Unsteady 3D-Navier–Stokes system with Tresca’s friction law
Authors:
Mahdi Boukrouche, Imane Boussetouan and Laetitia Paoli
Journal:
Quart. Appl. Math. 78 (2020), 525-543
MSC (2010):
Primary 76D05, 35K86, 76D03, 35A35, 49J40
DOI:
https://doi.org/10.1090/qam/1563
Published electronically:
November 22, 2019
MathSciNet review:
4100292
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We consider unsteady incompressible 3D fluid flow with nonconstant viscosity subjected to nonlinear boundary conditions of Tresca’s type: when the modulus of the shear stress at the boundary is smaller than a given threshold, the classical no-slip condition holds; otherwise, the modulus of the shear stress at the boundary equals the given threshold and the fluid is allowed to slip. The problem is thus described by a nonlinear parabolic variational inequality. We construct a sequence of approximate solutions by using both a regularization of the free boundary condition due to friction and a penalty method, reminiscent of the “incompressibility limit” of compressible fluids, allowing us to get a better insight into the links between the fluid velocity and pressure fields. Then we pass to the limit with compactness arguments to obtain a solution to our original problem.
References
- L. Baffico and T. Sassi, Existence result for a fluid structure interaction problem with friction type slip boundary condition, ZAMM Z. Angew. Math. Mech. 95 (2015), no. 8, 831–844. MR 3384218, DOI https://doi.org/10.1002/zamm.201300301
- Mahdi Boukrouche and Laetitia Paoli, Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary, SIAM J. Math. Anal. 44 (2012), no. 2, 1211–1256. MR 2915682, DOI https://doi.org/10.1137/110837772
- Franck Boyer and Pierre Fabrie, Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 52, Springer-Verlag, Berlin, 2006 (French). MR 2248409
- Miroslav Bulíček and Josef Málek, On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2016, pp. 135–156. MR 3524183
- S. C. Chen, Y. C. Chen, N. T. Cheng, and M.-S. Huang, Simulation of injection-compression mold-filling process, Int. Comm. Heat Mass Transfer 25 (1998), 907-917.
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
- Georges de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1222, Hermann et Cie, Paris, 1955 (French). Publ. Inst. Math. Univ. Nancago III. MR 0068889
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 (French). Travaux et Recherches Mathématiques, No. 21. MR 0464857
- C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes equations and turbulence, Encyclopedia of Mathematics and its Applications, vol. 83, Cambridge University Press, Cambridge, 2001. MR 1855030
- H. Fujita, Flow problems with unilateral boundary conditions, Leçons au Collège de France, 1993.
- Hiroshi Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, Sūrikaisekikenkyūsho K\B{o}kyūroku 888 (1994), 199–216. Mathematical fluid mechanics and modeling (Kyoto, 1994). MR 1338892
- Hiroshi Fujita, Non-stationary Stokes flows under leak boundary conditions of friction type, J. Comput. Math. 19 (2001), no. 1, 1–8. MR 1807098
- Hiroshi Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type, J. Comput. Appl. Math. 149 (2002), no. 1, 57–69. Scientific and engineering computations for the 21st century—methodologies and applications (Shizuoka, 2001). MR 1952966, DOI https://doi.org/10.1016/S0377-0427%2802%2900520-4
- G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011. Steady-state problems. MR 2808162
- V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR 548867
- H. Hervet and L. Léger, Flow with slip at the wall: from simple to complex fluids, C. R. Acad. Sci. Paris, Physique 4 (2003), 241–249.
- F. Ilinca and J. F. Hétu, Three-dimensional finite element solution of gas-assisted injection moulding, Int. J. Numer. Meth. Eng. 53 (2002), 2003–2017.
- Takahito Kashiwabara, On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type, J. Differential Equations 254 (2013), no. 2, 756–778. MR 2990050, DOI https://doi.org/10.1016/j.jde.2012.09.015
- V. A. Kondrat′ev and O. A. Oleĭnik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Uspekhi Mat. Nauk 43 (1988), no. 5(263), 55–98, 239 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 5, 65–119. MR 971465, DOI https://doi.org/10.1070/RM1988v043n05ABEH001945
- Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, DOI https://doi.org/10.1007/BF02547354
- C. Le Roux, Steady Stokes flows with threshold slip boundary conditions, Math. Models Methods Appl. Sci. 15 (2005), no. 8, 1141–1168. MR 2156637, DOI https://doi.org/10.1142/S0218202505000686
- C. Le Roux and A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci. 30 (2007), no. 5, 595–624. MR 2298684, DOI https://doi.org/10.1002/mma.802
- Jacques-Louis Lions, Some problems connected with Navier-Stokes equations, 4th Latin-American School of Mathematics (Lima, 1978) IV ELAM, Lima, 1979, pp. 222–286. MR 564063
- I. J. Rao and K. R. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech. 135 (1999), no. 3-4, 113–126. MR 1690164, DOI https://doi.org/10.1007/BF01305747
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- N. Saito, On the Stokes equation with the leak and slip boundary conditions of friction type: Regularity of solutions, Publ. Res. Inst. Math. Sci. 40 (2004), 345–383; Errata 48(2) (2012) 475–476.
- Jacques Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, DOI https://doi.org/10.1007/BF01762360
- Jacques Simon, Démonstration constructive d’un théorème de G. de Rham, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 11, 1167–1172 (French, with English and French summaries). MR 1221643
- Jacques Simon, On the existence of the pressure for solutions of the variational Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999), no. 3, 225–234. MR 1738751, DOI https://doi.org/10.1007/s000210050010
- Luc Tartar, Topics in nonlinear analysis, Publications Mathématiques d’Orsay 78, vol. 13, Université de Paris-Sud, Département de Mathématique, Orsay, 1978. MR 532371
- R. Temam, Navier-Stokes equations, theory and numerical analysis, Elsevier Science Publishers B.V, Amsterdam, 1984.
References
- L. Baffico and T. Sassi, Existence result for a fluid structure interaction problem with friction type slip boundary condition, ZAMM Z. Angew. Math. Mech. 95 (2015), no. 8, 831–844. MR 3384218, DOI https://doi.org/10.1002/zamm.201300301
- Mahdi Boukrouche and Laetitia Paoli, Asymptotic analysis of a micropolar fluid flow in a thin domain with a free and rough boundary, SIAM J. Math. Anal. 44 (2012), no. 2, 1211–1256. MR 2915682, DOI https://doi.org/10.1137/110837772
- Franck Boyer and Pierre Fabrie, Éléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 52, Springer-Verlag, Berlin, 2006 (French). MR 2248409
- Miroslav Bulíček and Josef Málek, On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2016, pp. 135–156. MR 3524183
- S. C. Chen, Y. C. Chen, N. T. Cheng, and M.-S. Huang, Simulation of injection-compression mold-filling process, Int. Comm. Heat Mass Transfer 25 (1998), 907-917.
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR 0069338
- Georges de Rham, Variétés différentiables. Formes, courants, formes harmoniques, Actualités Sci. Ind., no. 1222 = Publ. Inst. Math. Univ. Nancago III, Hermann et Cie, Paris, 1955 (French). MR 0068889
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques, No. 21, Dunod, Paris, 1972 (French). MR 0464857
- C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes equations and turbulence, Encyclopedia of Mathematics and its Applications, vol. 83, Cambridge University Press, Cambridge, 2001. MR 1855030
- H. Fujita, Flow problems with unilateral boundary conditions, Leçons au Collège de France, 1993.
- Hiroshi Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, Mathematical fluid mechanics and modeling (Kyoto, 1994), Sūrikaisekikenkyūsho Kōkyūroku 888 (1994), 199–216. MR 1338892
- Hiroshi Fujita, Non-stationary Stokes flows under leak boundary conditions of friction type, J. Comput. Math. 19 (2001), no. 1, 1–8. MR 1807098
- Hiroshi Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type, Scientific and engineering computations for the 21st century—methodologies and applications (Shizuoka, 2001), J. Comput. Appl. Math. 149 (2002), no. 1, 57–69. MR 1952966, DOI https://doi.org/10.1016/S0377-0427%2802%2900520-4
- G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2011. MR 2808162
- V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR 548867
- H. Hervet and L. Léger, Flow with slip at the wall: from simple to complex fluids, C. R. Acad. Sci. Paris, Physique 4 (2003), 241–249.
- F. Ilinca and J. F. Hétu, Three-dimensional finite element solution of gas-assisted injection moulding, Int. J. Numer. Meth. Eng. 53 (2002), 2003–2017.
- Takahito Kashiwabara, On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type, J. Differential Equations 254 (2013), no. 2, 756–778. MR 2990050, DOI https://doi.org/10.1016/j.jde.2012.09.015
- V. A. Kondrat′ev and O. A. Oleĭnik, Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities, Uspekhi Mat. Nauk 43 (1988), no. 5(263), 55–98, 239 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 5, 65–119. MR 971465, DOI https://doi.org/10.1070/RM1988v043n05ABEH001945
- Jean Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math. 63 (1934), no. 1, 193–248 (French). MR 1555394, DOI https://doi.org/10.1007/BF02547354
- C. Le Roux, Steady Stokes flows with threshold slip boundary conditions, Math. Models Methods Appl. Sci. 15 (2005), no. 8, 1141–1168. MR 2156637, DOI https://doi.org/10.1142/S0218202505000686
- C. Le Roux and A. Tani, Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci. 30 (2007), no. 5, 595–624. MR 2298684, DOI https://doi.org/10.1002/mma.802
- Jacques-Louis Lions, Some problems connected with Navier-Stokes equations, 4th Latin-American School of Mathematics (Lima, 1978) IV ELAM, Lima, 1979, pp. 222–286. MR 564063
- I. J. Rao and K. R. Rajagopal, The effect of the slip boundary condition on the flow of fluids in a channel, Acta Mech. 135 (1999), no. 3-4, 113–126. MR 1690164, DOI https://doi.org/10.1007/BF01305747
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- N. Saito, On the Stokes equation with the leak and slip boundary conditions of friction type: Regularity of solutions, Publ. Res. Inst. Math. Sci. 40 (2004), 345–383; Errata 48(2) (2012) 475–476.
- Jacques Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, DOI https://doi.org/10.1007/BF01762360
- Jacques Simon, Démonstration constructive d’un théorème de G. de Rham, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 11, 1167–1172 (French, with English and French summaries). MR 1221643
- Jacques Simon, On the existence of the pressure for solutions of the variational Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999), no. 3, 225–234. MR 1738751, DOI https://doi.org/10.1007/s000210050010
- Luc Tartar, Topics in nonlinear analysis, Publications Mathématiques d’Orsay 78, vol. 13, Université de Paris-Sud, Département de Mathématique, Orsay, 1978. MR 532371
- R. Temam, Navier-Stokes equations, theory and numerical analysis, Elsevier Science Publishers B.V, Amsterdam, 1984.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2010):
76D05,
35K86,
76D03,
35A35,
49J40
Retrieve articles in all journals
with MSC (2010):
76D05,
35K86,
76D03,
35A35,
49J40
Additional Information
Mahdi Boukrouche
Affiliation:
University of Lyon, UJM, CNRS Institut Camille Jordan UMR 5208, F-42023 Saint-Etienne, France
MR Author ID:
335804
Email:
Mahdi.Boukrouche@univ-st-etienne.fr
Imane Boussetouan
Affiliation:
University of Lyon, UJM, CNRS Institut Camille Jordan UMR 5208, F-42023 Saint-Etienne, France; École Supérieure de Technologies Industrielles, Annaba, Algeria
MR Author ID:
1057927
Email:
imane.boussetouan@gmail.com
Laetitia Paoli
Affiliation:
University of Lyon, UJM, CNRS Institut Camille Jordan UMR 5208, F-42023 Saint-Etienne, France
MR Author ID:
339181
Email:
laetitia.paoli@univ-st-etienne.fr
Received by editor(s):
June 26, 2019
Received by editor(s) in revised form:
October 9, 2019
Published electronically:
November 22, 2019
Article copyright:
© Copyright 2019
Brown University