Harmonic stability of standing water waves
Author:
Jon Wilkening
Journal:
Quart. Appl. Math. 78 (2020), 219-260
MSC (2010):
Primary 37G15, 37K45, 65M70, 76B07, 76B15
DOI:
https://doi.org/10.1090/qam/1552
Published electronically:
September 16, 2019
MathSciNet review:
4077462
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: A numerical method is developed to study the stability of standing water waves and other time-periodic solutions of the free-surface Euler equations using Floquet theory. A Fourier truncation of the monodromy operator is computed by solving the linearized Euler equations about the standing wave with initial conditions ranging over all Fourier modes up to a given wave number. The eigenvalues of the truncated monodromy operator are computed and ordered by the mean wave number of the corresponding eigenfunctions, which we introduce as a method of retaining only accurately computed Floquet multipliers. The mean wave number matches up with analytical results for the zero-amplitude standing wave and is helpful in identifying which Floquet multipliers collide and leave the unit circle to form unstable eigenmodes or rejoin the unit circle to regain stability. For standing waves in deep water, most waves with crest acceleration below $A_c=0.889$ are found to be linearly stable to harmonic perturbations; however, we find several bubbles of instability at lower values of $A_c$ that have not been reported previously in the literature. We also study the stability of several new or recently discovered time-periodic gravity-capillary or gravity waves in deep or shallow water, finding several examples of large-amplitude waves that are stable to harmonic perturbations and others that are not. A new method of matching the Floquet multipliers of two nearby standing waves by solving a linear assignment problem is also proposed to track individual eigenvalues via homotopy from the zero-amplitude state to large-amplitude standing waves.
References
- Thomas Alazard and Pietro Baldi, Gravity capillary standing water waves, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 741–830. MR 3356988, DOI https://doi.org/10.1007/s00205-015-0842-5
- C. J. Amick and J. F. Toland, The semianalytic theory of standing waves, Proc. Roy. Soc. London Ser. A 411 (1987), no. 1840, 123–137. MR 895354
- W. Artiles and A. Nachbin, Nonlinear evolution of surface gravity waves over highly variable depth, Phys. Rev. Lett., 93:234501, 2004.
- Gregory R. Baker, Daniel I. Meiron, and Steven A. Orszag, Generalized vortex methods for free-surface flow problems, J. Fluid Mech. 123 (1982), 477–501. MR 687014, DOI https://doi.org/10.1017/S0022112082003164
- Gregory R. Baker and Chao Xie, Singularities in the complex physical plane for deep water waves, J. Fluid Mech. 685 (2011), 83–116. MR 2844303, DOI https://doi.org/10.1017/jfm.2011.283
- T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water. Part $1$. Theory, J. Fluid Mech., 27:417–430, 1967.
- T. B. Benjamin and K. Hasselmann, Instability of periodic wavetrains in nonlinear dispersive systems, Proc. R. Soc. Lond. A, 299(1456):59–76, 1967.
- T. B. Benjamin and F. Ursell, The stability of the plane free surface of a liquid in vertical periodic motion, Proc. Roy. Soc. London Ser. A 225 (1954), 505–515. MR 65315, DOI https://doi.org/10.1098/rspa.1954.0218
- Massimiliano Berti and Riccardo Montalto, Quasi-periodic water waves, J. Fixed Point Theory Appl. 19 (2017), no. 1, 129–156. MR 3625065, DOI https://doi.org/10.1007/s11784-016-0375-z
- Thomas J. Bridges and Fiona E. Laine-Pearson, Nonlinear counterpropagating waves, multisymplectic geometry, and the instability of standing waves, SIAM J. Appl. Math. 64 (2004), no. 6, 2096–2120. MR 2110351, DOI https://doi.org/10.1137/S0036139903423753
- Peter J. Bryant and Michael Stiassnie, Different forms for nonlinear standing waves in deep water, J. Fluid Mech. 272 (1994), 135–156. MR 1289111, DOI https://doi.org/10.1017/S0022112094004416
- John W. M. Bush, Pilot-wave hydrodynamics, Annual review of fluid mechanics. Vol. 47, Annu. Rev. Fluid Mech., vol. 47, Annual Reviews, Palo Alto, CA, 2015, pp. 269–292. MR 3727170
- Hector D. Ceniceros and Thomas Y. Hou, Dynamic generation of capillary waves, Phys. Fluids 11 (1999), no. 5, 1042–1050. MR 1683713, DOI https://doi.org/10.1063/1.869975
- R. K.-C. Chan and R. Street, A computer study of finite amplitude water waves, J. Comput. Phys., 6:68–94, 1970.
- G. A. Chandler and I. G. Graham, The computation of water waves modelled by Nekrasov’s equation, SIAM J. Numer. Anal. 30 (1993), no. 4, 1041–1065. MR 1231326, DOI https://doi.org/10.1137/0730054
- B. Chen and P. G. Saffman, Numerical evidence for the existence of new types of gravity waves of permanent form on deep water, Stud. Appl. Math. 62 (1980), no. 1, 1–21. MR 557677, DOI https://doi.org/10.1002/sapm19806211
- P. Chen, Nonlinear wave dynamics in Faraday instabilities, Phys. Rev. E, 65:036308, 2002.
- C. H. Aurther, R. Granero-Belinchón, S. Shkoller, and J. Wilkening, Rigorous asymptotic models of water waves, Water Waves 1 (2019), no. 1, 71–130.
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
- Paul Concus, Standing capillary-gravity waves of finite amplitude, J. Fluid Mech. 14 (1962), 568–576. MR 145773, DOI https://doi.org/10.1017/S0022112062001457
- Paul Concus, “Standing capillary-gravity waves of finite amplitude”: Corrigendum, J. Fluid Mech. 19 (1964), 264–266. MR 164533, DOI https://doi.org/10.1017/S0022112064000702
- M. J. Cooker, P. D. Weidman, and D. S. Bale, Reflection of a high-amplitude solitary wave at a vertical wall, J. Fluid Mech. 342 (1997), 141–158. MR 1460657, DOI https://doi.org/10.1017/S002211209700551X
- W. Craig, P. Guyenne, J. Hammack, D. Henderson, and C. Sulem, Solitary water wave interactions, Phys. Fluids 18 (2006), no. 5, 057106, 25. MR 2259317, DOI https://doi.org/10.1063/1.2205916
- W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys. 108 (1993), no. 1, 73–83. MR 1239970, DOI https://doi.org/10.1006/jcph.1993.1164
- Alex D. D. Craik, The origins of water wave theory, Annual review of fluid mechanics. Vol. 36, Annu. Rev. Fluid Mech., vol. 36, Annual Reviews, Palo Alto, CA, 2004, pp. 1–28. MR 2062306, DOI https://doi.org/10.1146/annurev.fluid.36.050802.122118
- Alex D. D. Craik, George Gabriel Stokes on water wave theory, Annual review of fluid mechanics. Vol. 37, Annu. Rev. Fluid Mech., vol. 37, Annual Reviews, Palo Alto, CA, 2005, pp. 23–42. MR 2115337, DOI https://doi.org/10.1146/annurev.fluid.37.061903.175836
- Donald R. Crawford, Bruce M. Lake, Philip G. Saffman, and Henry C. Yuen, Stability of weakly nonlinear deep-water waves in two and three dimensions, J. Fluid Mech. 105 (1981), 177–191. MR 617684, DOI https://doi.org/10.1017/S0022112081003169
- D. F. Crouse, On implementing 2D rectangular assignment algorithms, IEEE Trans. Aerosp. Electron. Syst., 52(4):1679–1696, 2016.
- Bernard Deconinck and Katie Oliveras, The instability of periodic surface gravity waves, J. Fluid Mech. 675 (2011), 141–167. MR 2801039, DOI https://doi.org/10.1017/S0022112011000073
- James W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1463942
- Alok Dutt, Leslie Greengard, and Vladimir Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT 40 (2000), no. 2, 241–266. MR 1765736, DOI https://doi.org/10.1023/A%3A1022338906936
- A. L. Dyachenko, V. E. Zakharov, and E. A. Kuznetsov, Nonlinear dynamics on the free surface of an ideal fluid, Plasma Phys. Rep., 22:916–928, 1996.
- M. Faraday, On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces, Phil. Trans. Royal Society (London), 121:299–318, 1831.
- M. A. Grant, Standing Stokes waves of maximum height, J. Fluid Mech., 60:593–604, 1973.
- E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Edition, Springer, Berlin, 2000.
- Diane M. Henderson and John W. Miles, Faraday waves in $2:1$ internal resonance, J. Fluid Mech. 222 (1991), 449–470. MR 1090720, DOI https://doi.org/10.1017/S0022112091001179
- Thomas Y. Hou and Ruo Li, Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys. 226 (2007), no. 1, 379–397. MR 2356364, DOI https://doi.org/10.1016/j.jcp.2007.04.014
- Thomas Y. Hou, John S. Lowengrub, and Michael J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys. 114 (1994), no. 2, 312–338. MR 1294935, DOI https://doi.org/10.1006/jcph.1994.1170
- T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, The long-time motion of vortex sheets with surface tension, Phys. Fluids 9 (1997), no. 7, 1933–1954. MR 1455083, DOI https://doi.org/10.1063/1.869313
- T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Boundary integral methods for multicomponent fluids and multiphase materials, J. Comput. Phys. 169 (2001), no. 2, 302–362. MR 1836520, DOI https://doi.org/10.1006/jcph.2000.6626
- Jingfang Huang, Jun Jia, and Michael Minion, Accelerating the convergence of spectral deferred correction methods, J. Comput. Phys. 214 (2006), no. 2, 633–656. MR 2216607, DOI https://doi.org/10.1016/j.jcp.2005.10.004
- G. Iooss, P. I. Plotnikov, and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal. 177 (2005), no. 3, 367–478. MR 2187619, DOI https://doi.org/10.1007/s00205-005-0381-6
- M. Ioualalen and C. Kharif, Stability of three-dimensional progressive gravity waves on deep water to superharmonic disturbances, European J. Mech. B Fluids 12 (1993), no. 3, 401–414. MR 1230495
- L. Jiang, C. Ting, M. Perlin, and W. W. Schultz, Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries, J. Fluid Mech., 329:275–307, 1996.
- R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. MR 1629555
- R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problems, Computing 38 (1987), no. 4, 325–340 (English, with German summary). MR 902027, DOI https://doi.org/10.1007/BF02278710
- R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys., 65:292–313, 1986.
- Krishna Kumar and Laurette S. Tuckerman, Parametric instability of the interface between two fluids, J. Fluid Mech. 279 (1994), 49–68. MR 1306814, DOI https://doi.org/10.1017/S0022112094003812
- Anita T. Layton and Michael L. Minion, Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations, BIT 45 (2005), no. 2, 341–373. MR 2176198, DOI https://doi.org/10.1007/s10543-005-0016-1
- M. S. Longuet-Higgins, The instabilities of gravity waves of finite amplitude in deep water. I. Superharmonics, Proc. Roy. Soc. London Ser. A 360 (1978), no. 1703, 471–488. MR 475241, DOI https://doi.org/10.1098/rspa.1978.0080
- M. S. Longuet-Higgins, The instabilities of gravity waves of finite amplitude in deep water.#II. Subharmonics, Proc. Roy. Soc. London Ser. A 360 (1978), no. 1703, 489–505. MR 475242, DOI https://doi.org/10.1098/rspa.1978.0081
- Michael S. Longuet-Higgins, Capillary-gravity waves of solitary type on deep water, J. Fluid Mech. 200 (1989), 451–470. MR 990170, DOI https://doi.org/10.1017/S002211208900073X
- M. S. Longuet-Higgins and E. D. Cokelet, The deformation of steep surface waves on water. I. A numerical method of computation, Proc. Roy. Soc. London Ser. A 350 (1976), no. 1660, 1–26. MR 411355, DOI https://doi.org/10.1098/rspa.1976.0092
- R. S. MacKay and P. G. Saffman, Stability of water waves, Proc. Roy. Soc. London Ser. A 406 (1986), no. 1830, 115–125. MR 853684
- T. Maxworthy, Experiments on collisions between solitary waves, J. Fluid Mech., 76:177–185, 1976.
- G. N. Mercer and A. J. Roberts, Standing waves in deep water: their stability and extreme form, Phys. Fluids A 4 (1992), no. 2, 259–269. MR 1146134, DOI https://doi.org/10.1063/1.858354
- G. N. Mercer and A. J. Roberts, The form of standing waves on finite depth water, Wave Motion 19 (1994), no. 3, 233–244. MR 1276940, DOI https://doi.org/10.1016/0165-2125%2894%2990056-6
- Paul A. Milewski, J.-M. Vanden-Broeck, and Zhan Wang, Dynamics of steep two-dimensional gravity–capillary solitary waves, J. Fluid Mech. 664 (2010), 466–477. MR 2747492, DOI https://doi.org/10.1017/S0022112010004714
- James Munkres, Algorithms for the assignment and transportation problems, J. Soc. Indust. Appl. Math. 5 (1957), 32–38. MR 93429
- Y. Murakami and K. Chikano, Two-dimensional direct numerical simulation of parametrically excited surface waves in viscous fluid, Phys. Fluids, 13:65–74, 2001.
- David P. Nicholls, Spectral data for travelling water waves: singularities and stability, J. Fluid Mech. 624 (2009), 339–360. MR 2496379, DOI https://doi.org/10.1017/S0022112008005508
- Jorge Nocedal and Stephen J. Wright, Numerical optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999. MR 1713114
- N. L. O’Connor, The complex spatiotemporal dynamics of a shallow fluid layer, Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2008.
- Makoto Okamura, On the enclosed crest angle of the limiting profile of standing waves, Wave Motion 28 (1998), no. 1, 79–87. MR 1625165, DOI https://doi.org/10.1016/S0165-2125%2897%2900061-9
- Makoto Okamura, Standing gravity waves of large amplitude in deep water, Wave Motion 37 (2003), no. 2, 173–182. MR 1949362, DOI https://doi.org/10.1016/S0165-2125%2802%2900055-0
- Makoto Okamura, Almost limiting short-crested gravity waves in deep water, J. Fluid Mech. 646 (2010), 481–503. MR 2608160, DOI https://doi.org/10.1017/S0022112009992795
- M. Okamura, M. Ioualalen, and C. Kharif, Standing waves on water of uniform depth: on their resonances and matching with short-crested waves, J. Fluid Mech. 495 (2003), 145–156. MR 2022141, DOI https://doi.org/10.1017/S0022112003006037
- W. G. Penney and A. T. Price, Finite periodic stationary gravity waves in a perfect liquid, part II, Phil. Trans. R. Soc. London A, 244:254–284, 1952.
- Nicolas Périnet, Damir Juric, and Laurette S. Tuckerman, Numerical simulation of Faraday waves, J. Fluid Mech. 635 (2009), 1–26. MR 2540462, DOI https://doi.org/10.1017/S0022112009007551
- P. I. Plotnikov and J. F. Toland, Nash-Moser theory for standing water waves, Arch. Ration. Mech. Anal. 159 (2001), no. 1, 1–83. MR 1854060, DOI https://doi.org/10.1007/PL00004246
- S. Qadeer and J. Wilkening, Computing three-dimensional Faraday waves in a cylinder, 2019, in preparation.
- J. W. S. Rayleigh, Deep water waves, progressive or stationary, to the third order approximation, Proc. R. Soc. A, 91:345–353, 1915.
- Lord Rayleigh, On the crispations of fluid resting upon a vibrating support, Phil. Mag., 16:50–58, 1883, reprinted in Scientific Papers, vol. 2, 1900, pp. 212–219, Cambridge.
- J. D. Fenton and M. M. Rienecker, A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions, J. Fluid Mech. 118 (1982), 411–443. MR 663990, DOI https://doi.org/10.1017/S0022112082001141
- William W. Schultz, Jean-Marc Vanden-Broeck, Lei Jiang, and Marc Perlin, Highly nonlinear standing water waves with small capillary effect, J. Fluid Mech. 369 (1998), 253–272. MR 1644109, DOI https://doi.org/10.1017/S0022112098001773
- L. W. Schwartz and J. D. Fenton, Strongly nonlinear waves, Annual review of fluid mechanics, Vol. 14, Annual Reviews, Palo Alto, Calif., 1982, pp. 39–60. MR 642535
- L. W. Schwartz and A. K. Whitney, A semi-analytic solution for nonlinear standing waves in deep water, J. Fluid Mech. 107 (1981), 147–171. MR 623359, DOI https://doi.org/10.1017/S0022112081001717
- A. C. Skeldon and G. Guidoboni, Pattern selection for Faraday waves in an incompressible viscous fluid, SIAM J. Appl. Math. 67 (2007), no. 4, 1064–1100. MR 2314197, DOI https://doi.org/10.1137/050639223
- D. H. Smith and A. J. Roberts, Branching behavior of standing waves—the signatures of resonance, Phys. Fluids 11 (1999), no. 5, 1051–1064. MR 1683714, DOI https://doi.org/10.1063/1.869976
- G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, In Mathematical and physical papers, volume 1, pages 225–228. Cambridge University Press, 1880.
- C. H. Su and Rida M. Mirie, On head-on collisions between solitary waves, J. Fluid Mech. 98 (1980), no. 3, 509–525. MR 583060, DOI https://doi.org/10.1017/S0022112080000262
- Iradj Tadjbakhsh and Joseph B. Keller, Standing surface waves of finite amplitude, J. Fluid Mech. 8 (1960), 442–451. MR 116695, DOI https://doi.org/10.1017/S0022112060000724
- G. I. Taylor, An experimental study of standing waves, Proc. Roy. Soc. A, 218:44–59, 1953.
- Olga Trichtchenko, Bernard Deconinck, and Jon Wilkening, The instability of Wilton ripples, Wave Motion 66 (2016), 147–155. MR 3529601, DOI https://doi.org/10.1016/j.wavemoti.2016.06.004
- C. P. Tsai and D. S. Jeng, Numerical Fourier solutions of standing waves in finite water depth, Appl. Ocean Res., 16:185–193, 1994.
- J.-M. Vanden-Broeck, Numerical calculation of standing waves in water of arbitrary uniform depth, Phys. Fluids, 24(5):812–815, 1981.
- Jean-Marc Vanden-Broeck, Nonlinear gravity-capillary standing waves in water of arbitrary uniform depth, J. Fluid Mech. 139 (1984), 97–104. MR 768482, DOI https://doi.org/10.1017/S0022112084000276
- Jean-Marc Vanden-Broeck and Frédéric Dias, Gravity-capillary solitary waves in water of infinite depth and related free-surface flows, J. Fluid Mech. 240 (1992), 549–557. MR 1175093, DOI https://doi.org/10.1017/S0022112092000193
- Jean-Marc Vanden-Broeck, Gravity-capillary free-surface flows, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 2010. MR 2722683
- J. M. Vega, E. Knobloch, and C. Martel, Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio, Physica D, 154:313–336, 2001.
- G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0483954
- Jon Wilkening, An algorithm for computing Jordan chains and inverting analytic matrix functions, Linear Algebra Appl. 427 (2007), no. 1, 6–25. MR 2353151, DOI https://doi.org/10.1016/j.laa.2007.06.012
- J. Wilkening, Breakdown of self-similarity at the crests of large amplitude standing water waves, Phys. Rev. Lett, 107:184501, 2011.
- Jon Wilkening, Relative-periodic elastic collisions of water waves, Nonlinear wave equations: analytic and computational techniques, Contemp. Math., vol. 635, Amer. Math. Soc., Providence, RI, 2015, pp. 109–129. MR 3364246, DOI https://doi.org/10.1090/conm/635/12714
- J. Wilkening, Long-time dynamics of water waves near stable and unstable standing waves, 2019, in preparation.
- J. Wilkening, Traveling-standing water waves and their stability, 2019, in preparation.
- J. Wilkening and J. Yu, Overdetermined shooting methods for computing standing water waves with spectral accuracy, Comput. Sci. Disc., 5:014017:1–38, 2012.
- Jeff Wright, Steve Yon, and C. Pozrikidis, Numerical studies of two-dimensional Faraday oscillations of inviscid fluids, J. Fluid Mech. 402 (2000), 1–32. MR 1737417, DOI https://doi.org/10.1017/S0022112099006631
- Wenbin Zhang and Jorge Viñals, Pattern formation in weakly damped parametric surface waves, J. Fluid Mech. 336 (1997), 301–330. MR 1445185, DOI https://doi.org/10.1017/S0022112096004764
References
- Thomas Alazard and Pietro Baldi, Gravity capillary standing water waves, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 741–830. MR 3356988, DOI https://doi.org/10.1007/s00205-015-0842-5
- C. J. Amick and J. F. Toland, The semianalytic theory of standing waves, Proc. Roy. Soc. London Ser. A 411 (1987), no. 1840, 123–137. MR 895354
- W. Artiles and A. Nachbin, Nonlinear evolution of surface gravity waves over highly variable depth, Phys. Rev. Lett., 93:234501, 2004.
- Gregory R. Baker, Daniel I. Meiron, and Steven A. Orszag, Generalized vortex methods for free-surface flow problems, J. Fluid Mech. 123 (1982), 477–501. MR 687014, DOI https://doi.org/10.1017/S0022112082003164
- Gregory R. Baker and Chao Xie, Singularities in the complex physical plane for deep water waves, J. Fluid Mech. 685 (2011), 83–116. MR 2844303, DOI https://doi.org/10.1017/jfm.2011.283
- T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water. Part $1$. Theory, J. Fluid Mech., 27:417–430, 1967.
- T. B. Benjamin and K. Hasselmann, Instability of periodic wavetrains in nonlinear dispersive systems, Proc. R. Soc. Lond. A, 299(1456):59–76, 1967.
- T. B. Benjamin and F. Ursell, The stability of the plane free surface of a liquid in vertical periodic motion, Proc. Roy. Soc. London. Ser. A. 225 (1954), 505–515. MR 0065315, DOI https://doi.org/10.1098/rspa.1954.0218
- Massimiliano Berti and Riccardo Montalto, Quasi-periodic water waves, J. Fixed Point Theory Appl. 19 (2017), no. 1, 129–156. MR 3625065, DOI https://doi.org/10.1007/s11784-016-0375-z
- Thomas J. Bridges and Fiona E. Laine-Pearson, Nonlinear counterpropagating waves, multisymplectic geometry, and the instability of standing waves, SIAM J. Appl. Math. 64 (2004), no. 6, 2096–2120. MR 2110351, DOI https://doi.org/10.1137/S0036139903423753
- Peter J. Bryant and Michael Stiassnie, Different forms for nonlinear standing waves in deep water, J. Fluid Mech. 272 (1994), 135–156. MR 1289111, DOI https://doi.org/10.1017/S0022112094004416
- John W. M. Bush, Pilot-wave hydrodynamics, Annual review of fluid mechanics. Vol. 47, Annu. Rev. Fluid Mech., vol. 47, Annual Reviews, Palo Alto, CA, 2015, pp. 269–292. MR 3727170
- Hector D. Ceniceros and Thomas Y. Hou, Dynamic generation of capillary waves, Phys. Fluids 11 (1999), no. 5, 1042–1050. MR 1683713, DOI https://doi.org/10.1063/1.869975
- R. K.-C. Chan and R. Street, A computer study of finite amplitude water waves, J. Comput. Phys., 6:68–94, 1970.
- G. A. Chandler and I. G. Graham, The computation of water waves modelled by Nekrasov’s equation, SIAM J. Numer. Anal. 30 (1993), no. 4, 1041–1065. MR 1231326, DOI https://doi.org/10.1137/0730054
- B. Chen and P. G. Saffman, Numerical evidence for the existence of new types of gravity waves of permanent form on deep water, Stud. Appl. Math. 62 (1980), no. 1, 1–21. MR 557677, DOI https://doi.org/10.1002/sapm19806211
- P. Chen, Nonlinear wave dynamics in Faraday instabilities, Phys. Rev. E, 65:036308, 2002.
- C. H. Aurther, R. Granero-Belinchón, S. Shkoller, and J. Wilkening, Rigorous asymptotic models of water waves, Water Waves 1 (2019), no. 1, 71–130.
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
- Paul Concus, Standing capillary-gravity waves of finite amplitude, J. Fluid Mech. 14 (1962), 568–576. MR 0145773, DOI https://doi.org/10.1017/S0022112062001457
- Paul Concus, “Standing capillary-gravity waves of finite amplitude”: Corrigendum, J. Fluid Mech. 19 (1964), 264–266. MR 0164533, DOI https://doi.org/10.1017/S0022112064000702
- M. J. Cooker, P. D. Weidman, and D. S. Bale, Reflection of a high-amplitude solitary wave at a vertical wall, J. Fluid Mech. 342 (1997), 141–158. MR 1460657, DOI https://doi.org/10.1017/S002211209700551X
- W. Craig, P. Guyenne, J. Hammack, D. Henderson, and C. Sulem, Solitary water wave interactions, Phys. Fluids 18 (2006), no. 5, 057106, 25. MR 2259317, DOI https://doi.org/10.1063/1.2205916
- W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys. 108 (1993), no. 1, 73–83. MR 1239970, DOI https://doi.org/10.1006/jcph.1993.1164
- Alex D. D. Craik, The origins of water wave theory, Annual review of fluid mechanics. Vol. 36, Annu. Rev. Fluid Mech., vol. 36, Annual Reviews, Palo Alto, CA, 2004, pp. 1–28. MR 2062306, DOI https://doi.org/10.1146/annurev.fluid.36.050802.122118
- Alex D. D. Craik, George Gabriel Stokes on water wave theory, Annual review of fluid mechanics. Vol. 37, Annu. Rev. Fluid Mech., vol. 37, Annual Reviews, Palo Alto, CA, 2005, pp. 23–42. MR 2115337, DOI https://doi.org/10.1146/annurev.fluid.37.061903.175836
- Donald R. Crawford, Bruce M. Lake, Philip G. Saffman, and Henry C. Yuen, Stability of weakly nonlinear deep-water waves in two and three dimensions, J. Fluid Mech. 105 (1981), 177–191. MR 617684, DOI https://doi.org/10.1017/S0022112081003169
- D. F. Crouse, On implementing 2D rectangular assignment algorithms, IEEE Trans. Aerosp. Electron. Syst., 52(4):1679–1696, 2016.
- Bernard Deconinck and Katie Oliveras, The instability of periodic surface gravity waves, J. Fluid Mech. 675 (2011), 141–167. MR 2801039, DOI https://doi.org/10.1017/S0022112011000073
- James W. Demmel, Applied numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1463942
- Alok Dutt, Leslie Greengard, and Vladimir Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT 40 (2000), no. 2, 241–266. MR 1765736, DOI https://doi.org/10.1023/A%3A1022338906936
- A. L. Dyachenko, V. E. Zakharov, and E. A. Kuznetsov, Nonlinear dynamics on the free surface of an ideal fluid, Plasma Phys. Rep., 22:916–928, 1996.
- M. Faraday, On a peculiar class of acoustical figures; and on certain forms assumed by a group of particles upon vibrating elastic surfaces, Phil. Trans. Royal Society (London), 121:299–318, 1831.
- M. A. Grant, Standing Stokes waves of maximum height, J. Fluid Mech., 60:593–604, 1973.
- E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd Edition, Springer, Berlin, 2000.
- Diane M. Henderson and John W. Miles, Faraday waves in $2:1$ internal resonance, J. Fluid Mech. 222 (1991), 449–470. MR 1090720, DOI https://doi.org/10.1017/S0022112091001179
- Thomas Y. Hou and Ruo Li, Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys. 226 (2007), no. 1, 379–397. MR 2356364, DOI https://doi.org/10.1016/j.jcp.2007.04.014
- Thomas Y. Hou, John S. Lowengrub, and Michael J. Shelley, Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys. 114 (1994), no. 2, 312–338. MR 1294935, DOI https://doi.org/10.1006/jcph.1994.1170
- T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, The long-time motion of vortex sheets with surface tension, Phys. Fluids 9 (1997), no. 7, 1933–1954. MR 1455083, DOI https://doi.org/10.1063/1.869313
- T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Boundary integral methods for multicomponent fluids and multiphase materials, J. Comput. Phys. 169 (2001), no. 2, 302–362. MR 1836520, DOI https://doi.org/10.1006/jcph.2000.6626
- Jingfang Huang, Jun Jia, and Michael Minion, Accelerating the convergence of spectral deferred correction methods, J. Comput. Phys. 214 (2006), no. 2, 633–656. MR 2216607, DOI https://doi.org/10.1016/j.jcp.2005.10.004
- G. Iooss, P. I. Plotnikov, and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal. 177 (2005), no. 3, 367–478. MR 2187619, DOI https://doi.org/10.1007/s00205-005-0381-6
- M. Ioualalen and C. Kharif, Stability of three-dimensional progressive gravity waves on deep water to superharmonic disturbances, European J. Mech. B Fluids 12 (1993), no. 3, 401–414. MR 1230495
- L. Jiang, C. Ting, M. Perlin, and W. W. Schultz, Moderate and steep Faraday waves: instabilities, modulation and temporal asymmetries, J. Fluid Mech., 329:275–307, 1996.
- R. S. Johnson, A modern introduction to the mathematical theory of water waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. MR 1629555
- R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problems, Computing 38 (1987), no. 4, 325–340 (English, with German summary). MR 902027, DOI https://doi.org/10.1007/BF02278710
- R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys., 65:292–313, 1986.
- Krishna Kumar and Laurette S. Tuckerman, Parametric instability of the interface between two fluids, J. Fluid Mech. 279 (1994), 49–68. MR 1306814, DOI https://doi.org/10.1017/S0022112094003812
- Anita T. Layton and Michael L. Minion, Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations, BIT 45 (2005), no. 2, 341–373. MR 2176198, DOI https://doi.org/10.1007/s10543-005-0016-1
- M. S. Longuet-Higgins, The instabilities of gravity waves of finite amplitude in deep water. I. Superharmonics, Proc. Roy. Soc. London Ser. A 360 (1978), no. 1703, 471–488. MR 0475241, DOI https://doi.org/10.1098/rspa.1978.0080
- M. S. Longuet-Higgins, The instabilities of gravity waves of finite amplitude in deep water. II. Subharmonics, Proc. Roy. Soc. London Ser. A 360 (1978), no. 1703, 489–505. MR 0475242, DOI https://doi.org/10.1098/rspa.1978.0081
- Michael S. Longuet-Higgins, Capillary-gravity waves of solitary type on deep water, J. Fluid Mech. 200 (1989), 451–470. MR 990170, DOI https://doi.org/10.1017/S002211208900073X
- M. S. Longuet-Higgins and E. D. Cokelet, The deformation of steep surface waves on water. I. A numerical method of computation, Proc. Roy. Soc. London Ser. A 350 (1976), no. 1660, 1–26. MR 0411355, DOI https://doi.org/10.1098/rspa.1976.0092
- R. S. MacKay and P. G. Saffman, Stability of water waves, Proc. Roy. Soc. London Ser. A 406 (1986), no. 1830, 115–125. MR 853684
- T. Maxworthy, Experiments on collisions between solitary waves, J. Fluid Mech., 76:177–185, 1976.
- G. N. Mercer and A. J. Roberts, Standing waves in deep water: their stability and extreme form, Phys. Fluids A 4 (1992), no. 2, 259–269. MR 1146134, DOI https://doi.org/10.1063/1.858354
- G. N. Mercer and A. J. Roberts, The form of standing waves on finite depth water, Wave Motion 19 (1994), no. 3, 233–244. MR 1276940, DOI https://doi.org/10.1016/0165-2125%2894%2990056-6
- Paul A. Milewski, J.-M. Vanden-Broeck, and Zhan Wang, Dynamics of steep two-dimensional gravity–capillary solitary waves, J. Fluid Mech. 664 (2010), 466–477. MR 2747492, DOI https://doi.org/10.1017/S0022112010004714
- James Munkres, Algorithms for the assignment and transportation problems, J. Soc. Indust. Appl. Math. 5 (1957), 32–38. MR 0093429
- Y. Murakami and K. Chikano, Two-dimensional direct numerical simulation of parametrically excited surface waves in viscous fluid, Phys. Fluids, 13:65–74, 2001.
- David P. Nicholls, Spectral data for travelling water waves: singularities and stability, J. Fluid Mech. 624 (2009), 339–360. MR 2496379, DOI https://doi.org/10.1017/S0022112008005508
- Jorge Nocedal and Stephen J. Wright, Numerical optimization, Springer Series in Operations Research, Springer-Verlag, New York, 1999. MR 1713114
- N. L. O’Connor, The complex spatiotemporal dynamics of a shallow fluid layer, Master’s thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2008.
- Makoto Okamura, On the enclosed crest angle of the limiting profile of standing waves, Wave Motion 28 (1998), no. 1, 79–87. MR 1625165, DOI https://doi.org/10.1016/S0165-2125%2897%2900061-9
- Makoto Okamura, Standing gravity waves of large amplitude in deep water, Wave Motion 37 (2003), no. 2, 173–182. MR 1949362, DOI https://doi.org/10.1016/S0165-2125%2802%2900055-0
- Makoto Okamura, Almost limiting short-crested gravity waves in deep water, J. Fluid Mech. 646 (2010), 481–503. MR 2608160, DOI https://doi.org/10.1017/S0022112009992795
- M. Okamura, M. Ioualalen, and C. Kharif, Standing waves on water of uniform depth: on their resonances and matching with short-crested waves, J. Fluid Mech. 495 (2003), 145–156. MR 2022141, DOI https://doi.org/10.1017/S0022112003006037
- W. G. Penney and A. T. Price, Finite periodic stationary gravity waves in a perfect liquid, part II, Phil. Trans. R. Soc. London A, 244:254–284, 1952.
- Nicolas Périnet, Damir Juric, and Laurette S. Tuckerman, Numerical simulation of Faraday waves, J. Fluid Mech. 635 (2009), 1–26. MR 2540462, DOI https://doi.org/10.1017/S0022112009007551
- P. I. Plotnikov and J. F. Toland, Nash-Moser theory for standing water waves, Arch. Ration. Mech. Anal. 159 (2001), no. 1, 1–83. MR 1854060, DOI https://doi.org/10.1007/PL00004246
- S. Qadeer and J. Wilkening, Computing three-dimensional Faraday waves in a cylinder, 2019, in preparation.
- J. W. S. Rayleigh, Deep water waves, progressive or stationary, to the third order approximation, Proc. R. Soc. A, 91:345–353, 1915.
- Lord Rayleigh, On the crispations of fluid resting upon a vibrating support, Phil. Mag., 16:50–58, 1883, reprinted in Scientific Papers, vol. 2, 1900, pp. 212–219, Cambridge.
- J. D. Fenton and M. M. Rienecker, A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions, J. Fluid Mech. 118 (1982), 411–443. MR 663990, DOI https://doi.org/10.1017/S0022112082001141
- William W. Schultz, Jean-Marc Vanden-Broeck, Lei Jiang, and Marc Perlin, Highly nonlinear standing water waves with small capillary effect, J. Fluid Mech. 369 (1998), 253–272. MR 1644109
- L. W. Schwartz and J. D. Fenton, Strongly nonlinear waves, Annual review of fluid mechanics, Vol. 14, Annual Reviews, Palo Alto, Calif., 1982, pp. 39–60. MR 642535
- L. W. Schwartz and A. K. Whitney, A semi-analytic solution for nonlinear standing waves in deep water, J. Fluid Mech. 107 (1981), 147–171. MR 623359, DOI https://doi.org/10.1017/S0022112081001717
- A. C. Skeldon and G. Guidoboni, Pattern selection for Faraday waves in an incompressible viscous fluid, SIAM J. Appl. Math. 67 (2007), no. 4, 1064–1100. MR 2314197, DOI https://doi.org/10.1137/050639223
- D. H. Smith and A. J. Roberts, Branching behavior of standing waves—the signatures of resonance, Phys. Fluids 11 (1999), no. 5, 1051–1064. MR 1683714, DOI https://doi.org/10.1063/1.869976
- G. G. Stokes, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form, In Mathematical and physical papers, volume 1, pages 225–228. Cambridge University Press, 1880.
- C. H. Su and Rida M. Mirie, On head-on collisions between solitary waves, J. Fluid Mech. 98 (1980), no. 3, 509–525. MR 583060, DOI https://doi.org/10.1017/S0022112080000262
- Iradj Tadjbakhsh and Joseph B. Keller, Standing surface waves of finite amplitude, J. Fluid Mech. 8 (1960), 442–451. MR 0116695, DOI https://doi.org/10.1017/S0022112060000724
- G. I. Taylor, An experimental study of standing waves, Proc. Roy. Soc. A, 218:44–59, 1953.
- Olga Trichtchenko, Bernard Deconinck, and Jon Wilkening, The instability of Wilton ripples, Wave Motion 66 (2016), 147–155. MR 3529601, DOI https://doi.org/10.1016/j.wavemoti.2016.06.004
- C. P. Tsai and D. S. Jeng, Numerical Fourier solutions of standing waves in finite water depth, Appl. Ocean Res., 16:185–193, 1994.
- J.-M. Vanden-Broeck, Numerical calculation of standing waves in water of arbitrary uniform depth, Phys. Fluids, 24(5):812–815, 1981.
- Jean-Marc Vanden-Broeck, Nonlinear gravity-capillary standing waves in water of arbitrary uniform depth, J. Fluid Mech. 139 (1984), 97–104. MR 768482, DOI https://doi.org/10.1017/S0022112084000276
- Jean-Marc Vanden-Broeck and Frédéric Dias, Gravity-capillary solitary waves in water of infinite depth and related free-surface flows, J. Fluid Mech. 240 (1992), 549–557. MR 1175093, DOI https://doi.org/10.1017/S0022112092000193
- Jean-Marc Vanden-Broeck, Gravity-capillary free-surface flows, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 2010. MR 2722683
- J. M. Vega, E. Knobloch, and C. Martel, Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio, Physica D, 154:313–336, 2001.
- G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0483954
- Jon Wilkening, An algorithm for computing Jordan chains and inverting analytic matrix functions, Linear Algebra Appl. 427 (2007), no. 1, 6–25. MR 2353151, DOI https://doi.org/10.1016/j.laa.2007.06.012
- J. Wilkening, Breakdown of self-similarity at the crests of large amplitude standing water waves, Phys. Rev. Lett, 107:184501, 2011.
- Jon Wilkening, Relative-periodic elastic collisions of water waves, Nonlinear wave equations: analytic and computational techniques, Contemp. Math., vol. 635, Amer. Math. Soc., Providence, RI, 2015, pp. 109–129. MR 3364246, DOI https://doi.org/10.1090/conm/635/12714
- J. Wilkening, Long-time dynamics of water waves near stable and unstable standing waves, 2019, in preparation.
- J. Wilkening, Traveling-standing water waves and their stability, 2019, in preparation.
- J. Wilkening and J. Yu, Overdetermined shooting methods for computing standing water waves with spectral accuracy, Comput. Sci. Disc., 5:014017:1–38, 2012.
- Jeff Wright, Steve Yon, and C. Pozrikidis, Numerical studies of two-dimensional Faraday oscillations of inviscid fluids, J. Fluid Mech. 402 (2000), 1–32. MR 1737417, DOI https://doi.org/10.1017/S0022112099006631
- Wenbin Zhang and Jorge Viñals, Pattern formation in weakly damped parametric surface waves, J. Fluid Mech. 336 (1997), 301–330. MR 1445185, DOI https://doi.org/10.1017/S0022112096004764
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2010):
37G15,
37K45,
65M70,
76B07,
76B15
Retrieve articles in all journals
with MSC (2010):
37G15,
37K45,
65M70,
76B07,
76B15
Additional Information
Jon Wilkening
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720-3840
MR Author ID:
725944
Email:
wilken@math.berkeley.edu
Keywords:
Standing water waves,
gravity-capillary waves,
linear stability,
Floquet analysis,
monodromy operator,
Fourier basis
Received by editor(s):
March 13, 2019
Received by editor(s) in revised form:
June 25, 2019
Published electronically:
September 16, 2019
Additional Notes:
This work was supported in part by the National Science Foundation under award number DMS-1716560 and by the Department of Energy, Office of Science, Applied Scientific Computing Research, under award number DE-AC02-05CH11231.
Dedicated:
Dedicated to Walter Strauss in honor of his 80th birthday
Article copyright:
© Copyright 2019
Brown University