Soap film spanning an elastic link
Authors:
Giulia Bevilacqua, Luca Lussardi and Alfredo Marzocchi
Journal:
Quart. Appl. Math. 77 (2019), 507-523
MSC (2010):
Primary 49Q05, 49Q20, 74K10; Secondary 74B20
DOI:
https://doi.org/10.1090/qam/1510
Published electronically:
June 25, 2018
MathSciNet review:
3962579
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study the equilibrium problem of a system consisting of several Kirchhoff rods linked in an arbitrary way and tied by a soap film, using techniques of the Calculus of Variations. We prove the existence of a solution with minimum energy, which may be quite irregular, and perform experiments confirming the kind of surface predicted by the model.
- [1] F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968), 321–391. MR 225243, https://doi.org/10.2307/1970587
- [2] Stuart S. Antman, Nonlinear problems of elasticity, 2nd ed., Applied Mathematical Sciences, vol. 107, Springer, New York, 2005. MR 2132247
- [3] Philippe G. Ciarlet and Jindřich Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal. 97 (1987), no. 3, 171–188. MR 862546, https://doi.org/10.1007/BF00250807
- [4] Bernard Dacorogna, Direct methods in the calculus of variations, 2nd ed., Applied Mathematical Sciences, vol. 78, Springer, New York, 2008. MR 2361288
- [5] Guy David, Should we solve Plateau’s problem again?, Advances in analysis: the legacy of Elias M. Stein, Princeton Math. Ser., vol. 50, Princeton Univ. Press, Princeton, NJ, 2014, pp. 108–145. MR 3329849
- [6] C. De Lellis, A. De Rosa, and F. Ghiraldin, A direct approach to the anisotropic Plateau's problem, Adv. Calc. Var. arXiv:1602.08757, DOI:https://doi.org/10.1515/acv-2016-0057.
- [7] C. De Lellis, F. Ghiraldin, and F. Maggi, A direct approach to Plateau’s problem, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 8, 2219–2240. MR 3668059, https://doi.org/10.4171/JEMS/716
- [8] Thierry De Pauw, Size minimizing surfaces, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 1, 37–101 (English, with English and French summaries). MR 2518893, https://doi.org/10.24033/asens.2090
- [9] G. De Philippis, A. De Rosa, and F. Ghiraldin, A direct approach to Plateau’s problem in any codimension, Adv. Math. 288 (2016), 59–80. MR 3436382, https://doi.org/10.1016/j.aim.2015.10.007
- [10] G. De Philippis, A. De Rosa, and F. Ghiraldin, Existence results for minimizers of parametric elliptic functionals, arXiv:1704.07801.
- [11] Antonio De Rosa, Minimization of anisotropic energies in classes of rectifiable varifolds, SIAM J. Math. Anal. 50 (2018), no. 1, 162–181. MR 3742687, https://doi.org/10.1137/17M1112479
- [12] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- [13] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- [14] Giulio G. Giusteri, Luca Lussardi, and Eliot Fried, Solution of the Kirchhoff-Plateau problem, J. Nonlinear Sci. 27 (2017), no. 3, 1043–1063. MR 3638328, https://doi.org/10.1007/s00332-017-9359-4
- [15] J. Harrison and H. Pugh, Existence and soap film regularity of solutions to Plateau's problem, arXiv:1310.0508 (2013).
- [16] J. Harrison, Soap film solutions to Plateau’s problem, J. Geom. Anal. 24 (2014), no. 1, 271–297. MR 3145925, https://doi.org/10.1007/s12220-012-9337-x
- [17] Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- [18] Amiya Mukherjee, Differential topology, 2nd ed., Hindustan Book Agency, New Delhi; Birkhäuser/Springer, Cham, 2015. MR 3379695
- [19] James R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. Second edition of [ MR0464128]. MR 3728284
- [20] J. Plateau, Experimental and theoretical statics of liquids subject to molecular forces only, Gauthier- Villars (1873).
- [21] David Preiss, Geometry of measures in 𝑅ⁿ: distribution, rectifiability, and densities, Ann. of Math. (2) 125 (1987), no. 3, 537–643. MR 890162, https://doi.org/10.2307/1971410
- [22] E. R. Reifenberg, Solution of the Plateau Problem for 𝑚-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. MR 114145, https://doi.org/10.1007/BF02547186
- [23] Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288
- [24] F. Schuricht, Global injectivity and topological constraints for spatial nonlinearly elastic rods, J. Nonlinear Sci. 12 (2002), no. 5, 423–444. MR 1923387, https://doi.org/10.1007/s00332-002-0462-8
Retrieve articles in Quarterly of Applied Mathematics with MSC (2010): 49Q05, 49Q20, 74K10, 74B20
Retrieve articles in all journals with MSC (2010): 49Q05, 49Q20, 74K10, 74B20
Additional Information
Giulia Bevilacqua
Affiliation:
MOX - Dipartimento di Matematica, Politecnico di Milano, Italy
Email:
giulia.bevilacqua@polimi.it
Luca Lussardi
Affiliation:
Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Politecnico di Torino, Italy
Email:
luca.lussardi@polito.it
Alfredo Marzocchi
Affiliation:
Dipartimento di Matematica e Fisica “Niccolò Tartaglia”, Università Cattolica del Sacro Cuore, Italy
Email:
alfredo.marzocchi@unicatt.it
DOI:
https://doi.org/10.1090/qam/1510
Received by editor(s):
November 22, 2017
Received by editor(s) in revised form:
April 28, 2018
Published electronically:
June 25, 2018
Article copyright:
© Copyright 2018
Brown University