A local sensitivity analysis in Landau damping for the kinetic Kuramoto equation with random inputs
Authors:
Zhiyan Ding, Seung-Yeal Ha and Shi Jin
Journal:
Quart. Appl. Math. 79 (2021), 229-264
MSC (2010):
Primary 35L02, 92B99
DOI:
https://doi.org/10.1090/qam/1578
Published electronically:
August 31, 2020
MathSciNet review:
4246492
Full-text PDF
Abstract |
References |
Similar Articles |
Additional Information
Abstract: We present a local sensitivity analysis in Landau damping for the kinetic Kuramoto equation with random inputs. The kinetic Kuramoto equation governs the temporal-phase dynamics of the one-oscillator distribution function for an infinite ensemble of Kuramoto oscillators. When random inputs are absent in the coupling strength and initial data, it is well known that the incoherent state is nonlinearly stable in a subscritical regime where the coupling strength is below the critical coupling strength which is determined by the geometric shape of the distribution function for natural frequency. More precisely, the Kuramoto order parameter measuring the fluctuations around the incoherent state tends to zero asymptotically and its decay mode depends on the regularity(smoothness) of natural frequency distribution function and initial datum. This phenomenon is called Landau damping in the Kuramoto model in analogy with Landau damping arising from plasma physics. Our analytical results show that Landau damping is structurally robust with respect to random inputs at least in a subcritical regime. As in the deterministic setting, the decay mode for the derivatives of the order parameter in the random space can be either algebraic or exponential depending on the regularities of the initial datum and natural frequency distribution, respectively, and the smoothness for the order parameter in the random space is determined by the smoothness of the coupling strength.
References
- J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77 (2005) 137-185.
- G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, and J. Soler, Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci. 29 (2019), no. 10, 1901–2005. MR 4014449, DOI https://doi.org/10.1142/S0218202519500374
- Giacomo Albi, Lorenzo Pareschi, and Mattia Zanella, Uncertainty quantification in control problems for flocking models, Math. Probl. Eng. , posted on (2015), Art. ID 850124, 14. MR 3356715, DOI https://doi.org/10.1155/2015/850124
- Neil J. Balmforth and Roberto Sassi, A shocking display of synchrony, Phys. D 143 (2000), no. 1-4, 21–55. Bifurcations, patterns and symmetry. MR 1783383, DOI https://doi.org/10.1016/S0167-2789%2800%2900095-6
- Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot, Landau damping in finite regularity for unconfined systems with screened interactions, Comm. Pure Appl. Math. 71 (2018), no. 3, 537–576. MR 3762277, DOI https://doi.org/10.1002/cpa.21730
- Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot, Landau damping: paraproducts and Gevrey regularity, Ann. PDE 2 (2016), no. 1, Art. 4, 71. MR 3489904, DOI https://doi.org/10.1007/s40818-016-0008-2
- Dario Benedetto, Emanuele Caglioti, and Umberto Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys. 162 (2016), no. 4, 813–823. MR 3456977, DOI https://doi.org/10.1007/s10955-015-1426-3
- Dario Benedetto, Emanuele Caglioti, and Umberto Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci. 13 (2015), no. 7, 1775–1786. MR 3393174, DOI https://doi.org/10.4310/CMS.2015.v13.n7.a6
- J. Buck and E. Buck, Biology of sychronous flashing of fireflies, Nature 211 (1966) 562.
- José A. Carrillo, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang, and Yongduck Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys. 156 (2014), no. 2, 395–415. MR 3215629, DOI https://doi.org/10.1007/s10955-014-1005-z
- José Antonio Carrillo, Lorenzo Pareschi, and Mattia Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys. 25 (2019), no. 2, 508–531. MR 3870370, DOI https://doi.org/10.4208/cicp.oa-2017-0244
- Hayato Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems 35 (2015), no. 3, 762–834. MR 3334903, DOI https://doi.org/10.1017/etds.2013.68
- Young-Pil Choi, Seung-Yeal Ha, Sungeun Jung, and Yongduck Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D 241 (2012), no. 7, 735–754. MR 2897541, DOI https://doi.org/10.1016/j.physd.2011.11.011
- Nikhil Chopra and Mark W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control 54 (2009), no. 2, 353–357. MR 2491964, DOI https://doi.org/10.1109/TAC.2008.2007884
- Helge Dietert, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl. (9) 105 (2016), no. 4, 451–489 (English, with English and French summaries). MR 3471147, DOI https://doi.org/10.1016/j.matpur.2015.11.001
- Florian Dörfler and Francesco Bullo, Synchronization in complex networks of phase oscillators: a survey, Automatica J. IFAC 50 (2014), no. 6, 1539–1564. MR 3214901, DOI https://doi.org/10.1016/j.automatica.2014.04.012
- Florian Dörfler and Francesco Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst. 10 (2011), no. 3, 1070–1099. MR 2837521, DOI https://doi.org/10.1137/10081530X
- B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol. 29 (1991), no. 6, 571–585. MR 1118757, DOI https://doi.org/10.1007/BF00164052
- Bastien Fernandez, David Gérard-Varet, and Giambattista Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré 17 (2016), no. 7, 1793–1823. MR 3510470, DOI https://doi.org/10.1007/s00023-015-0450-9
- Seung-Yeal Ha, Young-Heon Kim, Javier Morales, and Jinyeong Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D 401 (2020), 132154, 24. MR 4034671, DOI https://doi.org/10.1016/j.physd.2019.132154
- Seung-Yeal Ha, Dongnam Ko, Jinyeong Park, and Xiongtao Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci. 3 (2016), no. 2, 209–267. MR 3576533, DOI https://doi.org/10.4171/EMSS/17
- Seung-Yeal Ha and Shi Jin, Local sensitivity analysis for the Cucker-Smale model with random inputs, Kinet. Relat. Models 11 (2018), no. 4, 859–889. MR 3810849, DOI https://doi.org/10.3934/krm.2018034
- Seung-Yeal Ha, Shi Jin, and Jinwook Jung, A local sensitivity analysis for the kinetic Cucker-Smale equation with random inputs, J. Differential Equations 265 (2018), no. 8, 3618–3649. MR 3823980, DOI https://doi.org/10.1016/j.jde.2018.05.013
- Seung-Yeal Ha, Shi Jin, and Jinwook Jung, Local sensitivity analysis for the Kuramoto-Daido model with random inputs in a large coupling regime, SIAM J. Math. Anal. 52 (2020), no. 2, 2000–2040. MR 4090354, DOI https://doi.org/10.1137/18M1173435
- Seung-Yeal Ha, Shi Jin, and Jinwook Jung, A local sensitivity analysis for the kinetic Kuramoto equation with random inputs, Netw. Heterog. Media 14 (2019), no. 2, 317–340. MR 3959347, DOI https://doi.org/10.3934/nhm
- Seung-Yeal Ha, Hwa Kil Kim, and Sang Woo Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci. 14 (2016), no. 4, 1073–1091. MR 3491817, DOI https://doi.org/10.4310/CMS.2016.v14.n4.a10
- Seung-Yeal Ha and Qinghua Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys. 160 (2015), no. 2, 477–496. MR 3360470, DOI https://doi.org/10.1007/s10955-015-1270-5
- Seung-Yeal Ha and Qinghua Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations 259 (2015), no. 6, 2430–2457. MR 3353651, DOI https://doi.org/10.1016/j.jde.2015.03.038
- Jingwei Hu and Shi Jin, Uncertainty quantification for kinetic equations, Uncertainty quantification for hyperbolic and kinetic equations, SEMA SIMAI Springer Ser., vol. 14, Springer, Cham, 2017, pp. 193–229. MR 3793403, DOI https://doi.org/10.1007/978-3-319-67110-9_6
- Shi Jin, Mathematical analysis and numerical methods for multiscale kinetic equations with uncertainties, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 3611–3639. MR 3966545
- Carlo Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys. 34 (2005), no. 7, 523–535. MR 2265477, DOI https://doi.org/10.1080/00411450508951152
- R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci. 17 (2007), no. 4, 309–347. MR 2335124, DOI https://doi.org/10.1007/s00332-006-0806-x
- Renato E. Mirollo and Steven H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillators, Phys. D 205 (2005), no. 1-4, 249–266. MR 2167156, DOI https://doi.org/10.1016/j.physd.2005.01.017
- Steven H. Strogatz and Renato E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys. 63 (1991), no. 3-4, 613–635. MR 1115806, DOI https://doi.org/10.1007/BF01029202
- Clément Mouhot and Cédric Villani, On Landau damping, Acta Math. 207 (2011), no. 1, 29–201. MR 2863910, DOI https://doi.org/10.1007/s11511-011-0068-9
- Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics 30 (1975) 420.
- Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths, Synchronization, Cambridge Nonlinear Science Series, vol. 12, Cambridge University Press, Cambridge, 2001. A universal concept in nonlinear sciences. MR 1869044
- Ralph C. Smith, Uncertainty quantification, Computational Science & Engineering, vol. 12, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014. Theory, implementation, and applications. MR 3155184
- Ruiwen Shu and Shi Jin, A study of Landau damping with random initial inputs, J. Differential Equations 266 (2019), no. 4, 1922–1945. MR 3906236, DOI https://doi.org/10.1016/j.jde.2018.08.016
- Steven H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Phys. D 143 (2000), no. 1-4, 1–20. Bifurcations, patterns and symmetry. MR 1783382, DOI https://doi.org/10.1016/S0167-2789%2800%2900094-4
- Steven H. Strogatz, Renato E. Mirollo, and Paul C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett. 68 (1992), no. 18, 2730–2733. MR 1160290, DOI https://doi.org/10.1103/PhysRevLett.68.2730
- Mark Verwoerd and Oliver Mason, Global phase-locking in finite populations of phase-coupled oscillators, SIAM J. Appl. Dyn. Syst. 7 (2008), no. 1, 134–160. MR 2399560, DOI https://doi.org/10.1137/070686858
- Mark Verwoerd and Oliver Mason, On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph, SIAM J. Appl. Dyn. Syst. 8 (2009), no. 1, 417–453. MR 2496763, DOI https://doi.org/10.1137/080725726
- Arthur T. Winfree, The geometry of biological time, Biomathematics, vol. 8, Springer-Verlag, Berlin-New York, 1980. MR 572965
- A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16 (1967) 15-42.
References
- J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys. 77 (2005) 137-185.
- G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, and J. Soler, Vehicular traffic, crowds, and swarms: from kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci. 29 (2019), no. 10, 1901–2005. MR 4014449, DOI https://doi.org/10.1142/S0218202519500374
- Giacomo Albi, Lorenzo Pareschi, and Mattia Zanella, Uncertainty quantification in control problems for flocking models, Math. Probl. Eng. , posted on (2015), Art. ID 850124, 14. MR 3356715, DOI https://doi.org/10.1155/2015/850124
- Neil J. Balmforth and Roberto Sassi, A shocking display of synchrony, Phys. D 143 (2000), no. 1-4, 21–55. Bifurcations, patterns and symmetry. MR 1783383, DOI https://doi.org/10.1016/S0167-2789%2800%2900095-6
- Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot, Landau damping in finite regularity for unconfined systems with screened interactions, Comm. Pure Appl. Math. 71 (2018), no. 3, 537–576. MR 3762277, DOI https://doi.org/10.1002/cpa.21730
- Jacob Bedrossian, Nader Masmoudi, and Clément Mouhot, Landau damping: paraproducts and Gevrey regularity, Ann. PDE 2 (2016), no. 1, Art. 4, 71. MR 3489904, DOI https://doi.org/10.1007/s40818-016-0008-2
- Dario Benedetto, Emanuele Caglioti, and Umberto Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys. 162 (2016), no. 4, 813–823. MR 3456977, DOI https://doi.org/10.1007/s10955-015-1426-3
- Dario Benedetto, Emanuele Caglioti, and Umberto Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci. 13 (2015), no. 7, 1775–1786. MR 3393174, DOI https://doi.org/10.4310/CMS.2015.v13.n7.a6
- J. Buck and E. Buck, Biology of sychronous flashing of fireflies, Nature 211 (1966) 562.
- José A. Carrillo, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang, and Yongduck Kim, Contractivity of transport distances for the kinetic Kuramoto equation, J. Stat. Phys. 156 (2014), no. 2, 395–415. MR 3215629, DOI https://doi.org/10.1007/s10955-014-1005-z
- José Antonio Carrillo, Lorenzo Pareschi, and Mattia Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys. 25 (2019), no. 2, 508–531. MR 3870370, DOI https://doi.org/10.4208/cicp.oa-2017-0244
- Hayato Chiba, A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dynam. Systems 35 (2015), no. 3, 762–834. MR 3334903, DOI https://doi.org/10.1017/etds.2013.68
- Young-Pil Choi, Seung-Yeal Ha, Sungeun Jung, and Yongduck Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Phys. D 241 (2012), no. 7, 735–754. MR 2897541, DOI https://doi.org/10.1016/j.physd.2011.11.011
- Nikhil Chopra and Mark W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automat. Control 54 (2009), no. 2, 353–357. MR 2491964, DOI https://doi.org/10.1109/TAC.2008.2007884
- Helge Dietert, Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl. (9) 105 (2016), no. 4, 451–489 (English, with English and French summaries). MR 3471147, DOI https://doi.org/10.1016/j.matpur.2015.11.001
- Florian Dörfler and Francesco Bullo, Synchronization in complex networks of phase oscillators: a survey, Automatica J. IFAC 50 (2014), no. 6, 1539–1564. MR 3214901, DOI https://doi.org/10.1016/j.automatica.2014.04.012
- Florian Dörfler and Francesco Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst. 10 (2011), no. 3, 1070–1099. MR 2837521, DOI https://doi.org/10.1137/10081530X
- B. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol. 29 (1991), no. 6, 571–585. MR 1118757, DOI https://doi.org/10.1007/BF00164052
- Bastien Fernandez, David Gérard-Varet, and Giambattista Giacomin, Landau damping in the Kuramoto model, Ann. Henri Poincaré 17 (2016), no. 7, 1793–1823. MR 3510470, DOI https://doi.org/10.1007/s00023-015-0450-9
- Seung-Yeal Ha, Young-Heon Kim, Javier Morales, and Jinyeong Park, Emergence of phase concentration for the Kuramoto-Sakaguchi equation, Phys. D 401 (2020), 132154, 24. MR 4034671, DOI https://doi.org/10.1016/j.physd.2019.132154
- Seung-Yeal Ha, Dongnam Ko, Jinyeong Park, and Xiongtao Zhang, Collective synchronization of classical and quantum oscillators, EMS Surv. Math. Sci. 3 (2016), no. 2, 209–267. MR 3576533, DOI https://doi.org/10.4171/EMSS/17
- Seung-Yeal Ha and Shi Jin, Local sensitivity analysis for the Cucker-Smale model with random inputs, Kinet. Relat. Models 11 (2018), no. 4, 859–889. MR 3810849, DOI https://doi.org/10.3934/krm.2018034
- Seung-Yeal Ha, Shi Jin, and Jinwook Jung, A local sensitivity analysis for the kinetic Cucker-Smale equation with random inputs, J. Differential Equations 265 (2018), no. 8, 3618–3649. MR 3823980, DOI https://doi.org/10.1016/j.jde.2018.05.013
- Seung-Yeal Ha, Shi Jin, and Jinwook Jung, Local sensitivity analysis for the Kuramoto-Daido model with random inputs in a large coupling regime, SIAM J. Math. Anal. 52 (2020), no. 2, 2000–2040. MR 4090354, DOI https://doi.org/10.1137/18M1173435
- Seung-Yeal Ha, Shi Jin, and Jinwook Jung, A local sensitivity analysis for the kinetic Kuramoto equation with random inputs, Netw. Heterog. Media 14 (2019), no. 2, 317–340. MR 3959347, DOI https://doi.org/10.3934/nhm
- Seung-Yeal Ha, Hwa Kil Kim, and Sang Woo Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci. 14 (2016), no. 4, 1073–1091. MR 3491817, DOI https://doi.org/10.4310/CMS.2016.v14.n4.a10
- Seung-Yeal Ha and Qinghua Xiao, Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys. 160 (2015), no. 2, 477–496. MR 3360470, DOI https://doi.org/10.1007/s10955-015-1270-5
- Seung-Yeal Ha and Qinghua Xiao, Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Differential Equations 259 (2015), no. 6, 2430–2457. MR 3353651, DOI https://doi.org/10.1016/j.jde.2015.03.038
- Jingwei Hu and Shi Jin, Uncertainty quantification for kinetic equations, Uncertainty quantification for hyperbolic and kinetic equations, SEMA SIMAI Springer Ser., vol. 14, Springer, Cham, 2017, pp. 193–229. MR 3793403, DOI https://doi.org/10.1007/978-3-319-67110-9_6
- Shi Jin, Mathematical analysis and numerical methods for multiscale kinetic equations with uncertainties, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 3611–3639. MR 3966545
- Carlo Lancellotti, On the Vlasov limit for systems of nonlinearly coupled oscillators without noise, Transport Theory Statist. Phys. 34 (2005), no. 7, 523–535. MR 2265477, DOI https://doi.org/10.1080/00411450508951152
- R. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model, J. Nonlinear Sci. 17 (2007), no. 4, 309–347. MR 2335124, DOI https://doi.org/10.1007/s00332-006-0806-x
- Renato E. Mirollo and Steven H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillators, Phys. D 205 (2005), no. 1-4, 249–266. MR 2167156, DOI https://doi.org/10.1016/j.physd.2005.01.017
- Steven H. Strogatz and Renato E. Mirollo, Stability of incoherence in a population of coupled oscillators, J. Statist. Phys. 63 (1991), no. 3-4, 613–635. MR 1115806, DOI https://doi.org/10.1007/BF01029202
- Clément Mouhot and Cédric Villani, On Landau damping, Acta Math. 207 (2011), no. 1, 29–201. MR 2863910, DOI https://doi.org/10.1007/s11511-011-0068-9
- Y. Kuramoto, International symposium on mathematical problems in mathematical physics, Lecture Notes in Theoretical Physics 30 (1975) 420.
- Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge Nonlinear Science Series, vol. 12, Cambridge University Press, Cambridge, 2001. MR 1869044
- Ralph C. Smith, Uncertainty quantification: Theory, implementation, and applications, Computational Science & Engineering, vol. 12, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2014. MR 3155184
- Ruiwen Shu and Shi Jin, A study of Landau damping with random initial inputs, J. Differential Equations 266 (2019), no. 4, 1922–1945. MR 3906236, DOI https://doi.org/10.1016/j.jde.2018.08.016
- Steven H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators: Bifurcations, patterns and symmetry, Phys. D 143 (2000), no. 1-4, 1–20. MR 1783382, DOI https://doi.org/10.1016/S0167-2789%2800%2900094-4
- Steven H. Strogatz, Renato E. Mirollo, and Paul C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett. 68 (1992), no. 18, 2730–2733. MR 1160290, DOI https://doi.org/10.1103/PhysRevLett.68.2730
- Mark Verwoerd and Oliver Mason, Global phase-locking in finite populations of phase-coupled oscillators, SIAM J. Appl. Dyn. Syst. 7 (2008), no. 1, 134–160. MR 2399560, DOI https://doi.org/10.1137/070686858
- Mark Verwoerd and Oliver Mason, On computing the critical coupling coefficient for the Kuramoto model on a complete bipartite graph, SIAM J. Appl. Dyn. Syst. 8 (2009), no. 1, 417–453. MR 2496763, DOI https://doi.org/10.1137/080725726
- Arthur T. Winfree, The geometry of biological time, Biomathematics, vol. 8, Springer-Verlag, Berlin-New York, 1980. MR 572965
- A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16 (1967) 15-42.
Similar Articles
Retrieve articles in Quarterly of Applied Mathematics
with MSC (2010):
35L02,
92B99
Retrieve articles in all journals
with MSC (2010):
35L02,
92B99
Additional Information
Zhiyan Ding
Affiliation:
Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States of America
MR Author ID:
1330246
Email:
zding49@wisc.edu
Seung-Yeal Ha
Affiliation:
Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826; and Korea Institute for Advanced Study, Hoegiro 87, Seoul, 02455, Republic of Korea
MR Author ID:
684438
Email:
syha@snu.ac.kr
Shi Jin
Affiliation:
School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Email:
shijin-m@sjtu.edu.cn
Keywords:
Kuramoto model,
Landau damping,
random inputs,
synchronization
Received by editor(s):
February 6, 2020
Received by editor(s) in revised form:
June 22, 2020
Published electronically:
August 31, 2020
Additional Notes:
Corresponding author: Seung-Yeal Ha
The work of the second author was supported by the National Research Foundation of Korea (NRF-2020R1A2C3A01003881).
The work of the third author was supported by NSFC Grant Nos. 11871297 and 3157107.
Article copyright:
© Copyright 2020
Brown University