficient estimator requires the

ability to explore the constraint set without venturing into the larger set of all

pdfs.

A common approach for solving Problem 1 is a two-step estimation procedure discussed

in [25–27, 39, 40], and some others. Here one improves upon an initial rough guess fp
by forming a function w > 0, that depends on the initial estimate fp, and obtaining
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a final estimate wfp/
∫
y
wfp dy. Thus, the second step involves the estimation of an

optimal w in order to reach the final estimate. In a Bayesian context, the function w

is often previously assigned a Gaussian process [25, 39, 40]. While this approach is quite

comprehensive, the calculation of the normalization constant at every iteration makes

computations very cumbersome.

Solutions to Problem 2 are not readily available in the literature in general. For cer-

tain simple constraints, such as monotonicity, unimodality, and log concavity, there have

been extensive studies in the past, but for more general constraints, such as M -modality

constraints, where the density f0 is fixed to have a certain M > 0 modes, the literature

is essentially wide open. There are plenty of instances in social, economical, and natural

sciences where the distributions naturally attain multimodal structure. Examples include

intensities of growth spurts, age stamps of disease occurrences in humans, colors of galax-

ies, electricity consumption profiles of households, and so on. Similarly, there are also

plenty of instances of general functions (see [23] for example) that exhibit shapes other

than monotonicity and unimodality. Unconstrained estimators that usually minimize

the mean squared error tend to overestimate the number of modes for small or moderate

sample sizes. Ensuring that an estimate lies in the correct shape class for any sample

size lends interpretability to the observed features of the estimate. Moreover, obtaining

an “optimal” estimate in the correct shape class makes the estimate more reliable than

an ad hoc choice within the shape class.

We investigate both of these problems using a geometric approach that relies on the

action of a certain deformation group on the density spaces of interests. In view of this

group action, the problem of inference transfers from density spaces to the group. Uti-

lizing the differential geometry of a deformation group, we perform optimizations over

all deformations to perform density estimation and develop techniques for Bayesian non-

parametric inferences. Although we will illustrate the solutions using univariate density

estimation, for simplicity of computation and explanation, these methods also naturally

apply to any higher-dimensional domain.

1.1. Past research. We summarize past research from different domains that relate to

the two problems posed in the previous section.

• Unconstrained Density Estimation: Nonparametric solutions, especially

kernel based estimators, are currently the norm in the literature for unconstrained

density estimation. Please refer to [17, 28, 34, 35] for a narrative on this frame-

work. Related to these approaches are “tilting” or “data sharpening” techniques

for unconditional density estimation; see for example [11, 19] and the references

therein. Bayesian approaches provide good solutions to the problem albeit at the

cost of high computational complexity. Faster computational solutions, beyond

the classical Metropolis Hastings implementations, have become popular in the

Bayesian nonparametric community. Over the recent years, Bayesian methods

for estimating pdfs based on mixture models and latent variables have received

a lot of attention, primarily due to their excellent practical performances and

an increasingly rich set of algorithmic tools for sampling from posterior distribu-

tions using Markov Chain Monte Carlo (MCMC) methods. References include

[4, 12, 21, 22, 24, 29, 32] and many others.
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• Shape-Constrained Density Estimation: In the context of shape-constrained

density estimation, there is an extensive literature on analysis and modifications

for the Grenander estimator for monotonic and unimodal density estimators.

Rao [33] and others [16, 43] studied asymptotic properties of Grenander’s esti-

mator and established its consistency. Others [6, 8, 30] extended this framework

to include nonsmooth unimodal densities. More recently, a number of papers

including [5] have broadened the available tools for unimodal density estimation.

Izenman [20] provides a review of nonparametric approaches, including those es-

timating unimodal densities. A more recent paper by Turnbull et al. [41] uses

the Bernstein polynomial basis for estimating unimodal densities from the data.

The literature on shape-constrained estimation dates back at least to the 1950s

([14,18]). For monotone or concave/convex constraints, the classical constrained

least squares estimator discussed in [18] minimizes a least squares criterion sub-

ject to the said constraints. Various theoretical properties of the least squares

estimator, including consistency, rates of convergence, and asymptotic distribu-

tion, have been derived, as in [2,7]. More recent theoretical contributions include

extensions of these results to the multivariate setting ([13]) and deriving rates

and sharp oracle inequalities under minimum smoothness assumptions, such as

Lipschitz continuity ([3]). While these are impressive theoretical results, it is

often the case in scientific and engineering applications that one needs to impose

constraints on the shape of the density and to characterize uncertainty in esti-

mating the density. While bootstrapping is a popular approach to characterize

uncertainty, the theory for such estimators is not as well-developed, especially in

terms of uncertainty characterization. In this article, we develop a fully prob-

abilistic way of learning the density subject to a constraint on the number of

modes.

• Shape Analysis of Elastic Euclidean Curves: A topic related to Problem 2

is the shape analysis of Euclidean curves, of the type β : [0, 1] → R
n, where one

studies shapes formed by such curves. Shape is a property that is invariant to

certain transformations, such as rigid motions, global scaling, and reparameter-

izations. Over the last decade there have been several important developments

in this area, including: (1) introductions of elastic Riemannian metrics that

invariant to the actions of these shape-preserving transformations, and (2) cer-

tain square-root transformations that transform these complex metrics into more

practical L2 metrics. For some general discussion on this topic, please refer to

[31, 37, 38, 45, 46]. If we set n = 1, then shape analysis becomes related to the

current problem of shape-constrained density estimation. In fact, the tools de-

rived in the current paper can be extended to the estimation of Euclidean curves

under given shape constraints. However, we have not studied this direction in

this paper and have left it out for future research.

1.2. Proposed geometric framework. Dasgupta et al. [10] and [9] introduced a geo-

metric approach for solving Problems 1 and 2, and estimated densities by deforming an

initial pdf into an optimal solution. The deformation, in turn, is based on the action of

a group of deformations of the domain D, with the action chosen according to the need
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of the problem. (In the univariate case these domain deformations are often known as

time warpings.) An area-preserving action helps search over all pdfs, in an unconstrained

way, by varying the deformations and steering the solution towards the optimal pdf. A

shape-preserving or a mode-preserving group action helps search for optimal solutions

under the constraints of known shapes. This framework shifts the burden of estimation

or optimization onto the group of deformations. Using the geometries of deformation

groups, one can efficiently reach optimal estimates. However, [10] and [9] take a frequen-

tist approach and rely on inbuilt MATLAB functions for log-likelihood optimization. As

a result there is little to no control on the optimization procedure itself. A Bayesian

approach on the other hand provides a lot more control over the optimization and flex-

ibility in the search through the choice of the proposal density and the choice of the

prior structure. Furthermore, the Bayesian approach naturally allows one to gauge the

uncertainty in the estimate through the posterior credible intervals. Hence in this paper

we introduce a Bayesian and geometric approach to density estimation, and investigate

its strength and weaknesses. We define prior distributions on the set of deformations and

seek posterior samples for this set to form density estimates.

The novel contributions of this paper are:

(1) It provides a unified discussion on unconstrained and constrained density esti-

mation using different actions of a deformation group to explore the space of all

pdfs.

(2) It introduces a novel Bayesian framework to represent and search over the defor-

mation group utilizing the underlying geometry of the group.

(3) It provides an efficient Bayesian density estimation under proper multimodal

(shape) constraints.

(4) It demonstrates these ideas using simple examples from univariate density esti-

mation and compares the performance of different prior structures.

The rest of this paper is organized as follows. In Section 2, we introduce different

actions of the diffeomorphism groups on the space of positive density functions on a

compact domain D. In Section 3, we prove some background material on geometries of

relevant spaces. In Sections 4 and 5, we present framework for unconstrained and con-

strained density estimation, respectively, and in Section 6 we present Bayesian solutions

to these problems. We present a real data analysis in Section 7, involving the electricity

consumption pattern in a random household in Tallahassee. We finish the paper with a

simple discussion in Section 7.

2. Deformation groups, pdfs, and shapes. The approach pursued in this paper

is to focus on the geometry of the space of pdfs and how to explore it efficiently, with

or without any constraints. These explorations, in turn, lead to desired pdf estimators.

The main tool used in traversing the space of pdfs is using a suitable action of the

diffeomorphism group on that space, termed as deformations. These actions primarily

deform current pdfs by warping the domain D on which the densities are defined, and

adapt the heights accordingly, to help us traverse the density function space. There are

different actions enabling explorations suitable for different situations.
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Let Γ denote the set of all orientation-preserving diffeomorphisms from a domain D to

itself. Γ is an infinite-dimensional Lie group with the group operation being composition

◦ and the identity element γid(s) = s. In case D is one-dimensional, then Γ is also

referred to as the time-warping group or simply the warping group. Let F be the set of

all smooth functions on D; Γ acts on F in a number of ways, and at least two of them

will be useful in density estimation.

(1) Area-Preserving: This action preserves the area below the curve in a function

and is a mapping from F × Γ → F given by (f, γ) = (f ◦ γ)Jγ . Here Jγ denotes

the determinant of the Jacobian of the diffeomorphism γ : D → D. It is easy

to verify that
∫
D
f(s) ds =

∫
D
(f, γ) ds. This mapping is akin to the change

of variables formula for random variables. This action is especially suitable for

probability densities since a pdf remains a pdf under this mapping. However,

this mapping can change the shape of a function by changing the relative heights

of its peaks and valleys, introducing new modes or removing modes, and so

on. Also, the L
2 norm of a function is not preserved, i.e., ‖f‖ �= ‖(f ◦ γ)Jγ‖ for

a general f and γ. As a special case, for D = R or [0, 1], we have (f, γ) = (f ◦γ)γ̇.

(2) Shape-Preserving: This action is based on a simple deformation of the domain

D by the group Γ. It is given by the mapping from F × Γ → F defined as

(f, γ) = f ◦ γ, where ◦ denotes a composition. An important property of this

action is that all the heights in f are preserved in the mapping from f to (f ◦γ);
they simply get shifted horizontally according to γ. Thus, in a sense, it preserves

the shape of a function. Shape in this context signifies the number of modes and

antimodes of a density function. However, the area below a curve can change

under this group action since
∫
D
f(s) ds �=

∫
D
f(γ(s)) ds in general. Also, the

L
2 norm of a function is not preserved, i.e., ‖f‖ �= ‖(f ◦ γ)‖ for a f ∈ F and

γ ∈ Γ in general. One can easily modify this action (by adding a normalization)

to make this action area-preserving: (f, γ) = (f◦γ)∫
D
(f◦γ)ds . This last action is thus

both shape- (or mode-) and area-preserving.

(3) Norm-Preserving: This action preserves the L
2 norm of a function. It is

defined as a mapping from F × Γ → F given by (f, γ) = (f ◦ γ)
√
Jγ . It can be

verified that ‖f‖ = ‖(f ◦ γ)
√
Jγ‖ for all f ∈ L

2 and γ ∈ Γ. However, this action

does not preserve the shape of f , as the peaks and valleys can added or removed

under this mapping. It also does not preserve the area below the curve, and

therefore the resulting function may not be a pdf. As a special case, for D = R

or [0, 1], we have (f, γ) = (f ◦ γ)
√
γ̇.

Figure 1 shows an example of each of the three actions of a univariate Γ on a pdf on the

domain D = [0, 1]. The top row shows the original pdf f and the three time warping

functions {γi, i = 1, 2, 3}. The bottom row shows the three actions listed above. It can

be seen that while the original f is bimodal, the area- and the norm-preserving actions

can result in trimodal structures. On the other hand, all the deformed functions are still

bimodal under mode-preserving transformations.
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Fig. 1. Top row: The left panel shows a density f that is deformed
using a number of warping functions (middle panel). Bottom row:
The different actions of the warping functions resulting in proper
pdfs shown in the left and middle panel because the transformation

is area-preserving. The right panel shows functions which are not
proper densities.

Figure 2 shows an example of bivariate density on the domain D = [0, 1]2. The top-left

panel in this figure shows a bimodal pdf f that is acted upon by a diffeomorphism γ in

two different ways. We display this γ using its displacement field γ − γid (top-middle

panel) and its determinant of the Jacobian Jγ (top-right panel). The bottom row shows

the two group actions: (1) mode-preserving action {(f ◦ γ)/
∫
D
(f ◦ γ)ds} and (2) area-

preserving action {(f ◦ γ)Jγ}. It can be seen that the first action only moves the modes

horizontally and scales them globally, but the second action also changes the relative

heights of the two peaks.

The first two actions are useful for exploring the space of density functions and reaching

efficient estimators, depending upon the context. In case one wants to estimate a density

without any constraint, then the area-preserving action is a suitable choice. One can start

with an arbitrary initial estimate of a pdf and search over all pdfs by applying different

elements of Γ. Instead, if one is interested in estimating a pdf with a certain shape, then

it is better to use the shape-preserving transformation. In this case, one can start with

an arbitrary element of the correct shape class and then search over that shape class by

optimizing over elements of Γ applied to that original element.

3. Background material of geometry.

3.1. Geometry of a pdf space. Before we present the main idea, we briefly describe

some basic geometry of the set of pdfs. Let P denote the set of all strictly positive

pdfs on a compact domain D. P is a Banach manifold with the ambient space for

coordinate charts coming from the space of L1 functions on D. As stated earlier, our
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Fig. 2. Top row: The left panel shows a density f that is deformed using
a diffeomorphism γ. We display the corresponding displacements γ − γid
(middle), and determinant of the Jacobian Jγ (right). Bottom row: The
different actions of the diffeomorphism resulting in proper pdfs shown in
the left and middle panel because the transformation is area-preserving.

approach is to use geometry of P for purposes of estimation and inference of pdfs from

sampled data. The set P in itself has the following interesting geometry. For any element

g ∈ P, its positive square root q(s) =
√
g(s) is an element of the unit Hilbert sphere

S∞ = {g : D → R|
∫
D
g(t)2dt = 1}, because

∫
D
q2(s) ds =

∫
D
g(s) ds = 1. The natural

distance for measuring differences between elements of S∞ is the arc length on S∞; this

originates from the standard L
2 Riemannian metric (inner product) on tangent spaces

of S∞. That is, for any g1, g2 ∈ S∞, dg(g1, g2) = cos−1(〈g1, g2〉). This is called the

Fisher–Rao distance between pdfs. While one can exploit this spherical geometry to

derive better density estimators, even more flexibility and efficiency can be obtained

using deformations as described next.

3.2. Geometry of a diffeomorphism group. Recall that Γ is a set of all orientation-

preserving diffeomorphisms from a domain D to itself. The set Γ is a Lie group with

the group operation given by composition: for any γ1, γ2 ∈ Γ, the group operation is

(γ1 ◦ γ2)(s) = γ1(γ2(s)). The identity element of Γ is the identity map: γid(s) = s and

for any γ ∈ Γ, its inverse γ−1 is well defined such that γ ◦ γ−1 = γ−1 ◦ γ = γid.

While Γ is a group, it is not a vector space; a linear combination of elements of Γ may

not be in Γ. (However, Γ is closed under convex combinations, i.e., linear combinations

where the coefficients add up to 1 and are all nonnegative.) The tangent structure of Γ

at γid, Tγid
(Γ), is the set of smooth vector fields that are tangential to the boundaries at
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the boundary points:

Tγid
(Γ) = {v : D 
→ R

dim(D)|v(δD) = T (δD), v is smooth} .

Here T (δD) denotes the tangent bundle of the boundary δD. The tangent space Tγid
(Γ)

is a vector space although not a Hilbert space.

In the deformable template representation pursued in this paper, the problem of in-

ference lies on Γ. Taking a Bayesian approach, we impose prior distributions on this

space and seek samples from the resulting posterior. This task is complicated due to

the nonlinear and infinite-dimensional nature of Γ. Therefore, a further understanding

of the geometry of Γ can help in this regard. One can make Bayesian explorations more

efficient by using elements of this geometric structure.

3.3. Univariate diffeomorphisms. Consider the special case when D = [0, 1] and Γ is

the set of univariate diffeomorphisms of [0, 1] to itself. The tangent space in this case is

Tγid
(Γ) = {v : [0, 1] 
→ R|v(0) = 0, v(1) = 0, v is smooth} .

We are interested in solving optimization problems on Γ, and some finite-dimensional

approximations of elements of Tγid
(Γ) are very useful. Towards that goal, we present an

orthonormal basis of this space that can be conveniently truncated for finite-dimensional

approximations. This basis representation requires a metric to specify orthogonality, and

we will use the Fisher–Rao metric for this purpose. For any v1, v2 ∈ Tγ(Γ), it takes the

form

〈〈v1, v2〉〉γ =

∫ 1

0

v̇1(s)v̇2(s)
1

γ̇(s)
ds . (3.1)

For a γ ∈ Γ, the derivative γ̇ is an element of P defined in the previous section. Therefore,

we have a natural mapping γ → γ̇ →
√
γ̇, termed SRVF, from Γ to P to Q, where

Q = {q : D → R+|
∫
D

q(s)2 ds = 1} .

As described in [38], the Fisher–Rao metric under SRVF transforms to the L2 Riemannian

metric on Q, Q is termed a positive orthant of the Hilbert sphere S∞, and the geodesics

on Q are simply arcs on great circles. An orthogonal basis of Tγid
(Γ), under the Fisher–

Rao metric, can be easily written using the geometry of S∞. Since γid maps to a constant

function 1, the tangent space T1(S∞) = {w : [0, 1] → R|w is smooth,
∫ 1

0
w(s)ds = 0}.

One can impose a natural Hilbert structure on T1(S∞) using the standard inner product:

〈w1, w2〉 =
∫ 1

0
w1(s)w2(s)ds. Elements of this space can be mapped back to S∞ via

a retraction and subsequently to Tγid
(Γ) using the square-integral mapping mentioned

above, illustrated in Figure 3. This retraction is carried out using the exponential map:

exp1(w) : T1(S∞) → S∞, exp1(w) = cos(‖w‖)1+
sin(‖w‖)
‖w‖ . (3.2)

Thus, any orthonormal basis of T1(S∞) under the L
2 metric results in, through this

mapping, an orthonormal basis for Tγid
(Γ) under the Fisher–Rao metric.

So far we have found a mapping between the elements of Γ and T1(S∞), and this helps

deal with the nonlinearity of Γ, since T1(S∞) is a Hilbert space (with the standard L
2
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Fig. 3. Representing warping function γ as element of the tangent
space T1(S

+
∞).

inner product). To find an (approximate) finite-dimensional representation of elements of

Γ, one can choose any orthonormal basis of T1(S∞) and truncate it using some criterion.

Then, the coefficients of the basis elements (given a fixed basis set) behave as Euclidean

parameters which uniquely describe a γ ∈ T1(S∞). Given a basis set B = {bj , j =

1, 2, . . . } and a truncation to J basis elements, this mapping from the set of coefficients

to a warping function can be summarized through a composite map H : RJ → Γ, given

by

{cj} ∈ R
J {bj}−−−→ w =

J∑
j=1

cjbj ∈ T1(S∞)
exp1−−−→ q ∈ S∞ −→ γ(t) =

∫ t

0

q(s)2ds . (3.3)

4. Problem 1: Unconstrained density estimation. In this section we develop

a two-step framework for estimating unconditional pdf, and start by introducing some

notation. Let F be the set of all strictly positive, probability density functions on D.

Let f0 ∈ F denote the underlying true density, and let xi ∼ f0, i = 1, 2, . . . , n be

independent samples from f0. Furthermore, let Fp be a predetermined subset of F such

that an optimal element (based on likelihood or any other desired criterion) fp ∈ Fp is

relatively easy to compute. For instance, any parametric family with a simple maximum-

likelihood estimator is a good candidate for fp. Similarly, kernel density estimates are

also good since they are computationally efficient and robust in univariate setups.

Next, we define a warping-based transformation of elements of Fp, using elements of

Γ defined earlier. For any fp ∈ Fp and γ ∈ Γ, define the mapping (fp, γ) = (fp ◦ γ)Jγ ,
previously called area-preserving action. In the univariate setting, this mapping reduces

to (fp, γ) = (fp ◦ γ)γ̇. The importance of this mapping comes from the following result.

Proposition 4.1.

(1) The mapping F × Γ → F , specified above, forms an action of Γ on F .

(2) In a univariate setting, this action is transitive. In other words, one can reach any

element of F from any other element of F using an appropriate element of Γ.
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Fig. 4. The true pdf f0 is estimated by transforming an initial es-
timate fp by the warping function γ. The larger the set of allowed
γs, the better the estimate.

Proof.

(1) We can verify the two properties in the definition of a group action: (i) For any

γ1, γ2 ∈ Γ and f ∈ F , we have ((f, γ1), γ2) = (((f ◦ γ1)Jγ1
) ◦ γ2)Jγ2

= (f, γ1 ◦ γ2). (ii)

For any f ∈ F , (f, γid) = f .

(2) To show transitivity in a univariate setup, we need to show that given any f1, f2 ∈
F , there exists a γ ∈ Γ such that (f1, γ) = f2. If F1 and F2 denote the cumulative

distribution functions associated with f1 and f2, respectively, then the desired γ is simply

F−1
1 ◦ F2. Since f1 is strictly positive, F−1

1 is well defined and γ is uniquely specified.

Furthermore, since f2 is strictly positive, we have γ̇ > 0 and γ ∈ Γ. �
This result implies that together the pair (fp, γ) spans the full set F , if γ is chosen

freely from Γ. However, if one uses a proper submanifold of Γ, instead of the full Γ, we

may not reach the desired f0 but only approximate it in some way. This intuition is

depicted pictorially in Figure 4 where the inner disk denotes the set Fp. The increasing

rings around Fp represent the set {(fp, γ)|fp ∈ Fp}, with γ belonging to progressively

larger submanifolds of Γ. Please refer to [10] for more details.

5. Problem 2: Modal-constrained univariate density estimation. In this sec-

tion, we focus on the problem of estimating univariate pdfs under arbitrary modality

constraints. A similar geometric framework, albeit using frequentist approach, for modal-

ity constrained density estimation is presented in [9]. For simplicity, we will restrict to

pdfs that satisfy the following conditions: It is strictly positive and continuous with an

interval support and zero boundaries. (For further simplicity, we will assume that the

support is [0, 1].) Furthermore, we assume that the pdf has m ≥ 1 well defined modes

that lie in (0, 1). Let f be such a pdf and suppose that the 2m + 1 critical points of f

are located at bi, for i = 0, . . . , 2m, with b0 = 0 and b2m = 1. Define the height-ratio

vector of f to be λ = (λ1, λ2, . . . , λ2m−2), where λi = f(bi+1)/f(b1) is the ratio of the

height of the (i+1)st interior critical point to the height of the first (from the left) mode.

We define F to be the set of all continuous densities on [0, 1] with zero boundaries. Let
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Fm ⊂ F be the subset with m modes, and let Fm,λ ⊂ Fm be a further subset of pdfs

with height-ratio vector equal to λ.

Proposition 5.1. The group Γ acts on the set Fm,λ by the mapping Fm,λ ×Γ → Fm,λ,

given by (f ∗ γ) = f◦γ∫
(f◦γ) dt

. This was referred to as shape and area-preserving action in

Section 2. Furthermore, this action is transitive. That is, for any f1, f2 ∈ Fm,λ, there

exists a unique γ ∈ Γ such that f2 = (f1 ∗ γ).

Proof. The new function f̃ ≡ (f, γ) is called the time-warped density or just warped

density. To prove this theorem, we first have to establish that the warped density f̃ is

indeed in the set Fm,λ. Note that time warping by Γ and the subsequent global scaling do

not change the number of modes of f since γ̇ is strictly positive (by definition). The modes

simply move to their new locations {b̃i = γ−1(bi)}. Secondly, the height-ratio vector of f̃

remains the same as that of f . This is due to the fact that f̃(b̃i) ∝ f(γ(γ−1(bi))) = f(bi)

and λ̃ = f̃(b̃i+1)/f̃(b̃1) = f(bi+1)/f(b1) = λ. Next, we prove the compatibility property

that for every γ1, γ2 ∈ Γ and f , we have (f ∗ (γ1 ◦ γ2)) = ((f ∗ γ1) ∗ γ2). Since

((f ∗ γ1) ∗ γ2) =
f◦γ1∫

(f◦γ1) ds
◦ γ2∫

( f◦γ1∫
(f◦γ1) ds

◦ γ2) dt
=

f ◦ (γ1 ◦ γ2)∫
(f ◦ (γ1 ◦ γ2)) dt

= (f ∗ (γ1 ◦ γ2)) ,

this property holds.

Finally, we prove the transitivity property: given f, f̃ ∈ Fm,λ, there exists a unique

γ0 ∈ Γ such that f̃ = (f ∗ γ0). Let hf be the height of the first mode of f , and let hf̃

be the height of the first mode of f̃ . Then, define two nonnegative functions according

to g = f/hf and g̃ = f̃/hf̃ . Note that the height of both of their first modes is 1 and

the height-ratio vector for the interior critical points is λ. Also, let the critical points

of f and f̃ (and hence g and g̃, respectively) be located at bi and b̃i, respectively, for

i = 0, . . . , 2m. Since the modes are well defined, the function g is piecewise strictly-

monotonous and continuous in the intervals [bt, bt+1], for t = 0, 1, · · · , 2m − 1. Hence,

within each interval [g(bt), g(bt+1)] there exists a continuous inverse of g, termed g−1
t .

Then, set γ1(x) = g−1
t

(
g̃(x)

)
, x ∈ [b̃t, b̃t+1] is such that (g◦γ1) = g̃, and hence (f∗γ1) = f̃ .

Note that the γ1 is uniquely defined, continuous, increasing, but not differentiable at the

finitely many critical points b̃i in general. Hence γ̇1 does not exist at those points. But

γ̇1 can be replaced by a weak derivative of γ1. Let Dγ be a weak derivative of γ1 that is

equal to γ̇1 wherever γ̇1 exists, and 1 otherwise. Define γ0 =
∫
Dγ . Then γ0 and γ1 are

equal and γ̇0 exists everywhere, and (f ∗ γ0) = f̃ . �
Now note that Fm =

⊔
λ Fm,λ. Thus, for f0 ∈ Fm, the estimation procedure entails

(1) estimating the (unique) height ratio vector λ0 such that f0 ∈ Fm,λ0
, (2) constructing

an element f1 ∈ Fm,λ0
, and (3) estimating the optimal time-warping function γ0 such

that f0 = (f1 ∗ γ0).
Finally, even though the theory for modal-constrained density-estimation was devel-

oped with the simplifying assumption that the densities are zero at the boundaries, the

assumption can be dropped easily by considering the heights at the boundaries as extra

parameters λ2m−1 and λ2m.
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6. Bayesian inference. We perform Bayesian inference to obtain a distribution for

ξ given the observed values X = (x1, x2, . . . , xn):

π(ξ|X) =
L(X|ξ)π(ξ)

P (X)
, (6.1)

where X is the set of observations and ξ is the variable representing a univariate pdf

being estimated. Here L(X|ξ) is the likelihood function and π(ξ) is the prior density

for ξ. This posterior distribution of the parameters π(ξ|X) can then be used to make

inference on density of X. In what follows, we restrict ourselves to univariate density

estimation, and leave the general case for future.

In the absence of any shape constraints, we have ξ = c, the coefficient vector for the

tangent space representation of the warping functions. We take four simulated examples,

and present the unconstrained Bayesian density estimates in Figure 5 . The underlying

true densities in these four examples are as follows:

(1) f0 ∼ ((1/3)Beta(1, 3) + (1/3)Beta(1, 4) + (1/3)Beta(3, 15)),

(2) f0 ∼ (0.5 exp(3) + 0.5N (1, 0.25)) truncated to [0, 1],

(3) f0 ∼ ((1/3)Beta(1, 3) + (1/3)Beta(1, 4) + (1/3)Beta(20, 3)), and

(4) f0 ∼ ((1/3)N (0.2, 0.1) + (1/3)N (0.6, 0.05) + (1/3)N (0.8, 0.1)) truncated to [0, 1].

To obtain the density estimates, we assume an independent, mean-zero, Gaussian

prior with fixed variance for each of the coefficients, and a Gaussian proposal density

centered at the current MCMC state with standard deviation 0.1. Figure 5 shows a clear

improvement in the shape of the estimate over the initial guess (taken to be N (0.5, 1),

and truncated to [0, 1]) in the interior of the support. However, the improvement near

the boundaries are lacking. Also, we notice a wiggly structure in the estimates induced

by the global nature of the Fourier basis elements.

Fig. 5. True density shape (red); the initial guess (black); and the
final unconstrained density estimate (blue) for the four simulated
examples. The grey band represents the pointwise 95% posterior
credible intervals.
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Next we focus our attention tomodality-constrained density estimation. From a model-

based perspective, it is typical in the current literature to expand the function in a certain

basis (B-spline, Bernstein polynomial, etc; see [41, 42, 44]) and transfer the constraints

on the shape of the function to the vector of basis coefficients. We observe that this

correspondence may not be one-to-one, limiting the approximation capability of the

model. Further, in Bayesian implementations of such models, computation is hampered

by the slow mixing of Markov chain Monte Carlo algorithms and there is a lack of

theoretical support, especially concerning the uncertainty characterization from such

models. In the presence of additional constraints on the parameter space, Markov chain

Monte Carlo algorithms perform poorly. We develop a novel approach of incorporating

a smooth version of the constraints, which facilitates mixing and convergence of the

MCMC.

Note that we assume this density has the compact interval [0, 1] as its support, is

continuous, and has m modes in (0, 1), but is not restricted to be zero at the boundaries.

In this setup, the parameter vector ξ involves both the coefficient vector c and the height

ratio vector λ. Since the posterior distribution of the parameters ξ is not conjugate due

to the complicated form of the likelihood, we resort to MCMC techniques to sample from

π(ξ|X). We first discuss a novel technique to sample from nonconjugate distribution with

both equality and inequality constraints on m.

6.1. Sampling from nonconjugate distributions with linear inequality constraints. We

shall operate in a Bayesian framework which is attractive due to its natural ability to

characterize uncertainty of estimation. A Bayesian specification of the above problem

necessitates a prior distribution on ξ supported on C, where C(ξ) is given by {ξ ∈ R
p :

Aξ ≤ B}. Here A is an l×pmatrix and B is a fixed p-dimensional vector with p = J+2m,

where J is the number of basis elements used for tangent space representation of the

warping functions, m is the number of modes of the true density, and l is the number of

constraints in the model. A natural candidate is a truncated Gaussian prior,

π(ξ) ∝ N(ξ; 0,Σ)�C(ξ).

However, due to the complicated likelihood, the posterior distribution is not a truncated

multivariate Gaussian. The presence of inequality constraints makes the problem worse.

In the following, we describe a technique to sample from an intractable posterior subject

to equality and inequality constraints onm. Consider the following posterior distribution:

π(ξ | X) ∝ L(X | ξ)N (ξ; 0,Σ)�C(ξ).

We propose to approximate the indicator function using

�(Aξ ≤ B) ≈
l∏

i=1

exp{−η(a′iξ −Bi)}
1 + exp{−η(a′iξ −Bi)}

, (6.2)

where ai is the ith row of A. Refer to [36] for a justification for such an approximation.

One can then use a Metropolis Hastings algorithm to sample from the in-tractable poste-

rior distribution. Next we describe the algorithm in detail. Let c = (c1, c2, . . . , cJ) be the
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coefficient vector corresponding to the tangent space representation of the warping func-

tions. Let λ = (λ1, λ2, . . . , λ2m) be the height ratio vector. Let ψ = (ψ1, ψ2, . . . , ψ2m) be

such that ψi = log λi, i = 1, 2, . . . , 2m. Then our parameter vector ξ = (c, ψ) ∈ R
J+m.

We know that λ1 is the first interior antimode from the left, λ2 is the second mode

from the left, and so on. λ2m−1 is the right boundary, an antimode, and λ2m is the left

boundary, another antimode. So the constraints on the height ratio parameters are as

follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ1 < 1

λ1 − λ2 < 0

λ3 − λ2 < 0

· · ·
λ2m−1 − λ2m−2 < 0

λ2m < 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

Reparameterizing in terms of ψ, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ψ1 < 0

ψ1 − ψ2 < 0

ψ3 − ψ2 < 0

· · ·
ψ2m−1 − ψ2m−2 < 0

ψ2m < 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

The parameter vector is ξ = (c, ψ). For m = 1, define a 2 × (J + 2) matrix A as

A = [02×J I2], where I2 is the identity matrix of order 2. Form > 1, define a 2m×(J+2m)

matrix A as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

01×J 1 0 · · · 0

01×J 1 −1 0 · · · 0

01×J 0 −1 1 0 · · · 0

01×J 0 0 1 −1 · · · 0

· · ·
01×J 0 · · · 0 −1 1 0

01×J 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Define a 2m× 1 vector B with Bi = −ε, i = 1, . . . , 2m. ε can be 10−6, or any very small

positive number. Then the constraint becomes IAξ≤B.

Given a parameter vector ξ = (c, ψ) satisfying Aξ ≤ B, the initial template function

g and the warping function γ can be constructed as follows: Define aj = j/2m, j =

0, 1, . . . , 2m. Define λi = exp (ψi) and let Ω = {λ2m, 1, λ1, . . . , λ2m−1}. Then set

g(aj) = Ωj , j = 0, 1, . . . , 2m + 1. Obtain g for the other points in [0, 1] through lin-

ear or polynomial interpolation. Take γ = H(c), where H is the composite function

defined in (3.3). Then the likelihood function L(X|ξ) can be obtained as L(X|ξ) =∏n
i=1 g(γ(xi))/[

∫ 1

0
g(γ(t)) dt].
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6.2. Constraint on the upper bound of the number of modes. The proposed framework

allows a natural extension to have a more general shape constraint. Note that, for a fixed

number M of peaks in the initial template, the deformed shape cannot introduce new

peaks, and thus the final density shape has at most M peaks. The constraints on the

height ratio parameters allow the density estimate to have exactly M modes. However,

Proposition 6.1 shows that if the inequalities are relaxed, the density estimate can have

any m number of modes as long as m ≤ M .

Proposition 6.1. Let gλ be the template function with λ ∈ R
2M for some fixed M , and

antimodes at the boundaries. Then g has m ≤ M modes.

Proof. Suppose that the locations of the 2M + 1 candidate critical points of the tem-

plate function g be ai, i = 0, . . . , 2M . Note that because g is constructed via (linear)

interpolation, it cannot have new critical points in (ai, ai+1). Thus, combined with the

assumption that the boundary values are local minimas, the template function can have

at most M local maximas and M +1 local minimas. Note that this situation occurs only

when g alternates between monotonically increasing and monotonically decreasing in the

intervals [ai, ai+1]. For example,if g is monotonic in the interval [ai0−1, ai0+1] for some

fixed i0, then ai0 is not a critical point anymore. Thus, g can have m < M modes. �
Often in practice, it is natural to have an upper bound on the number of modes rather

than an exact specification of the number of modes. This approach also serves as a

technique of model selection among competing models corresponding to different modal

constraints (unimodal versus bimodal, for example). This is because the relaxation of

constraints allows optimization over all m-modal density estimates such that m ≤ M

and returns the most likely estimate among all these models. Thus the number of modes

of the final density estimate can be used to infer the number of modes in the true density

that is “most likely” given the data.

6.3. Simulation study. For the algorithm we use a Markov Chain Monte Carlo (MCMC)

technique to generate the posterior samples. We consider two prior structures for the

parameters.

(1) First, the prior distribution of ξ was taken as N (0, 5IJ+2m)IAξ≤B. The con-

straints result in a nondifferentiable structure in the posterior distribution of the

parameters. As before, IAξ≤B is approximated by the differentiable function

IAξ≤B ≈
2m∏
i=1

exp[−1000(a′iξ −Bi)]

(1 + exp[−1000(a′iξ −Bi)])
,

where ai is the ith row of A.

(2) Secondly, we propose a shrinkage prior setup as follows:

π(ξ) ∝ N (ξ; 0,Σ) IAξ≤B.

Here Σ is a diagonal matrix with Σii = si, i = 1, 2, . . . , J + 2M , with a prior

distribution si ∼ exp(1). The motivation of using an exponential prior for local

scales si specific to each i is to allow large coordinate specific deviations, while

shrinking the remaining si’s close to 0. The indicator function is approximated

by the differentiable function as before.
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Denote by (s1, . . . , sJ+2m)′ the vector s. To sample from the joint pos-

terior distribution of ξ and s, given by π(ξ, s | X), we resort to the Gibbs

sampling algorithm and sample from the following full conditionals π(ξ | s,X)

and π(s | ξ,X) instead. Sampling from π(ξ | s,X) can be achieved using the

Metropolis–Hastings scheme described before. To sample from π(s | ξ,X), note

that π(s | ξ,X) =
∏J+2m

i=1 π(si | ξi). The conditional posterior distribution of

the hyperpriors si is a generalized-inverse Gaussian (GIG) distribution given as

π(si | ξi) ∼ exp{−(si + ξ2i /si)}.

We use the R package ghyp to generate samples from the GIG distribution.

For illustrations we generate 1000 observations from six densities. We choose a Gauss-

ian proposal density with σ as the standard deviation. For densities with sharper features,

a smaller σ is required to capture the small changes in the coefficients of the higher order

basis elements. However, a smaller σ forces the algorithm to take more steps to converge

to the correct coefficients for the lower order basis elements. We employ both the Gauss-

ian prior and the shrinkage prior setup for the parameters and compare the performances.

Convergence was monitored using standard tests and diagnostic trace plots.

(1) f0 ∝ N (0.5, 0.1), a symmetric unimodal density truncated to the unit interval.

Here, σ = 0.001 was chosen to capture the sharp peak of the true density. The

MCMC algorithm was run for 400, 000 iterations with the first 300, 000 discarded

as burn in. Also, up to 14 basis elements were used for the tangent space repre-

sentation of the warping function.

(2) f0 ∼ (1/3)Beta(1, 3) + (1/3)Beta(1, 4) + (1/3)Beta(3, 15), a skewed unimodal

example. Here, σ = 0.001 was used. The algorithm converged with 400, 000

iterations with the first 300, 000 discarded as burn in. Up to 14 basis elements

were used for the tangent space representation of warping functions.

(3) f0 ∝ 0.75N (0.3, 0.2) + 0.25N (0.75, .125), a bimodal density truncated to the

unit interval. Here, σ = 0.1 was chosen. The algorithm converged within 40, 000

iterations where the first 20, 000 were discarded as burn in. For this example, up

to 10 basis elements were used to represent the warping function.

(4) f0 ∝ 0.5N (0.1, 0.05) + 0.5N (0.9, .05), a bimodal density truncated to the unit

interval with very separated modes. Here, σ = 0.1 is used, and the algorithm

converged within 50, 000 iterations with the first 30, 000 discarded as burn in.

Here, up to 14 basis elements were used for approximating the warping function.

(5) f0 ∝ (1/6)N (0.2, 0.1)+(1/6)N (0.6, 0.05)+(2/3)N (0.8, 0.15), a trimodal density

truncated to the unit interval. Here, σ = 0.1 was chosen. The algorithm was run

for 200, 000 iterations where the first 100, 000 were removed as burn in. For this

example up to 14 basis elements were used to represent the warping function.

(6) f0 ∝ (1/3)N (0, 0.1) + (1/3)N (0.3, 0.05) + (1/3)N (0.8, 0.1), a trimodal density

truncated to the unit interval, with a mode at the boundary, two modes close,

and the third mode separated. For this example, we use σ = 0.01 and 600, 000

MCMC iterations with the first 500, 000 discarded as burn in. Also, up to 14

basis elements were used for the tangent space representation.
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Figure 6 illustrates the performance of the algorithm using a Gaussian prior. The

improvement of the final estimate (blue line) from the initial guess (black line) is apparent.

The grey band represents the 95% posterior credible interval. The choice of the proposal

density is important given the complicated nature of the search space.

Fig. 6. An illustration of the true density shape (red); the initial
guess (black); and the final density estimate (blue) for six simulated
examples using Gaussian prior. The grey band represents the point-
wise 95% posterior credible intervals.

To evaluate the average performance of the algorithm and the stability of the perfor-

mance across samples, 50 samples each of sample size 1000 were chosen and the average

performance of the estimate was recorded according to the L
2 norm. As a benchmark

for performance evaluation, a state-of-the-art kernel density estimate is used. The band-

width for the kernel technique is chosen via the unbiased cross validation method. The

kernel technique does not take into account the modality constraints, but since the sam-

ple size is fairly large, the estimate can be expected to have the correct number of modes

most of the times. Also, as an unconstrained density estimator, the kernel technique is

one of the most popular and widely used techniques and hence is a good benchmark for

the performance of the proposed technique.

Table 1 compares the performance of the proposed Bayesian technique with the kernel

density estimate. The comparison is not meant to demonstrate superior performance of

Table 1. A quantitative analysis of the performance of the Bayesian
Estimate with two prior structures versus the unconstrained ker-
nel estimate for simulated examples. The table presents the mean
(Mean) and the standard deviation (std.dev) of the L2loss function
for the 50 samples. Acceptance indicates the mean acceptance rate
(standard deviation in brackets) of the algorithm across the samples.

Example: Bayesian with Gaussian Prior Bayesian Shrinkage Prior Kernel density

Mean std.dev Acceptance Mean std.dev Acceptance Mean std.dev

(1) 1.82 0.37 33.7%(2.1%) 1.89 0.31 33.8%(3.7%) 1.06 0.31
(2) 1.42 0.27 35.9%(2.7%) 1.52 0.23 36.9%( 2.4 %) 1.67 0.51
(3) 0.85 0.23 4.3%(3%) 0.87 0.19 7.1% (2.6%) 0.83 0.21
(4) 3.47 1.2 0.04%(0.01%) 4.53 1.19 0.2%(0.07%) 1.47 0.33
(5) 1.26 0.32 0.3%(0.2%) 1.21 0.21 1.3% (0.3%) 1.14 0.28
(6) 2.94 0.99 0.3%(0.3%) 1.91 0.69 2.2%(0.4%) 1.58 0.69
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Fig. 7. An illustration of the true density shape (red); the initial
guess (black); and the final density estimate (blue) for six simulated
examples using shrinkage prior. The grey band represents the point-
wise 95% posterior credible intervals.

our method compared to kernel methods. In fact, in terms of estimating the density

itself in the L
2 norm, it is expected that our approach will have inferior performance

with respect to an unconstrained density estimator which is designed to approximate the

unknown density arbitrarily well. On the other hand, our estimator with a prespecified

number of modes avoids having spurious modes in the tails facilitating interpretation in a

real-data scenario. We, however, notice that the performance of the proposed technique

is quite close to that of the kernel technique for the bimodal and the trimodal examples.

One caveat is that when the underlying density has a sharp peak (Examples (1) and (5)),

this was not captured well. Since the acceptance rate of the algorithm is low (unless σ

is very small), our approach fails to accurately capture the sharp peak (Examples (1)

and (5)). The reason for the low acceptance rate is the lack of flexibility in the model

to capture higher variability in certain coordinates and lower variability in others. The

shrinkage priors offer more flexibility by allowing certain coordinates to deviate more,

while shrinking the others towards zero. The shrinkage prior structure offers a higher

acceptance rate and a faster convergence rate than the Gaussian prior counterpart in

most of the examples. However, for both the prior structures, the average loss functions

of the posterior mean density estimate are quite similar. The results are illustrated in

Table 1. The middle panel of Table 1 indicates the clear improvement in acceptance

rates, especially for the bimodal and trimodal cases. Also the standard deviations of the

performances are much lower, indicating more stable estimates and faster convergence.

The performance of the algorithm on the simulated examples is illustrated in Figure 7.

7. Application to electricity consumption. Here we illustrate an application

of our approach to shape-constrained density estimation using electricity consumption

data. This data was collected for households in Tallahassee, FL, at 30-minute intervals,

on weekdays over a large period, and our goal is to model electricity consumption as

a random variable and estimate its distribution (for a random household on a typical

weekday). The electricity consumption is expected to follow a bimodal distribution cor-

responding to low and high electricity consumption. The low relates to times when the
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Fig. 8. The histogram (top-left); and density estimate (the remain-
ing) for electricity consumption in a household in Tallahassee.

members of the households are not at home, or at home but not using any heavy appli-

ances. High electricity consumption relates to times when high power appliances, such

as the washer, heater, etc., are turned on.

When we study empirical distributions of electricity we observe three modes, perhaps

corresponding to situations: (a) the residents are not at home, (b) the residents are home

but not using heavy electricity consuming appliances, and (c) the residents are using

heavy electricity consuming appliances. Figure 8 top-left panel shows a histogram for

the electricity consumption and the remaining panels show the density estimates along

with the pointwise 95% posterior credible intervals. The top-right panel presents the

density estimate corresponding to the bimodal (M = 2 fixed) model, and the bottom-

left panel presents the density estimate corresponding to the trimodal (M = 3 fixed)

model. Note that the bimodal model replaces the left two modes of the trimodal model

with a single mode with a long right tail. Finally, when we put an upper bound on the

number of modes (M ≤ 3), we obtain the estimate in the bottom right panel of Figure

8. Interestingly, this estimate supports the bimodal model, with a large dominant mode

and a much smaller second mode on the tails.

8. Discussion. This paper introduces a novel Bayesian setup to perform density

estimation with or without shape constraints using a deformable template approach.

Here the pdfs are modeled using the actions of the deformation groups which, in turn, are

estimated using the tangent space representations. The simulation studies show that the

algorithm provides a significant improvement over initial estimates, and it is quite close to

the benchmark kernel density estimate in practical performance. This framework results

in a proper shape-constrained density estimator where shape implies a fixed number or an

upper bound on the number of modes. This Bayesian setup is one of the first techniques to

provide a density estimate (f̂ |M), conditioned on the number of modes, and also provides
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a measure of uncertainty measurement through posterior credible intervals. This setup

allows for devising a probabilistic hypothesis testing algorithm on the number of modes

present in the underlying distribution, although that is not explored here.

The algorithm is naturally computationally expensive since the goal here is to recover

the posterior distribution of the shape as opposed to a point estimate. The algorithm

performs a random walk without taking the constraint information into account and,

thus, the acceptance rate is low unless the proposal density has a very low variance. If

one tries a low variance proposal density, the samples become highly correlated. The

acceptance rate is further reduced due to constraints. Finally, the performance of the

algorithm in both of the prior setups was heavily dependent on the choice of σ in the

proposal density.

With these observations, it seems natural to employ an algorithm that takes informed

steps by utilizing information from the data. Thus, the Hamiltonian Monte Carlo (HMC)

approach would be a more appropriate choice in this situation. HMC avoids the random

walk behavior and sensitivity to correlated parameters by taking a series of steps informed

by first-order gradient information. Another possible approach to avoid the choice of σ

is to use elliptical slice sampling.

A natural direction for future work is to extend these ideas in higher dimensions,

because the group actions are still valid in multi-dimensional setups. However, the op-

timization over the diffeomorphism group in higher dimensions becomes challenging and

is not discussed in this paper.
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